初高中数学公式定理大全(超全)

合集下载

高中数学公式大全[最全面,最详细]

高中数学公式大全[最全面,最详细]

高中数学公式大全(最全面,最详细)高中数学公式大全抛物线:y = ax *+ bx + c就是y等于ax 的平方加上bx再加上ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

(二)椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。

常数为体,公式为用。

椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10) ·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

高中数学必背公式大全

高中数学必背公式大全

高中数学必背公式大全一、代数部分。

1. 二项式定理。

(a+b)ⁿ = Cⁿ₀aⁿb⁰ + Cⁿ₁aⁿ⁻¹b¹ + ... + Cⁿᵢaⁿ⁻ⁱbⁱ + ... + Cⁿₙa⁰bⁿ。

2. 一元二次方程求根公式。

ax²+bx+c=0的解为x= (-b±√(b²-4ac))/2a。

3. 等差数列通项公式。

an = a₁ + (n-1)d。

4. 等比数列通项公式。

an = a₁ q^(n-1)。

5. 两点间距离公式。

两点A(x₁, y₁)和B(x₂, y₂)间的距离为√((x₂-x₁)² + (y₂-y₁)²)。

6. 直线斜率公式。

直线y=kx+b的斜率为k。

7. 二次函数顶点坐标。

二次函数y=ax²+bx+c的顶点坐标为(-b/2a, c-b²/4a)。

二、几何部分。

1. 直角三角形勾股定理。

a² + b² = c²。

2. 直角三角形中正弦、余弦、正切公式。

sinA = a/c, cosA = b/c, tanA = a/b。

3. 三角形面积公式。

三角形面积S=√(p(p-a)(p-b)(p-c)),其中p为半周长。

4. 圆周长和面积公式。

圆周长C=2πr, 圆面积S=πr²。

5. 正多边形内角和公式。

正n边形内角和为(n-2) 180°。

6. 圆锥、圆柱、球体积公式。

圆锥体积V=1/3πr²h, 圆柱体积V=πr²h, 球体积V=4/3πr³。

三、概率与统计部分。

1. 随机事件概率公式。

P(A) = n(A)/n(S)。

2. 期望公式。

E(X) = x₁p₁ + x₂p₂ + ... + xᵢpᵢ。

3. 正态分布概率公式。

P(a < X < b) = ∫(a, b) 1/√(2πσ²) e^(-(x-μ)²/2σ²) dx。

初中与高中数学公式大全

初中与高中数学公式大全

初中数学公式大全几何公式:1、多边形内角和公式:n边形的内角和等于(n-2)180º(n≥3,n是正整数),外角和等于360º2、平行线分线段成比例定理:(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。

如图:a∥b∥c,直线l1与l2分别与直线a、b、c相交与点A、B、CD、E、F,则有:(图1)(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

如图:△ABC中,DE∥BC,DE与AB、AC相交与点D、E,则有:(图2)(图3)*3、直角三角形中的射影定理:如图:Rt△ABC中,∠ACB=90o,CD ⊥AB于D,则有:(图4)(图5)4、圆的有关性质:(1)垂径定理:如果一条直线具备以下五个性质中的­任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;­⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径.(2)两条平行弦所夹的弧相等.(3)圆心角的度­数等于它所对的弧的度数.(4)一条弧所对的圆周角等于它所对的圆心角的一半.(5)圆周­角等于它所对的弧的度数的一半.(6)同弧或等­弧所对的圆周角相等.(7)在同圆或等圆中,相等的圆周角所对的弧相等.(8)90º的圆周角­所对的弦是直径,反之,直径所对的圆周角是90º,直径是最长的弦.(9)圆内接四边形的对角互补.5、三角形的内心与外心:三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角角平分线的交点.三­角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点.常见结论:(1)Rt△ABC的三条边分别为:a、b、c(c为斜边),则它的内切圆的半径­(图6);(2)△ABC的周长为(图7-0),面积为S,其内切圆的半径为r,则(图7);*6、弦切角定理及其推论:(1)弦切角:顶点在圆上,并且一边和圆相交,另一边和圆相切的角叫做弦切角。

高中数学必背公式大全

高中数学必背公式大全

高中数学必背公式大全【代数基本公式】1. 二次方程的根公式:若二次方程ax²+bx+c=0的判别式Δ=b²-4ac≥0,则它的根公式为:x₁=(-b+√Δ)/2a,x₂=(-b-√Δ)/2a。

2. 四则运算公式:(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²,(a+b)(a-b)=a²-b²。

3. 余弦定理:a²=b²+c²-2bc·cosA,b²=a²+c²-2ac·cosB,c²=a²+b²-2ab·cosC。

4. 正弦定理:a/sinA=b/sinB=c/sinC=2R(R为三角形外接圆半径)。

5.二项式定理:(a+b)ⁿ=Cⁿ₀aⁿb⁰+Cⁿ₁aⁿ⁻¹b+Cⁿ₂aⁿ⁻²b²+……+Cⁿₙa⁰bⁿ。

【平面几何公式】1.两点间距离公式:AB=√[(x₂-x₁)²+(y₂-y₁)²]。

2. 直线斜率公式:k=tgθ=∆y/∆x=(y₂-y₁)/(x₂-x₁)。

3.两条直线垂直公式:k₁k₂=-1,其中k₁和k₂分别为两条直线的斜率。

4.点到直线距离公式:点A(x₀,y₀)到直线Ax+By+C=0的距离为d=,(Ax₀+By₀+C)/√(A²+B²)。

【解析几何公式】1. 点乘公式:a·b=,a,b,cosθ,其中a=(x₁,y₁)和b=(x₂,y₂)。

2.向量模长公式:,a,=√(x²+y²)。

3. 向量夹角公式:cosθ=(a·b)/(,a,b,),其中a和b为向量。

【三角函数公式】1. 正弦函数基本关系:sin²θ+cos²θ=12. 余弦函数基本关系:1+tan²θ=sec²θ,1+cot²θ=csc²θ。

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)一、代数1. 一元一次方程:ax + b = 0,其中a ≠ 0。

解为 x = b/a。

2. 一元二次方程:ax^2 + bx + c = 0,其中a ≠ 0。

解为 x =[b ± sqrt(b^2 4ac)] / 2a。

3. 一元三次方程:ax^3 + bx^2 + cx + d = 0,其中a ≠ 0。

解为x = [b ± sqrt(b^2 3ac)] / 3a。

4. 一元四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0,其中 a≠ 0。

解为x = [b ± sqrt(b^2 4ac)] / 2a。

5. 分式方程:分子和分母均为多项式。

解法为将方程两边乘以分母的乘积,得到一个等价的整式方程,然后求解。

6. 二元一次方程组:由两个一元一次方程组成的方程组。

解法为消元法或代入法。

7. 二元二次方程组:由两个一元二次方程组成的方程组。

解法为消元法或代入法。

8. 三元一次方程组:由三个一元一次方程组成的方程组。

解法为消元法或代入法。

9. 等差数列:首项为 a1,公差为 d。

第 n 项为 an = a1 + (n 1)d。

前 n 项和为 Sn = n/2(a1 + an)。

10. 等比数列:首项为 a1,公比为 q。

第 n 项为 an = a1q^(n 1)。

前 n 项和为 Sn = a1 (1 q^n) / (1 q),其中q ≠ 1。

二、几何1. 平面几何(1)直线:两点确定一条直线,直线方程为 y = mx + b,其中m 是斜率,b 是截距。

(2)圆:圆心为 (a, b),半径为 r。

圆的方程为 (x a)^2 +(y b)^2 = r^2。

(3)椭圆:中心为 (a, b),长轴为 2a,短轴为 2b。

椭圆的方程为 (x a)^2 / a^2 + (y b)^2 / b^2 = 1。

(4)双曲线:中心为 (a, b),实轴为 2a,虚轴为 2b。

史上最全的高中数学公式大全

史上最全的高中数学公式大全

高中数学公式大全(最全面,最详细)高中数学公式大全抛物线:y = ax *+ bx + c就是y等于ax 的平方加上bx再加上ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

(二)椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。

常数为体,公式为用。

椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8) 十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+ta nA^10)·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

初中与高中数学公式大全

初中与高中数学公式大全

初中数学公式大全几何公式:1、多边形内角和公式:n边形的内角和等于(n-2)180º(n≥3,n是正整数),外角和等于360º2、平行线分线段成比例定理:(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。

如图:a∥b∥c,直线l1与l2分别与直线a、b、c相交与点A、B、CD、E、F,则有:(图1)(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

如图:△ABC中,DE∥BC,DE与AB、AC相交与点D、E,则有:(图2)(图3)*3、直角三角形中的射影定理:如图:Rt△ABC中,∠ACB=90o,CD ⊥AB于D,则有:(图4)(图5)4、圆的有关性质:(1)垂径定理:如果一条直线具备以下五个性质中的­任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;­⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径.(2)两条平行弦所夹的弧相等.(3)圆心角的度­数等于它所对的弧的度数.(4)一条弧所对的圆周角等于它所对的圆心角的一半.(5)圆周­角等于它所对的弧的度数的一半.(6)同弧或等­弧所对的圆周角相等.(7)在同圆或等圆中,相等的圆周角所对的弧相等.(8)90º的圆周角­所对的弦是直径,反之,直径所对的圆周角是90º,直径是最长的弦.(9)圆内接四边形的对角互补.5、三角形的内心与外心:三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角角平分线的交点.三­角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点.常见结论:(1)Rt△ABC的三条边分别为:a、b、c(c为斜边),则它的内切圆的半径­(图6);(2)△ABC的周长为(图7-0),面积为S,其内切圆的半径为r,则(图7);*6、弦切角定理及其推论:(1)弦切角:顶点在圆上,并且一边和圆相交,另一边和圆相切的角叫做弦切角。

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)一、代数1. 一元一次方程:ax + b = 0,其中a ≠ 0。

解为 x = b/a。

2. 一元二次方程:ax^2 + bx + c = 0,其中a ≠ 0。

解为 x =[b ± sqrt(b^2 4ac)] / 2a。

3. 一元三次方程:ax^3 + bx^2 + cx + d = 0,其中a ≠ 0。

解为x = [b ± sqrt(b^2 3ac)] / 3a。

4. 一元四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0,其中 a≠ 0。

解为x = [b ± sqrt(b^2 4ac)] / 2a。

5. 分式方程:分子和分母均为多项式。

解法为将方程两边乘以分母的乘积,得到一个等价的整式方程,然后求解。

6. 二元一次方程组:由两个一元一次方程组成的方程组。

解法为消元法或代入法。

7. 二元二次方程组:由两个一元二次方程组成的方程组。

解法为消元法或代入法。

8. 三元一次方程组:由三个一元一次方程组成的方程组。

解法为消元法或代入法。

9. 等差数列:首项为 a1,公差为 d。

第 n 项为 an = a1 + (n 1)d。

前 n 项和为 Sn = n/2(a1 + an)。

10. 等比数列:首项为 a1,公比为 q。

第 n 项为 an = a1q^(n 1)。

前 n 项和为 Sn = a1 (1 q^n) / (1 q),其中q ≠ 1。

二、几何1. 平面几何(1)直线:两点确定一条直线,直线方程为 y = mx + b,其中m 是斜率,b 是截距。

(2)圆:圆心为 (a, b),半径为 r。

圆的方程为 (x a)^2 +(y b)^2 = r^2。

(3)椭圆:中心为 (a, b),长轴为 2a,短轴为 2b。

椭圆的方程为 (x a)^2 / a^2 + (y b)^2 / b^2 = 1。

(4)双曲线:中心为 (a, b),实轴为 2a,虚轴为 2b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初高中数学公式定理大全过两点有且只有一条直线1 两点之间线段最短2 同角或等角的补角相等3 同角或等角的余角相等4 过一点有且只有一条直线和已知直线垂直5 直线外一点与直线上各点连接的所有线段中,垂线段最短 6 经过直线外一点,有且只有一条直线与这条直线平行平行公理7 如果两条直线都和第三条直线平行,这两条直线也互相平行8 同位角相等,两直线平行9 内错角相等,两直线平行10 同旁内角互补,两直线平行11 两直线平行,同位角相等12 两直线平行,内错角相等13 两直线平行,同旁内角互补14 三角形两边的和大于第三边定理15 三角形两边的差小于第三边推论16 三角形三个内角的和等于三角形内角和定理17 °180 直角三角形的两个锐角互余1 推论18 三角形的一个外角等于和它不相邻的两个内角的和2 推论19 三角形的一个外角大于任何一个和它不相邻的内角3 推论20 全等三角形的对应边、对应角相等21 有两边和它们的夹角对应相等的两个三角形全等(SAS) 边角边公理22 有两角和它们的夹边对应相等的两个三角形全等( ASA)角边角公理23 有两角和其中一角的对边对应相等的两个三角形全等(AAS) 推论24 有三边对应相等的两个三角形全等(SSS) 边边边公理25 斜边、直角边公理26 有斜边和一条直角边对应相等的两个直角三角形全等(HL) 在角的平分线上的点到这个角的两边的距离相等1 定理27 到一个角的两边的距离相同的点,在这个角的平分线上2 定理28 角的平分线是到角的两边距离相等的所有点的集合29 ( 等腰三角形的两个底角相等等腰三角形的性质定理30 即等边对等角)等腰三角形顶角的平分线平分底边并且垂直于底边1 推论31 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合32 °60等边三角形的各角都相等,并且每一个角都等于3 推论33 那么这两个角所对的边也相等如果一个三角形有两个角相等,等腰三角形的判定定理34 (等角对等边)三个角都相等的三角形是等边三角形1推论35 °的等腰三角形是等边三角形60有一个角等于2 推论36 °那么它所对的直角边等于斜边的一半30在直角三角形中,如果一个锐角等于37 直角三角形斜边上的中线等于斜边上的一半38 线段垂直平分线上的点和这条线段两个端点的距离相等定理39 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上逆定理40 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合41 关于某条直线对称的两个图形是全等形1 定理42 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线2 定理43 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上3 定理44 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称逆定理45 222a直角三角形两直角边勾股定理46 =c+ba的平方,即c的平方和、等于斜边b、222a如果三角形的三边长勾股定理的逆定理47 ,那么这个三角形是直角三角形=c+ba有关系c、b、定理48 °360四边形的内角和等于 °360四边形的外角和等于49 180)³n-2边形的内角的和等于(n 多边形内角和定理50 ° °360任意多边的外角和等于推论51 平行四边形的对角相等1 平行四边形性质定理52 53 平行四边形的对边相等2 平行四边形性质定理夹在两条平行线间的平行线段相等推论54 平行四边形的对角线互相平分3 平行四边形性质定理55 两组对角分别相等的四边形是平行四边形1 平行四边形判定定理56 两组对边分别相等的四边形是平行四边形2 平行四边形判定定理57 对角线互相平分的四边形是平行四边形3 平行四边形判定定理58 一组对边平行相等的四边形是平行四边形4 平行四边形判定定理59 矩形的四个角都是直角1 矩形性质定理60 矩形的对角线相等2 矩形性质定理61 有三个角是直角的四边形是矩形 1 矩形判定定理62 对角线相等的平行四边形是矩形 2 矩形判定定理63 1 菱形性质定理64 菱形的四条边都相等菱形的对角线互相垂直,并且每一条对角线平分一组对角2 菱形性质定理65 ³a(S=对角线乘积的一半,即=菱形面积66 2 )÷b 四边都相等的四边形是菱形1 菱形判定定理67 对角线互相垂直的平行四边形是菱形2菱形判定定理68 69 正方形的四个角都是直角,四条边都相等1 正方形性质定理正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角2正方形性质定理70 关于中心对称的两个图形是全等的1 定理71 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分2 定理72 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点逆定理73 对称等腰梯形在同一底上的两个角相等等腰梯形性质定理74 等腰梯形的两条对角线相等75 在同一底上的两个角相等的梯形是等腰梯形等腰梯形判定定理76 对角线相等的梯形是等腰梯形77如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段平行线等分线段定理78 也相等经过梯形一腰的中点与底平行的直线,必平分另一腰1 推论79 经过三角形一边的中点与另一边平行的直线,必平分第三边2 推论80 三角形的中位线平行于第三边,并且等于它的一半三角形中位线定理81 h ³2 S=L)÷a+b(L= 梯形的中位线平行于两底,并且等于两底和的一半梯形中位线定理82 a:b=c:d 那么ad=bc,如果ad=bc那么a:b=c:d,如果比例的基本性质83 (1) d /d)±b=(c/b)±(a那么d,/b=c/a如果合比性质84 (2)d=/b=c/a如果等比性质85 (3) b /+n)=a…(b+d+/+m)…(a+c+那么0),≠+n…n(b+d+/=m… 三条平行线截两条直线,所得的对应线段成比例平行线分线段成比例定理86 ,所得的对应线段成比例平行于三角形一边的直线截其他两边(或两边的延长线)推论87 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行定理88 于三角形的第三边平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成89 比例平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相定理90 似)ASA两角对应相等,两三角形相似(1 相似三角形判定定理91 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似)SAS两边对应成比例且夹角相等,两三角形相似(2判定定理93 )SSS三边对应成比例,两三角形相似(3 判定定理94 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比定理95 例,那么这两个直角三角形相似相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比1 性质定理96 相似三角形周长的比等于相似比2 性质定理97 相似三角形面积的比等于相似比的平方3 性质定理98 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值99 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值100 圆是定点的距离等于定长的点的集合101 圆的内部可以看作是圆心的距离小于半径的点的集合102 圆的外部可以看作是圆心的距离大于半径的点的集合103 同圆或等圆的半径相等104 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆105 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线106 到已知角的两边距离相等的点的轨迹,是这个角的平分线107 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线108 不在同一直线上的三点确定一个圆。

定理109垂直于弦的直径平分这条弦并且平分弦所对的两条弧垂径定理110 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 1 推论111 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧圆的两条平行弦所夹的弧相等2 推论112 圆是以圆心为对称中心的中心对称图形113 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等定理114 115 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它推论们所对应的其余各组量都相等一条弧所对的圆周角等于它所对的圆心角的一半定理116 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等1 推论117 °的圆周角所对的弦是直径90半圆(或直径)所对的圆周角是直角;2 推论118 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形3 推论119 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角定理120 r <d 相交O和⊙L①直线121 d 相离O和⊙L③直线 d=r 相切O和⊙L②直线 r >经过半径的外端并且垂直于这条半径的直线是圆的切线切线的判定定理122 圆的切线垂直于经过切点的半径切线的性质定理123 1 推论124 经过圆心且垂直于切线的直线必经过切点经过切点且垂直于切线的直线必经过圆心2 推论125 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线切线长定理126 的夹角圆的外切四边形的两组对边的和相等127 弦切角等于它所夹的弧对的圆周角弦切角定理128 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等推论129 圆内的两条相交弦,被交点分成的两条线段长的积相等相交弦定理130 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项推论131 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中切割线定理132 项推论133 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等如果两个圆相切,那么切点一定在连心线上134 R+r >d ①两圆外离135 r) >R+r(R<d<R-r ③两圆相交d=R+r ②两圆外切 r) >R-r(R<d⑤两圆内含r) >d=R-r(R ④两圆内切相交两圆的连心线垂直平分两圆的公共弦定理136 3): ≥n(n把圆分成定理137 边形n⑴依次连结各分点所得的多边形是这个圆的内接正边形n⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆定理138 n °/180)³n-2边形的每个内角都等于(n正139个全等的直角三角形2n边形分成n边形的半径和边心距把正n正定理140 边形的面积n正141 边形的周长n表示正2 p/Sn=pnrn 表示边长4 a/3a 正三角形面积√142 143 °n=360°/(n-2)180³k因此°,360由于这些角的和应为边形的角,n个正k如果在一个顶点周围有n-2化为((k-2)=4 )180 /R兀L=n弧长计算公式:144 兀=n扇形S扇形面积公式:145 2 /360=LR/R^2 = d-(R+r) 外公切线长= d-(R-r) 内公切线长146 数学定理三角形三条边的关系:定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和: °180三角形三个内角的和等于三角形内角和定理直角三角形的两个锐角互余1 推论三角形的一个外角等于和它不相邻的两个内角和 2 推论三角形的一个外角大雨任何一个和它不相邻的内角角的平分线3 推论在角的平分线上的点到这个角的两边的距离相等几何语言:性质定理OC∵)BOC=∠AOC的角平分线(或者∠AOB是∠OB ⊥PF,OA⊥PE 上OC在P点(角平分线性质定理)PF =PE∴到一个角的两边的距离相等的点,在这个角的平分线上判定定理几何语言:OB ⊥PF,OA⊥PE∵ PF =PE 的角平分线上(角平分线判定定理)AOB在∠P∴点等腰三角形的性质:等腰三角形的两底角相等等腰三角形的性质定理几何语言: AC =AB∵(等边对等角)C=∠B∴∠等腰三角形顶角的平分线平分底边并且垂直于底边 1 推论几何语言: DC =BD,AC=AB)∵1(1∴∠(等腰三角形顶角的平分线垂直平分底边)BC⊥AD,2=∠1,∠AC=AB)∵2( 2 =∠(等腰三角形顶角的平分线垂直平分底边)DC=BD,BC⊥AD∴)∵3( BC ⊥AD,AC=AB(等腰三角形顶角的平分线垂直平分底边)DC=BD,2=∠1∴∠ °60等边三角形的各角都相等,并且每一个角等于2 推论几何语言:BC =AC=AB∵=∠A∴∠ °)60°(等边三角形的各角都相等,并且每一个角都等于60=C=∠B 等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等判定定理几何语言: C =∠B∵∠(等角对等边)AC=AB∴三个角都相等的三角形是等边三角形1 推论几何语言: C =∠B=∠A∵∠(三个角都相等的三角形是等边三角形)BC=AC=AB∴ °的等腰三角形是等边三角形60有一个角等于2 推论几何语言: °)60=C°或者∠60=B°(∠60=A,∠AC=AB∵°的等腰三角形是等边三角形)60(有一个角等于BC=AC=AB∴ °,那么它所对的直角边等于斜边的一半30在直角三角形中,如果一个锐角等于3 推论几何语言: °30=B°,∠90=C∵∠30(在直角三角形中,如果一个锐角等于2BC=AB或者AB =BC∴°,那么它所对的直角边等于斜边的一半)线段的垂直平分线:线段垂直平分线上的点和这条线段两个端点的距离相等定理几何语言:)AB垂直平分MN(,BC=AB,C于AB⊥MN∵上任一点MN为P点(线段垂直平分线性质)PB=PA∴和一条线段两个端点距离相等的点,在这条线段的垂直平分线上逆定理几何语言: PB =PA∵的垂直平分线上(线段垂直平分线判定)AB在线段P∴点轴对称和轴对称图形:关于某条之间对称的两个图形是全等形1 定理如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线2 定理两个图形关于某直线对称,若它们的对应线段或延长线相交,那么交点在对称轴上3 定理若两个图形的对应点连线被同一条直线垂直平分,那这两个图形关于这条直线对称逆定理勾股定理:c2 =b2 +a2 的平方,即c的平方和,等于斜边b、a直角三角形两直角边勾股定理勾股定理的逆定理c、b、a如果三角形的三边长勾股定理的逆定理有关系,那么这个三角形是直角三角形四边形: °360任意四边形的内角和等于定理多边形内角和: °180²)2 -n 边形的内角的和等于(n多边形内角和定理定理 °360任意多边形的外角和等于推论平行四边形及其性质平行四边形的对角相等1 性质定理平行四边形的对边相等2 性质定理夹在两条平行线间的平行线段相等推论平行四边形的对角线互相平分3 性质定理几何语言:是平行四边形ABCD∵四边形(平行四边形的对角相等)CD‖AB,BC‖AD∴(平行四边形的对边相等)D=∠B,∠C=∠A∠=AO (平行四边形的对角线互相平分)DO=BO,CO 平行四边形的判定:两组对边分别平行的四边形是平行四边形 1 判定定理几何语言:CD ‖AB,BC‖AD∵ABCD∴四边形是平行四边形(两组对边分别平行的四边形是平行四边形)两组对角分别相等的四边形是平行四边形2 判定定理几何语言: D =∠B,∠C=∠A∵∠是平行四边形ABCD∴四边形(两组对角分别相等的四边形是平行四边形)两组对边分别相等的四边形是平行四边形3 判定定理几何语言: CD =AB,BC=AD∵是平行四边形ABCD∴四边形(两组对边分别相等的四边形是平行四边形) 4 判定定理对角线互相平分的四边形是平行四边形几何语言:DO =BO,CO=AO∵是平行四边形ABCD∴四边形(对角线互相平分的四边形是平行四边形)一组对边平行且相等的四边形是平行四边形5 判定定理几何语言: BC =AD,BC‖AD∵是平行四边形ABCD∴四边形(一组对边平行且相等的四边形是平行四边形)矩形:性质定理矩形的四个角都是直角1 矩形的对角线相等2 性质定理几何语言:是矩形ABCD∵四边形(矩形的对角线相等)BD=AC∴B=∠A∠°(矩形的四个角都是直角)90=D=∠C=∠直角三角形斜边上的中线等于斜边的一半推论几何语言: OC =AO为直角三角形,ABC∵△AC =BO∴(直角三角形斜边上的中线等于斜边的一半)有三个角是直角的四边形是矩形1 判定定理几何语言:°90=C=∠B=∠A∵∠是矩形(有三个角是直角的四边形是矩形)ABCD∴四边形 2 判定定理对角线相等的平行四边形是矩形几何语言: BD =AC∵是矩形(对角线相等的平行四边形是矩形)ABCD∴四边形菱形:菱形的四条边都相等1 性质定理菱形的对角线互相垂直,并且每一条对角线平分一组对角2 性质定理几何语言:是菱形ABCD∵四边形(菱形的四条边都相等)AD=CD=BC=AB∴BD,DCB和∠DAB平分∠AC,BD⊥AC ADC 和∠ABC平分∠(菱形的对角线互相垂直,并且每一条对角线平分一组对角)四边都相等的四边形是菱形1 判定定理几何语言:AD =CD=BC=AB∵是菱形(四边都相等的四边形是菱形)ABCD∴四边形对角线互相垂直的平行四边形是菱形2 判定定理几何语言: DO =BO,CO =AO,BD⊥AC∵是菱形(对角线互相垂直的平行四边形是菱形)ABCD∴四边形正方形:正方形的四个角都是直角,四条边都相等1 性质定理正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角2 性质定理中心对称和中心对称图形关于中心对称的两个图形是全等形1 定理关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分2 定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对逆定理称梯形:等腰梯形在同一底上的两个角相等等腰梯形性质定理几何语言:是等腰梯形ABCD∵四边形(等腰梯形在同一底上的两个角相等)D=∠C,∠B=∠A∴∠在同一底上的两个角相等的梯形是等腰梯形等腰梯形判定定理几何语言:C,∠B=∠A∵∠ D =∠是等腰梯形(在同一底上的两个角相等的梯形是等腰梯形)ABCD∴四边形三角形、梯形中位线三角形的中位线平行与第三边,并且等于它的一半三角形中位线定理几何语言:是三角形的中位线EF∵EF∴(三角形中位线定理)AB =梯形的中位线平行与两底,并且等于两底和的一半梯形中位线定理几何语言:是梯形的中位线EF∵(梯形中位线定理)CD)+(AB =EF∴比例线段:、比例的基本性质1 bc =ad,那么d∶c=b∶a如果、合比性质2a/b如果c/d =d)/d (c±=b)/b(a±那么”)合分比性质“,合称为”分比性质“和”合比性质“也有一些资料将上式的两种情形分别称为( 证明:因为c/d =a/b 1 c/d±=1a/b±所以所以(a±b)/b=(c±d)/d、等比性质3 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例平行线分线段成比例定理几何语言: a ‖p‖l∵(三条平行线截两条直线,所得的对应线段成比例),所得的对应线段成比例平行与三角形一边的直线截其他两边(或两边的延长线)推论如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行与定理三角形的第三边垂直于弦的直径垂直于弦的直径平分这条弦,并且平分弦所对的两条弧垂径定理几何语言:过圆心(垂径定理)OC,AB⊥OC∵ 1 推论)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧1(几何语言:不是直径AB,BC=AC,AB⊥OC∵(平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧)弦的垂直平分线过圆心,并且平分弦所对的两条弧)2(几何语言:过圆心OC,BC=AC∵(弦的垂直平分线过圆心,并且平分弦所对的两条弧)3(平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧)几何语言:(平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧)圆的两条平分弦所夹的弧相等2 推论CD ‖AB 几何语言:∵圆心角、弧、弦、弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它推论们所对应的其余各组量都分别相等圆周角:一条弧所对的圆周角等于它所对的圆心角的一半定理同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 1 推论°的圆周角所对的弦是直角90半圆(或直径)所对的圆周角是直角;2 推论如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形3 推论圆的内接四边形:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角定理几何语言:的内接四边形O是⊙ABCD∵四边形ADE =∠B°,∠180=ADB+∠B°,∠180=C+∠A∴∠切线的判定和性质:经过半径的外端并且垂直于这条半径的直线是圆的切线切线的判定定理上O在⊙A,点OA⊥l 几何语言:∵O是⊙l∴直线的切线(切线判定定理)圆的切线垂直于经过切点半径切线的性质定理 A 于点O切⊙l的半径,直线O 是⊙OA几何语言:∵(切线性质定理)OA⊥l ∴经过圆心且垂直于切线的直径必经过切点 1 推论经过切点且垂直于切线的直线必经过圆心2 推论切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角定理切⊙PD、PB几何语言:∵弦两点C、A于O (切线长定理)CPO∠APO=,∠PA=PC∴弦切角:弦切角定理弦切角就是切线与弦所夹(. 弦切角的度数等于它所夹的弧的圆心角的度数的一半定义弦切角定理:的角)弦切角定理证明。

相关文档
最新文档