2018年高考文科数学分类之解析几何

合集下载

2018年高考文数解析几何圆锥曲线精选试题及知识点分析

2018年高考文数解析几何圆锥曲线精选试题及知识点分析

文数解析几何1.已知椭圆L:x2a2+y2b2=1(a>b>0)的一个焦点于抛物线y2=8x的焦点重合,点(2,2)在L上.(Ⅰ)求L的方程;(Ⅱ)直线l不过原点O且不平行于坐标轴,l与L有两个交点A,B,线段AB的中点为M,证明:OM的斜率与直线l的斜率的乘积为定值.【答案】解:(Ⅰ)抛物线y2=8x的焦点为(2,0),由题意可得c=2,即a2−b2=4,又点(2,在L上,可得4a+2b=1,解得a=22,b=2,即有椭圆L:x28+y24=1;(Ⅱ)证明:设直线l的方程为y=kx+b(k,b≠0),A(x1,y1),B(x2,y2),将直线y=kx+b代入椭圆方程x28+y24=1,可得(1+2k2)x2+4kbx+2b2−8=0,x1+x2=−4kb1+2k2,即有AB的中点M的横坐标为−2kb1+2k,纵坐标为−k⋅2kb1+2k+b=b1+2k,直线OM的斜率为k OM=y M xM=−12⋅1k,即有k OM⋅k=−12.则OM的斜率与直线l的斜率的乘积为定值.【解析】(Ⅰ)求得抛物线的焦点,可得c=2,再由点满足椭圆方程,结合a,b,c的关系,解方程可得椭圆的方程;(Ⅱ)设直线l的方程为y=kx+b(k,b≠0),A(x1,y1),B(x2,y2),代入椭圆方程,运用韦达定理和中点坐标公式可得M的坐标,可得直线OM的斜率,进而得到证明.本题考查椭圆的方程的求法,注意运用点满足椭圆方程和a,b,c的关系,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,以及直线的斜率公式,考查化简整理的运算能力,属于中档题.2.设椭圆C:x2a+y2b=1(a>b>0),过点Q(2,1),右焦点F(2,0),(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l:y=k(x−1)(k>0)分别交x轴,y轴于C,D两点,且与椭圆C交于M,N两点,若CN=MD,求k值,并求出弦长|MN|.【答案】解:(Ⅰ)椭圆过点Q(1),可得2a+1b=1,由题意可得c=2,即a2−b2=2,解得a=2,b=2,即有椭圆C的方程为x24+y22=1;(Ⅱ)直线l:y=k(x−1)与x轴交点C(1,0),y轴交点D(0,−k),联立y=k(x−1)x2+2y2=4,消y得,(1+2k2)x2−4k2x+2k2−4=0,①设M(x1,y1),N(x2,y2),则x1+x2=4k21+2k2,CN=(x2−1,y2),MD=(−x1,−k−y1),由CN=MD,得:x1+x2=4k21+2k2=1,解得k=±22.由k>0得k=22代入①得2x2−2x−3=0,x1+x2=1,x1x2=−32,可得|MN|=2⋅(x1+x2)2−4x1x2=32⋅1+6=422.【解析】(Ⅰ)将Q的坐标代入椭圆方程,以及a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(Ⅱ)求出直线l与x,y轴的交点,代入椭圆方程,运用韦达定理,以及向量共线的坐标表示,可得k的值,运用弦长公式可得弦长|MN|.本题考查椭圆方程的求法,注意运用点满足椭圆方程,考查直线方程和椭圆方程联立,运用韦达定理和向量相等的条件,同时考查弦长公式的运用,以及运算能力,属于中档题.3.在平面直角坐标系xOy中,已知椭圆x2a +y2b=1(a>b>0)的焦距为2,离心率为22,椭圆的右顶点为A.(1)求该椭圆的方程:(2)过点D(2,−2)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值.【答案】解:(1)由题意可知:椭圆x2a +y2b=1(a>b>0),焦点在x轴上,2c=2,c=1,椭圆的离心率e=ca =22,则a=,b2=a2−c2=1,则椭圆的标准方程:x22+y2=1;(2)证明:设P(x1,y1),Q(x2,y2),A(2,0),当直线PQ不存在时,不符合题意。

2018届高三数学(文)高考总复习教师用书:第八章 解析几何 Word版含答案

2018届高三数学(文)高考总复习教师用书:第八章 解析几何 Word版含答案

第八章⎪⎪⎪解析几何第一节直线的倾斜角与斜率、直线的方程1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)直线l 的倾斜角为α(α≠π2),则斜率k =tan_α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式[小题体验]1.(教材习题改编)已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( ) A .2 B .2- 2 C .2-1D .2+1解析:选C 由题意知|a -2+3|2=1,∴|a +1|=2,又a >0,∴a =2-1.2.已知直线l 1:ax +(3-a )y +1=0,l 2:x -2y =0.若l 1⊥l 2,则实数a 的值为________. 解析:由题意,得a a -3=-2,解得a =2.答案:21.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件盲目套用公式导致出错.[小题纠偏]1.已知P :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,Q :a =-1,则P 是Q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.所以P 是Q 的充要条件.2.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是________. 解析:∵63=m 4≠14-3,∴m =8,直线6x +my +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2.答案:2考点一 两条直线的位置关系(基础送分型考点——自主练透)[题组练透]1.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选A 依题意,设所求的直线方程为x -2y +a =0,由于点(1,0)在所求直线上,则1+a =0,即a =-1,则所求的直线方程为x -2y -1=0.2.已知过点A (-2,m )和点B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny+1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8解析:选A ∵l 1∥l 2,∴4-mm +2=-2(m ≠-2),解得m =-8(经检验,l 1与l 2不重合),∵l 2⊥l 3,∴2×1+1×n =0,解得n =-2,∴m +n =-10.3.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.解:(1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得m =1,n =7. 即m =1,n =7时, l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎨⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2. 又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2, 且l 1在y 轴上的截距为-1.[谨记通法]1.已知两直线的斜率存在,判断两直线平行垂直的方法 (1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等;(2)两直线垂直⇔两直线的斜率之积等于-1.[提醒] 当直线斜率不确定时,要注意斜率不存在的情况. 2.由一般式确定两直线位置关系的方法[提醒] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.考点二 距离问题(重点保分型考点——师生共研)[典例引领]已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,在坐标平面内求一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2.解:设点P 的坐标为(a ,b ). ∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3, 即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上, ∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|5=2,即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎨⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝⎛⎭⎫277,-87. [由题悟法]处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.(2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而使计算简便,如本例中|PA |=|PB |这一条件的转化处理.[即时应用]1.已知P 是直线2x -3y +6=0上一点,O 为坐标原点,且点A 的坐标为(-1,1),若|PO |=|PA |,则P 点的坐标为________.解析:法一:设P (a ,b ),则⎩⎪⎨⎪⎧2a -3b +6=0,a 2+b 2=(a +1)2+(b -1)2,解得a =3,b =4.∴P 点的坐标为(3,4). 法二:线段OA 的中垂线方程为x -y +1=0,则由⎩⎪⎨⎪⎧2x -3y +6=0,x -y +1=0.解得⎩⎪⎨⎪⎧x =3,y =4,则P 点的坐标为(3,4).答案:(3,4)2.已知直线l 1与l 2:x +y -1=0平行,且l 1与l 2的距离是2,则直线l 1的方程为______________________.解析:因为l 1与l 2:x +y -1=0平行,所以可设l 1的方程为x +y +b =0(b ≠-1). 又因为l 1与l 2的距离是2, 所以|b +1|12+12=2,解得b =1或b =-3,即l 1的方程为x +y +1=0或x +y -3=0. 答案:x +y +1=0或x +y -3=03.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围为________. 解析:由题意得,点P 到直线的距离为 |4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10]. 答案:[0,10].考点三 对称问题(题点多变型考点——多角探明) [锁定考向]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型. 常见的命题角度有: (1)点关于点对称; (2)点关于线对称;(3)线关于线对称.[题点全练]角度一:点关于点对称1.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以由两点式得直线l 的方程为x +4y -4=0. 答案:x +4y -4=0角度二:点关于线对称2.已知直线l :2x -3y +1=0,点A (-1,-2),则点A 关于直线l 的对称点A ′的坐标为________.解析:设A ′(x ,y ),由已知得⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,故A ′⎝⎛⎭⎫-3313,413. 答案:A ′⎝⎛⎭⎫-3313,413角度三:线关于线对称3.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( ) A .x -2y +3=0 B .x -2y -3=0 C .x +2y +1=0D .x +2y -1=0解析:选A 设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎨⎧x +x 02-y +y2+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0, 即x -2y +3=0.[通法在握]1.中心对称问题的2个类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的2个类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2). (2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[演练冲关]1.与直线3x -4y +5=0关于x 轴对称的直线方程为________. 解析:设A (x ,y )为所求直线上的任意一点, 则A ′(x ,-y )在直线3x -4y +5=0上,即3x -4(-y )+5=0,故所求直线方程为3x +4y +5=0. 答案:3x +4y +5=02.已知点A (1,3)关于直线y =kx +b 对称的点是B (-2,1),则直线y =kx +b 在x 轴上的截距是________.解析:由题意得线段AB 的中点⎝⎛⎭⎫-12,2在直线y =kx +b 上,故⎩⎨⎧23·k =-1,-12k +b =2,解得k =-32,b =54,所以直线方程为y =-32x +54.令y =0,即-32x +54=0,解得x =56,故直线y =kx +b 在x 轴上的截距为56.答案:5 63已知入射光线经过点M (-3,4),被直线l:x-y+3=0反射,反射光线经过点N(2,6),则反射光线所在直线的方程为________.解析:设点M(-3,4)关于直线l:x-y+3=0的对称点为M′(a,b),则反射光线所在直线过点M′,所以⎩⎪⎨⎪⎧b-4a-(-3)·1=-1,-3+a2-b+42+3=0,解得a=1,b=0.又反射光线经过点N(2,6),所以所求直线的方程为y-06-0=x-12-1,即6x-y-6=0.答案:6x-y-6=0一抓基础,多练小题做到眼疾手快1.直线2x+y+m=0和x+2y+n=0的位置关系是()A.平行B.垂直C.相交但不垂直D.不能确定解析:选C由⎩⎪⎨⎪⎧2x+y+m=0,x+2y+n=0,可得3x+2m-n=0,由于3x+2m-n=0有唯一解,故方程组有唯一解,故两直线相交,两直线的斜率分别为-2,-12,斜率之积不等于-1,故不垂直.2.过点(1,0)且与直线x-2y-2=0垂直的直线方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=0解析:选C因为直线x-2y-2=0的斜率为12,所以所求直线的斜率k=-2.所以所求直线的方程为y -0=-2(x -1),即2x +y -2=0.故选C .3.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0D .x +2y -3=0解析:选D 由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1). 又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0), 所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.4.与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是________. 解析:l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l 的方程为3x +2y +c =0,则|c +6|=⎪⎪⎪⎪c +32,解得c =-154,所以l 的方程为12x +8y -15=0.答案:12x +8y -15=05.若直线2x -y =-10,y =x +1,y =ax -2交于一点,则a 的值为________.解析:解方程组⎩⎪⎨⎪⎧ 2x -y =-10,y =x +1,可得⎩⎪⎨⎪⎧x =-9,y =-8,所以直线2x -y =-10与y =x +1的交点坐标为(-9,-8), 代入y =ax -2,得-8=a ·(-9)-2, 所以a =23.答案:23二保高考,全练题型做到高考达标1.已知A (2,3),B (-4,0),P (-3,1),Q (-m ,m +1),若直线AB ∥PQ ,则m 的值为( ) A .-1 B .0 C .1D .2解析:选C ∵AB ∥PQ ,∴k AB =k PQ ,即0-3-4-2=m +1-1-m -(-3),解得m =1,故选C .2.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为( ) A .423B .4 2C .823D .2 2解析:选C ∵l 1∥l 2, ∴1a -2=a 3≠62a , 解得a =-1,∴l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2的距离d =⎪⎪⎪⎪6-232=823.3.(2016·浙江温州第二次适应性)已知直线l 1:mx +y -1=0与直线l 2:(m -2)x +my -1=0,则“m =1”是“l 1⊥l 2”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 由l 1⊥l 2,得m (m -2)+m =0,解得m =0或m =1,所以“m =1”是“l 1⊥l 2”的充分不必要条件,故选A .4.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A .(0,4) B .(0,2) C .(-2,4)D .(4,-2)解析:选B 由于直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2),又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,所以直线l 2恒过定点(0,2).5.已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( )A .x -2y +1=0B .x -2y -1=0C .x +y -1=0D .x +2y -1=0解析:选B 因为l 1与l 2关于l 对称,所以l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设它关于l 的对称点为(x ,y ),则⎩⎪⎨⎪⎧x +02-y -22-1=0,y +2x ×1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-1,即(1,0),(-1,-1)为l 2上两点,可得l 2的方程为x -2y -1=0.6.已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为________.解析:由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79.答案:-13或-797.以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________. 解析:因为k AB =5-11-4=-43,k DC =2-(-2)-3-0=-43.k AD =-2-10-4=34,k BC =2-5-3-1=34.则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形. 又k AD ·k AB =-1,即AD ⊥AB , 故四边形ABCD 为矩形. 故S =|AB |·|AD |=(1-4)2+(5-1)2×(0-4)2+(-2-1)2=25.答案:258.l 1,l 2是分别经过点A (1,1),B (0,-1)的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是________________.解析:当两条平行直线与A ,B 两点连线垂直时,两条平行直线间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以当l 1,l 2间的距离最大时,直线l 1的斜率为k =-12,所以当l 1,l 2间的距离最大时,直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.答案:x +2y -3=09.已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)当l 1∥l 2时,求a 的值; (2)当l 1⊥l 2时,求a 的值.解:(1)法一:当a =1时,l 1:x +2y +6=0, l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2; 当a ≠1且a ≠0时,两直线方程可化为l 1:y =-a 2x -3,l 2:y =11-ax -(a +1),由l 1∥l 2可得⎩⎨⎧-a 2=11-a ,-3≠-(a +1),解得a =-1.综上可知,a =-1.法二:由l 1∥l 2知⎩⎪⎨⎪⎧A 1B 2-A 2B 1=0,A 1C 2-A 2C 1≠0,即⎩⎪⎨⎪⎧ a (a -1)-1×2=0,a (a 2-1)-1×6≠0⇒⎩⎪⎨⎪⎧a 2-a -2=0,a (a 2-1)≠6⇒a =-1.(2)法一:当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不符合; 当a ≠1时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由l 1⊥l 2,得⎝⎛⎭⎫-a 2·11-a =-1⇒a =23. 法二:∵l 1⊥l 2, ∴A 1A 2+B 1B 2=0,即a +2(a -1)=0,得a =23.10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1), ∴l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝ ⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0, 得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.三上台阶,自主选做志在冲刺名校1.已知P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线解析:选D 因为P (x 0,y 0)是直线l 1:Ax +By +C =0外一点, 所以Ax 0+By 0+C =k ,k ≠0.若方程Ax +By +C +(Ax 0+By 0+C )=0, 则Ax +By +C +k =0.因为直线Ax +By +C +k =0和直线l 斜率相等, 但在y 轴上的截距不相等,故直线Ax +By +C +k =0和直线l 平行. 因为Ax 0+By 0+C =k ,而k ≠0, 所以Ax 0+By 0+C +k ≠0,所以直线Ax +By +C +k =0不过点P .2.已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4). (1)证明直线l 过某定点,并求该定点的坐标. (2)当点P 到直线l 的距离最大时,求直线l 的方程.解:(1)证明:直线l 的方程可化为 a (2x +y +1)+b (x +y -1)=0,由⎩⎪⎨⎪⎧ 2x +y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3,所以直线l 恒过定点(-2,3). (2)由(1)知直线l 恒过定点A (-2,3),当直线l 垂直于直线PA 时,点P 到直线l 的距离最大. 又直线PA 的斜率k PA =4-33+2=15,所以直线l 的斜率k l =-5. 故直线l 的方程为y -3=-5(x +2), 即5x +y +7=0.第三节圆的方程1.圆的定义及方程定义 平面内与定点的距离等于定长的点的集合(轨迹)标准方程(x -a )2+(y -b )2=r 2(r >0)圆心:(a ,b ),半径:r一般方程x 2+y 2+Dx +Ey +F =0,(D 2+E 2-4F >0)圆心:⎝⎛⎭⎫-D 2,-E 2, 半径:12D 2+E 2-4F点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.[小题体验]1.(2016·全国甲卷)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C . 3D .2解析:选A 因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43.2.(教材习题改编)圆C 的直径的两个端点分别是A (-1,2),B (1,4),则圆C 的标准方程为________.解析:设圆心C 的坐标为(a ,b ),则a =-1+12=0,b =2+42=3,故圆心C (0,3).半径r =12|AB |=12[1-(-1)]2+(4-2)2=2.∴圆C 的标准方程为x 2+(y -3)2=2. 答案:x 2+(y -3)2=23.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是________. 解析:因为点(1,1)在圆(x -a )2+(y +a )2=4的内部,所以(1-a )2+(1+a )2<4. 即a 2<1,故-1<a <1. 答案:(-1,1)对于方程x 2+y 2+Dx +Ey +F =0表示圆时易忽视D 2+E 2-4F >0这一成立条件.[小题纠偏](2016·浙江高考)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.解析:由二元二次方程表示圆的条件可得a 2=a +2,解得a =2或-1.当a =2时,方程为4x 2+4y 2+4x +8y +10=0,即x 2+y 2+x +2y +52=0,配方得⎝⎛⎭⎫x +122+(y +1)2=-54<0,不表示圆;当a =-1时,方程为x 2+y 2+4x +8y -5=0,配方得(x +2)2+(y +4)2=25,则圆心坐标为(-2,-4),半径是5.答案:(-2,-4) 5考点一 圆的方程(基础送分型考点——自主练透)[题组练透]1.(2017·石家庄质检)若圆C 的半径为1,点C 与点(2,0)关于点(1,0)对称,则圆C 的标准方程为( )A .x 2+y 2=1B .(x -3)2+y 2=1C .(x -1)2+y 2=1D .x 2+(y -3)2=1解析:选A 因为点C 与点(2,0)关于点(1,0)对称,故由中点坐标公式可得C (0,0),所以所求圆的标准方程为x 2+y 2=1.2.圆心在y 轴上且经过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0D .x 2+y 2-10x =0解析:选B 设圆心为(0,b ),半径为r ,则r =|b |,所以圆的方程为x 2+(y -b )2=b 2. 因为点(3,1)在圆上,所以9+(1-b )2=b 2,解得b =5.所以圆的方程为x 2+y 2-10y =0. 3.(2015·全国卷Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( )A .2 6B .8C .4 6D .10解析:选C 设圆的方程为x 2+y 2+Dx +Ey +F =0, 则⎩⎪⎨⎪⎧D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0.解得⎩⎪⎨⎪⎧D =-2,E =4,F =-20.∴圆的方程为x 2+y 2-2x +4y -20=0. 令x =0,得y =-2+26或y =-2-26,∴M (0,-2+26),N (0,-2-26)或M (0,-2-26),N (0,-2+26), ∴|MN |=46,故选C .4.(2016·天津高考)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________________. 解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3,所以圆C 的方程为(x -2)2+y 2=9. 答案:(x -2)2+y 2=9[谨记通法]1.求圆的方程的2种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法:①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.2.确定圆心位置的3种方法(1)圆心在过切点且与切线垂直的直线上. (2)圆心在圆的任意弦的垂直平分线上.(3)两圆相切时,切点与两圆圆心共线.[提醒]解答圆的有关问题,应注意数形结合,充分运用圆的几何性质.考点二与圆有关的最值问题(题点多变型考点——多角探明)[锁定考向]与圆有关的最值问题是命题的热点内容,它着重考查数形结合与转化思想.常见的命题角度有:(1)斜率型最值问题;(2)截距型最值问题;(3)距离型最值问题.[题点全练]角度一:斜率型最值问题1.(2016·抚顺模拟)已知实数x,y满足方程x2+y2-4x+1=0,求yx的最大值和最小值.解:原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,3为半径的圆.yx的几何意义是圆上一点与原点连线的斜率,所以设yx=k,即y=kx.当直线y=kx与圆相切时(如图),斜率k取最大值或最小值,此时|2k-0|k2+1=3,解得k=±3.所以yx的最大值为3,最小值为-3.角度二:截距型最值问题2.已知实数x,y满足方程x2+y2-4x+1=0,求y-x的最大值和最小值.解:y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6.所以y -x 的最大值为-2+6,最小值为-2-6.角度三:距离型最值问题3.已知实数x ,y 满足方程x 2+y 2-4x +1=0,求x 2+y 2的最大值和最小值.解:如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为 (2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-43.[通法在握]与圆有关的最值问题的3种常见转化法(1)形如μ=y -bx -a 形式的最值问题,可转化为动直线斜率的最值问题.(2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题.(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.[演练冲关]1.设点P 是函数y =-4-(x -1)2图象上的任意一点,点Q 坐标为(2a ,a -3)(a ∈R),则|PQ |的最小值为________.解析:函数y =-4-(x -1)2的图象表示圆(x -1)2+y 2=4的下半圆.令点Q 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =2a ,y =a -3,得y =x2-3,即x -2y -6=0,作出图象如图所示.由于圆心(1,0)到直线x -2y -6=0的距离d =|1-2×0-6|12+(-2)2=5>2,所以直线x -2y -6=0与圆(x -1)2+y 2=4相离,因此|PQ |的最小值是5-2.答案:5-22.已知m >0,n >0,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是________.解析:因为m >0,n >0,直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,所以圆心C (1,1)到直线的距离为半径1,所以|m +1+n +1-2|(m +1)2+(n +1)2=1,即|m +n |=(m +1)2+(n +1)2.两边平方并整理得mn =m +n +1.由基本不等式mn ≤⎝ ⎛⎭⎪⎫m +n 22可得m +n +1≤⎝ ⎛⎭⎪⎫m +n 22,即(m +n )2-4(m +n )-4≥0,解得m +n ≥2+22. 当且仅当m =n 时等号成立. 答案:[2+22,+∞)考点三 与圆有关的轨迹问题(重点保分型考点——师生共研)[典例引领]已知A (2,0)为圆x 2+y 2=4上一定点,B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程. 解:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4.故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ), 在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.[由题悟法]与圆有关的轨迹问题的4种求法(1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据圆、直线等定义列方程. (3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.[即时应用]设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,点O 是坐标原点,以OM ,ON 为两边作平行四边形MONP ,求动点P 的轨迹.解:∵四边形MONP 为平行四边形, ∴OP ―→=OM ―→+ON ―→. 设点P (x ,y ),点N (x 0,y 0),则ON ―→=OP ―→-OM ―→=(x ,y )-(-3,4)=(x +3,y -4)=(x 0,y 0), ∴x 0=x +3,y 0=y -4. 又点N 在圆x 2+y 2=4上运动,∴x 20+y 20=4,即(x +3)2+(y -4)2=4.又当OM 与ON 共线时,O ,M ,N ,P 构不成平行四边形,故动点P 的轨迹是以(-3,4)为圆心,2为半径的圆且除去两点⎝⎛⎭⎫-95,125和⎝⎛⎭⎫-215,285.一抓基础,多练小题做到眼疾手快1.经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为( ) A .(x -1)2+y 2=1 B .(x -1)2+(y -1)2=1 C .x 2+(y -1)2=1 D .(x -1)2+(y -1)2=2解析:选B 由⎩⎪⎨⎪⎧ x =1,x +y =2,得⎩⎪⎨⎪⎧x =1,y =1,即所求圆的圆心坐标为(1,1), 又由该圆过点(1,0),得其半径为1, 故圆的方程为(x -1)2+(y -1)2=1.2.若圆x 2+y 2+2ax -b 2=0的半径为2,则点(a ,b )到原点的距离为( ) A .1 B .2 C . 2D .4解析:选B 由半径r =12D 2+E 2-4F =124a 2+4b 2=2得,a 2+b 2=2.∴点(a ,b )到原点的距离d =a 2+b 2=2,故选B .3.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x +2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A 设圆上任一点为Q (x 0,y 0), PQ 的中点为M (x ,y ),则⎩⎪⎨⎪⎧x =4+x 02,y =-2+y 02,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2,因为点Q 在圆x 2+y 2=4上,所以x 20+y 20=4,即(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.4.若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.解析:根据题意得点(1,0)关于直线y =x 对称的点(0,1)为圆心,又半径r =1,所以圆C 的标准方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=15.已知圆C 的圆心在x 轴上,并且经过点A (-1,1),B (1,3),若M (m ,6)在圆C 内,则m 的取值范围为________.解析:设圆心为C (a,0),由|CA |=|CB |, 得(a +1)2+12=(a -1)2+32,解得a =2. 半径r =|CA |=(2+1)2+12=10.故圆C 的方程为(x -2)2+y 2=10. 由题意知(m -2)2+(6)2<10, 解得0<m <4. 答案:(0,4)二保高考,全练题型做到高考达标 1.方程y =1-x 2表示的曲线是( ) A .上半圆 B .下半圆 C .圆D .抛物线解析:选A 由方程可得x 2+y 2=1(y ≥0),即此曲线为圆x 2+y 2=1的上半圆. 2.以M (1,0)为圆心,且与直线x -y +3=0相切的圆的方程是( ) A .(x -1)2+y 2=8 B .(x +1)2+y 2=8 C .(x -1)2+y 2=16D .(x +1)2+y 2=16解析:选A 因为所求圆与直线x -y +3=0相切,所以圆心M (1,0)到直线x -y +3=0的距离即为该圆的半径r ,即r =|1-0+3|2=22.所以所求圆的方程为:(x -1)2+y 2=8.故选A .3.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程是( )A .(x +1)2+y 2=2B .(x +1)2+y 2=8C .(x -1)2+y 2=2D .(x -1)2+y 2=8解析:选A 直线x -y +1=0与x 轴的交点(-1,0).根据题意,圆C 的圆心坐标为(-1,0).因为圆与直线x +y +3=0相切,所以半径为圆心到切线的距离,即r =d =|-1+0+3|12+12=2,则圆的方程为(x +1)2+y 2=2.故选A .4.已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2B .(x +1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x -1)2+(y +1)2=2解析:选D 由题意知x -y =0 和x -y -4=0之间的距离为|4|2=22,所以r =2.又因为x +y =0与x -y =0,x -y -4=0均垂直,所以由x +y =0和x -y =0联立得交点坐标为(0,0),由x +y =0和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C 的标准方程为(x -1)2+(y +1)2=2.5.已知直线l :x +my +4=0,若曲线x 2+y 2+2x -6y +1=0上存在两点P ,Q 关于直线l 对称,则m 的值为( )A .2B .-2C .1D .-1解析:选D 因为曲线x 2+y 2+2x -6y +1=0是圆(x +1)2+(y -3)2=9,若圆(x +1)2+(y -3)2=9上存在两点P ,Q 关于直线l 对称,则直线l :x +my +4=0过圆心(-1,3),所以-1+3m +4=0,解得m =-1.6.设A (-3,0),B (3,0)为两定点,动点P 到A 点的距离与到B 点的距离之比为1∶2,则点P 的轨迹图形所围成的面积是________.解析:设P (x ,y ),则由题意有(x +3)2+y 2(x -3)2+y 2=14, 整理得x 2+y 2+10x +9=0,即(x +5)2+y 2=16, 所以点P 在半径为4的圆上,故其面积为16π. 答案:16π7.(2016·东城区调研)当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.解析:由题意知,圆的半径r =12k 2+4-4k 2=124-3k 2≤1,当半径r 取最大值时,圆的面积最大,此时k =0,r =1,所以直线方程为y =-x +2,则有tan α=-1,又α∈[0,π),故α=3π4.答案:3π48.已知平面区域⎩⎪⎨⎪⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为____________________.解析:由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆.∵△OPQ 为直角三角形,∴圆心为斜边PQ 的中点(2,1),半径r =|PQ |2=5,因此圆C 的方程为(x -2)2+(y -1)2=5. 答案:(x -2)2+(y -1)2=59.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2).则直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.① 又∵直径|CD |=410, ∴|PA |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2).∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.10.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B . (1)求圆C 1的圆心坐标.(2)求线段AB 的中点M 的轨迹C 的方程.解:(1)把圆C 1的方程化为标准方程得(x -3)2+y 2=4,∴圆C 1的圆心坐标为C 1(3,0). (2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点, ∴由圆的性质知:MC 1⊥MO ,∴MC 1―→·MO ―→=0. 又∵MC 1―→=(3-x ,-y ),MO ―→=(-x ,-y ), ∴由向量的数量积公式得x 2-3x +y 2=0.易知直线l 的斜率存在,∴设直线l 的方程为y =mx , 当直线l 与圆C 1相切时,d =|3m -0|m 2+1=2,解得m =±255.把相切时直线l 的方程代入圆C 1的方程化简得9x 2-30x +25=0,解得x =53.当直线l 经过圆C 1的圆心时,M 的坐标为(3,0). 又∵直线l 与圆C 1交于A ,B 两点,M 为AB 的中点, ∴53<x ≤3. ∴点M 的轨迹C 的方程为x 2-3x +y 2=0,其中53<x ≤3,其轨迹为一段圆弧.三上台阶,自主选做志在冲刺名校1.已知圆C :(x -3)2+(y -4)2=1 和两点A (-m,0), B (m,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .4解析:选B由(x -3)2+(y -4)2=1知圆上点P (x 0,y 0)可化为⎩⎪⎨⎪⎧x 0=3+cos θ,y 0=4+sin θ.∵∠APB =90°,即AP ―→·BP ―→=0,∴(x 0+m )(x 0-m )+y 20=0,∴m 2=x 20+y 20=26+6cos θ+8sin θ=26+10sin(θ+φ)⎝⎛⎭⎫其中tan φ=34, ∴16≤m 2≤36,且m >0,∴4≤m ≤6,即m 的最大值为6. 2.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点. (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值. 解:(1)因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22,设m +2n =t ,将m +2n =t 看成直线方程,因为该直线与圆有公共点,所以圆心到直线的距离d =|2+2×7-t |12+22≤22,解上式得,16-210≤t ≤16+210, 所以所求的最大值为16+210. (2)记点Q (-2,3),因为n -3m +2表示直线MQ 的斜率k ,所以直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0. 由直线MQ 与圆C 有公共点, 得|2k -7+2k +3|1+k2≤22.可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2-3.第四节直线与圆、圆与圆的位置关系1.直线与圆的位置关系(半径为r,圆心到直线的距离为d)相离相切相交图形量化方程观点Δ<0Δ=0Δ>0 几何观点d>r d=r d<r2.圆与圆的位置关系(两圆半径为r1,r2,d=|O1O2|)相离外切相交内切内含图形量的关系d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2|d<|r1-r2|[小题体验]1.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离解析:选B两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d=42+12=17.∵3-2<d<3+2,∴两圆相交.2.直线l:3x-y-6=0与圆x2+y2-2x-4y=0相交于A,B两点,则|AB|=________.解析:由x2+y2-2x-4y=0,得(x-1)2+(y-2)2=5,所以该圆的圆心坐标为(1,2),半径r=5,又圆心(1,2)到直线3x -y -6=0的距离为d =|3-2-6|32+(-1)2=102,由⎝⎛⎭⎫|AB |22=r 2-d 2,得|AB |2=4⎝⎛⎭⎫5-52=10,即|AB |=10. 答案:103.(教材习题改编)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围为________.解析:由题意可得,圆的圆心为(a,0),半径为2, ∴|a -0+1|12+(-1)2≤2,即|a +1|≤2,解得-3≤a ≤1.答案:[-3,1]1.对于圆的切线问题,尤其是圆外一点引圆的切线,易忽视切线斜率k 不存在的情形. 2.两圆相切问题易忽视分两圆内切与外切两种情形.[小题纠偏]1.过点(2,3)与圆(x -1)2+y 2=1相切的直线的方程为________. 解析:①若切线的斜率存在时,设圆的切线方程为y =k (x -2)+3, 由圆心(1,0)到切线的距离为半径1, 得k =43,所以切线方程为4x -3y +1=0,②若切线的斜率不存在,则切线方程为x =2,也是圆的切线, 所以直线方程为4x -3y +1=0或x =2. 答案:x =2或4x -3y +1=02.若圆x 2+y 2=1与圆(x +4)2+(y -a )2=25相切,则常数a =________. 答案:±25或0考点一 直线与圆的位置关系(基础送分型考点——自主练透)[题组练透]1.圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( ) A .相切 B .相交但直线不过圆心 C .相交过圆心D .相离解析:选B 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+12=5<6且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.2.(2017·聊城模拟)圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离等于1的点的个数为( )A .1B .2C .3D .4解析:选C因为圆心到直线的距离为|9+12-11|5=2,又因为圆的半径为3,所以直线与圆相交,由数形结合知,圆上到直线的距离为1的点有3个.3.圆x 2+y 2=1与直线y =kx +2没有公共点的充要条件是________.解析:法一:将直线方程代入圆的方程,得(k 2+1)x 2+4kx +3=0,直线与圆没有公共点的充要条件是Δ=16k 2-12(k 2+1)<0,解得k ∈(-3,3).法二:圆心(0,0)到直线y =kx +2的距离d =2k 2+1,直线与圆没有公共点的充要条件是d >1,即2k 2+1>1,解得k ∈(-3,3).答案:k ∈(-3,3)[谨记通法]判断直线与圆的位置关系一般有两种方法(1)几何法:圆心到直线的距离与圆半径比较大小,即可判断直线与圆的位置关系.这种方法的特点是计算量较小.(2)代数法:将直线方程与圆方程联立方程组,再将二次方程组转化为一元二次方程,该方程解的情况即对应直线与圆的位置关系.这种方法具有一般性,适合于判断直线与圆锥曲线的位置关系,但是计算量较大,能用几何法,尽量不用代数法.考点二 切线、弦长问题(题点多变型考点——多角探明) [锁定考向]与圆有关的切线及弦长问题,是近年来高考的一个热点,常见的命题角度有: (1)求圆的切线方程(切线长); (2)求弦长;(3)由弦长及切线问题求参数.[题点全练]角度一:求圆的切线方程(切线长)1.已知圆的方程为x 2+y 2=1,则在y 轴上截距为2的切线方程为( ) A .y =x + 2 B .y =-x + 2C .y =x +2或y =-x + 2D .x =1或y =x + 2解析:选C 在y 轴上截距为2且斜率不存在的直线显然不是切线,故设切线方程为y =kx +2,则|2|k 2+1=1,所以k =±1,故所求切线方程为y =x +2或y =-x +2.角度二:求弦长2.若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A .12B .1C .22D . 2解析:选D 因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎫222=22,所以弦长为2.角度三:由弦长及切线问题求参数3.(2017·重庆适应性测试)已知圆C:(x-1)2+(y-2)2=2截y轴所得线段与截直线y =2x+b所得线段的长度相等,则b=()A.- 6 B.±6C.- 5 D.±5解析:选D记圆C与y轴的两个交点分别是A,B,由圆心C到y轴的距离为1,|CA|=|CB|=2可知,圆心C(1,2)到直线2x-y+b=0的距离也等于1才符合题意,于是|2×1-2+b|=1,解得b=±5,选D.5[通法在握]1.圆的切线方程的2种求法(1)代数法:设切线方程为y-y0=k(x-x0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k.(2)几何法:设切线方程为y-y0=k(x-x0),利用点到直线的距离公式表示出圆心到切线的距离d,然后令d=r,进而求出k.[提醒]若点M(x0,y0)在圆x2+y2=r2上,则过M点的圆的切线方程为x0x+y0y=r2.2.弦长的2种求法(1)代数法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.(2)几何法:若弦心距为d,圆的半径长为r,则弦长l=2r2-d2.[演练冲关]1.(2017·湖南四地联考)若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,过点(a,b)作圆的切线,则切线长的最小值是()A.2 B.3C.4 D.6解析:选C圆C的标准方程为(x+1)2+(y-2)2=2,所以圆心为点(-1,2),半径为2.因为圆C关于直线2ax+by+6=0对称,所以圆心C在直线2ax+by+6=0上,所以-2a+2b+6=0,即b=a-3,点(a,b)到圆心的距离d=(a+1)2+(b-2)2=(a+1)2+(a-3-2)2=2a2-8a+26=2(a-2)2+18.所以当a=2时,d取最小值18=32,此时切线长最小,为(32)2-(2)2=16=4,所以选C.2.(2017·山西三地五校联考)过原点且与直线6x-3y+1=0平行的直线l被圆x2+(y -3)2=7所截得的弦长为________.。

2018年全国高考文科数学分类汇编----立体几何

2018年全国高考文科数学分类汇编----立体几何

2018年全国高考文科数学分类汇编——立体几何1.(北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(C)A.1 B.2 C.3 D.4【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC=,CD=,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.2.(北京)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG ∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.3.(江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【解答】解:正方体的棱长为2,中间四边形的边长为:,八面体看做两个正四棱锥,棱锥的高为1,多面体的中心为顶点的多面体的体积为:2×=.故答案为:.4. (江苏)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.5.(全国1卷)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π【解答】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,可得:4R2=8,解得R=,则该圆柱的表面积为:=10π.故选:D.6.(全国1卷)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为()BA.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:=2.故选:B.7.(全国1卷)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()CA.8 B.6C.8D.8【解答】解:长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,即∠AC1B=30°,可得BC1==2.可得BB1==2.所以该长方体的体积为:2×=8.故选:C.8.(全国1卷)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q﹣ABP的体积.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AB=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ=DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V==××==1.9.(全国2卷)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()CA.B.C.D.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1棱长为2,则A(2,0,0),E(0,2,1),D(0,0,0),C(0,2,0),=(﹣2,2,1),=(0,﹣2,0),设异面直线AE与CD所成角为θ,则cosθ===,sinθ==,∴tanθ=.∴异面直线AE与CD所成角的正切值为.故选:C.10.(全国2卷)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°.若△SAB的面积为8,则该圆锥的体积为8π.【解答】解:圆锥的顶点为S,母线SA,SB互相垂直,△SAB的面积为8,可得:,解得SA=4,SA与圆锥底面所成角为30°.可得圆锥的底面半径为:2,圆锥的高为:2,则该圆锥的体积为:V==8π.故答案为:8π.11. (全国2卷)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.【解答】(1)证明:∵AB=BC=2,AC=4,∴AB2+BC2=AC2,即△ABC是直角三角形,又O为AC的中点,∴OA=OB=OC,∵PA=PB=PC,∴△POA≌△POB≌△POC,∴∠POA=∠POB=∠POC=90°,∴PO⊥AC,PO⊥OB,OB∩AC=0,∴PO⊥平面ABC;(2)解:由(1)得PO⊥平面ABC,PO=,在△COM中,OM==.S=××=,S△COM==.=V C﹣POM⇒,设点C到平面POM的距离为d.由V P﹣OMC解得d=,∴点C到平面POM的距离为.12.(全国3卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()AA.B.C.D.【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.故选:A.13.(全国3卷)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54【解答】解:△ABC为等边三角形且面积为9,可得,解得AB=6,球心为O,三角形ABC 的外心为O′,显然D在O′O的延长线与球的交点如图:O′C==,OO′==2,则三棱锥D﹣ABC高的最大值为:6,则三棱锥D﹣ABC体积的最大值为:=18.故选:B.14.(全国3卷)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.【解答】(1)证明:矩形ABCD所在平面与半圆弦所在平面垂直,所以AD⊥半圆弦所在平面,CM⊂半圆弦所在平面,∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CD⊥平面AMD,CD⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,所以MC∥平面PBD.15.(上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()CA.4 B.8 C.12 D.16【解答】解:根据正六边形的性质可得D1F1⊥A1F1,C1A1⊥A1F1,D1B1⊥A1B1,E1A1⊥A1B1,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E和D1一样,故有2×6=12,故选:C.16.(上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos .17.(天津)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则四棱锥A1﹣BB1D1D的体积为.【解答】解:由题意可知四棱锥A1﹣BB1D1D的底面是矩形,边长:1和,四棱锥的高:A1C1=.则四棱锥A1﹣BB1D1D的体积为:=.故答案为:.18.(天津)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.【解答】(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,得AD⊥平面ABC,故AD⊥BC;(Ⅱ)解:取棱AC的中点N,连接MN,ND,∵M为棱AB的中点,故MN∥BC,∴∠DMN(或其补角)为异面直线BC与MD所成角,在Rt△DAM中,AM=1,故DM=,∵AD⊥平面ABC,故AD⊥AC,在Rt△DAN中,AN=1,故DN=,在等腰三角形DMN中,MN=1,可得cos∠DMN=.∴异面直线BC与MD所成角的余弦值为;(Ⅲ)解:连接CM,∵△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=,又∵平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD,则∠CDM为直线CD与平面ABD所成角.在Rt△CAD中,CD=,在Rt△CMD中,sin∠CDM=.∴直线CD与平面ABD所成角的正弦值为.19.(浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()CA.2 B.4 C.6 D.8【解答】解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=.故选:C.20.(浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵m⊄α,n⊂α,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.21.(浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【解答】解:∵由题意可知S在底面ABCD的射影为正方形ABCD的中心.过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,连接SN,取CD中点M,连接SM,OM,OE,则EN=OM,则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO.显然,θ1,θ2,θ3均为锐角.∵tanθ1==,tanθ3=,SN≥SO,∴θ1≥θ3,又sinθ3=,sinθ2=,SE≥SM,∴θ3≥θ2.故选:D.22.(浙江)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=l,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.【解答】(I)证明:∵A1A⊥平面ABC,B1B⊥平面ABC,∴AA1∥BB1,∵AA1=4,BB1=2,AB=2,∴A1B1==2,又AB1==2,∴AA12=AB12+A1B12,∴AB1⊥A1B1,同理可得:AB1⊥B1C1,又A1B1∩B1C1=B1,∴AB1⊥平面A1B1C1.(II)解:取AC中点O,过O作平面ABC的垂线OD,交A1C1于D,∵AB=BC,∴OB⊥OC,∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC=,以O为原点,以OB,OC,OD所在直线为坐标轴建立空间直角坐标系如图所示:则A(0,﹣,0),B(1,0,0),B1(1,0,2),C1(0,,1),∴=(1,,0),=(0,0,2),=(0,2,1),设平面ABB1的法向量为=(x,y,z),则,∴,令y=1可得=(﹣,1,0),∴cos<>===.设直线AC1与平面ABB1所成的角为θ,则sinθ=|cos<>|=.∴直线AC1与平面ABB1所成的角的正弦值为.。

2018年高考真题文科数学分类汇编专题6立体几何

2018年高考真题文科数学分类汇编专题6立体几何

专题6立体几何(2018全国1卷)5. 已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.【答案】B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为的正方形,结合圆柱的特征,可知该圆柱的底面为半径是的圆,且高为,所以其表面积为,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.(2018全国1卷)9. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B. C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.(2018全国1卷)10. 在长方体中,,与平面所成的角为,则该长方体的体积为A. B. C. D.【答案】C【解析】分析:首先画出长方体,利用题中条件,得到,根据,求得,可以确定,之后利用长方体的体积公式详解:在长方体中,连接,根据线面角的定义可知,因为,所以,从而求得,所以该长方体的体积为,故选C.点睛:该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长久显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.(2018全国2卷)9. 在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.【答案】C【解析】分析:利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.详解:在正方体中,,所以异面直线与所成角为,设正方体边长为, 则由为棱的中点,可得,所以则.故选C.点睛:求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角.(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.(2018全国3卷)3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )3.答案:A 解答:根据题意,A 选项符号题意;(2018全国3卷)12.设,,,是同一个半径为4的球的球面上四点,为等边三角形且其面积为体积的最大值为( )A .B .C .D .12.答案:BA B C D ABC ∆D ABC -解答:如图,为等边三角形,点为,,,外接球的球心,为的重心,由,取的中点,∴,∴球心到面的距离为,∴三棱锥体积最大值(2018北京卷)6. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4 【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,, 由勾股定理可知:, 则在四棱锥中,直角三角形有:共三个,故选C.ABC ∆O A B C D G ABC ∆ABC S ∆=6AB =BC H sin60AH AB =⋅︒=23AG AH ==O ABC 2d ==D ABC -1(24)3D ABC V -=⨯+=点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解. (2018浙江卷)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A . 2B . 4C . 6D . 83.答案:C 解答:该几何体的立体图形为四棱柱,(12)2262V +⨯=⨯=. (2018浙江卷)6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,,则“m ∥n ”是“m ∥α”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件6.答案:A解答:若“//m n ”,平面外一条直线与平面内一条直线平行,可得线面平行,所以“//m α”;当“//m α”时,m 不一定与n 平行,所以“//m n ”是“//m α”的充分不必要条件.(2018浙江卷)8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( )A . θ1≤θ2≤θ3B . θ3≤θ2≤θ1C . θ1≤θ3≤θ2D . θ2≤θ3≤θ18.答案:D 解答作SO 垂直于平面ABCD ,垂足为O ,取AB 的中点M ,连接SM .过O 作ON 垂直于直线SM ,可知2SEO θ=∠,3SMO θ=∠,过SO 固定下的二面角与线面角关系,得32θθ≥.易知,3θ也为BC 与平面SAB 的线面角,即OM 与平面SAB 的线面角,俯视图正视图根据最小角定理,OM 与直线SE 所成的线线角13θθ≥, 所以231θθθ≤≤.(2018全国2卷)16. 已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________. 【答案】8π【解析】分析:作出示意图,根据条件分别求出圆锥的母线,高,底面圆半径的长,代入公式计算即可.详解:如下图所示,又,解得,所以, 所以该圆锥的体积为.点睛:此题为填空题的压轴题,实际上并不难,关键在于根据题意作出相应图形,利用平面几何知识求解相应线段长,代入圆锥体积公式即可.(2018天津卷)11. 如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱柱A 1–BB 1D 1D 的体积为__________.【答案】【解析】分析:由题意分别求得底面积和高,然后求解其体积即可.详解:如图所示,连结,交于点,很明显平面,则是四棱锥的高,且,,结合四棱锥体积公式可得其体积为:.点睛:本题主要考查棱锥体积的计算,空间想象能力等知识,意在考查学生的转化能力和计算求解能力. (2018江苏卷)10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.(2018全国1卷)18. 如图,在平行四边形中,,,以为折痕将△折起,使点到达点的位置,且.(1)证明:平面平面;(2)为线段上一点,为线段上一点,且,求三棱锥的体积.【答案】(1)见解析.(2)1.【解析】分析:(1)首先根据题的条件,可以得到=90,即,再结合已知条件BA⊥AD,利用线面垂直的判定定理证得AB⊥平面ACD,又因为AB平面ABC,根据面面垂直的判定定理,证得平面ACD⊥平面ABC;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,=90°,.又BA⊥AD,且,所以AB⊥平面ACD.又AB平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC=CM=AB=3,DA=.又,所以.作QE⊥AC,垂足为E,则.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1.因此,三棱锥的体积为.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.(2018全国2卷)19. 如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.【答案】解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.【解析】分析:(1)连接,欲证平面,只需证明即可;(2)过点作,垂足为,只需论证的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.(2018江苏卷)15. 在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC . 又因为A 1B ∩BC =B ,A 1B 平面A 1BC ,BC平面A 1BC ,所以AB 1⊥平面A 1BC . 因为AB 1平面ABB 1A 1,所以平面ABB 1A 1⊥平面A 1BC .点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明. (2018全国3卷)19.(12分)如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点. ⑴证明:平面平面;⑵在线段上是否存在点,使得平面?说明理由.19.答案:见解答解答:(1)∵正方形半圆面, ∴半圆面,∴平面.∵在平面内,∴,又∵是半圆弧上异于的点,∴.又∵,∴平面,∵在平面内,∴平面平面.(2)线段上存在点且为中点,证明如下:连接交于点,连接;在矩形中,是中点,是的中点; ∴,∵在平面内,不在平面内,∴平面.ABCD CD M CD C D AMD ⊥BMC AM P MC ∥PBD ABCD ⊥CMD AD ⊥CMD AD ⊥MCD CM MCD AD CM ⊥M CD ,C D CM MD ⊥AD DM D =I CM ⊥ADM CM BCM BCM ⊥ADM AM P P AM ,BD AC O ,,PD PB PO ABCD O AC P AM //OP MC OP PDB MC PDB //MCPDB(2018北京卷)18. (本小题14分)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面P AB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【解析】分析:(1)欲证,只需证明即可;(2)先证平面,再证平面P AB⊥平面PCD;(3)取中点,连接,证明,则平面.详解:(Ⅰ)∵,且为的中点,∴.∵底面为矩形,∴,∴.(Ⅱ)∵底面为矩形,∴.∵平面平面,∴平面.∴.又,∵平面,∴平面平面.(Ⅲ)如图,取中点,连接.∵分别为和的中点,∴,且.∵四边形为矩形,且为的中点,∴,∴,且,∴四边形为平行四边形,∴.又平面,平面,∴平面.点睛:证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法. 证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直. (2018江苏卷)25. 如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【答案】(1)(2)【解析】分析:(1)先建立空间直角坐标系,设立各点坐标,根据向量数量积求得向量的夹角,再根据向量夹角与异面直线所成角的关系得结果;(2)利用平面的方向量的求法列方程组解得平面的一个法向量,再根据向量数量积得向量夹角,最后根据线面角与所求向量夹角之间的关系得结果.详解:如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以为基底,建立空间直角坐标系O−xyz.因为AB=AA1=2,所以.(1)因为P为A1B1的中点,所以,从而,故.因此,异面直线BP与AC1所成角的余弦值为.(2)因为Q为BC的中点,所以,因此,.设n=(x,y,z)为平面AQC1的一个法向量,则即不妨取,设直线CC1与平面AQC1所成角为,则,所以直线CC1与平面AQC1所成角的正弦值为.点睛:本题考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.(2018浙江卷)19.(15分)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2(1)证明:AB 1⊥平面A 1B 1C 1(2)求直线AC 1与平面ABB 1所成的角的正弦值 19.解答:(1)∵12AB B B ==,且1B B ⊥平面ABC ,∴1B B AB ⊥,∴1AB =.同理,1AC ===过点1C 作1B B 的垂线段交1B B 于点G ,则12C G BC ==且11B G =,∴11B C =在11AB C ∆中,2221111AB B C AC +=, ∴111AB BC ⊥,①过点1B 作1A A 的垂线段交1A A 于点H . 则12B H AB ==,12A H =,∴11A B =. 在11A B A ∆中,2221111AA AB A B =+, ∴111AB A B ⊥,②综合①②,∵11111A B B C B ⋂=,11A B ⊂平面111A B C ,11B C ⊂平面111A B C , ∴1AB ⊥平面111A B C .(2)过点B 作AB 的垂线段交AC 于点I ,以B 为原点,以AB 所在直线为x 轴,以BI 所在直线为y 轴,以1B B 所在直线为z 轴,建立空间直角坐标系B xyz -.C 1B 1A 1CA则(0,0,0)B ,(2,0,0)A -,1(0,0,2)B,1(1C , 设平面1ABB 的一个法向量(,,)n a b c =,则1020200n AB a c n BB ⎧⋅==⎧⎪⇒⎨⎨=⋅=⎩⎪⎩,令1b =,则(0,1,0)n =,又∵1AC =,1cos ,13n AC <>==. 由图形可知,直线1AC 与平面1ABB 所成角为锐角,设1AC 与平面1ABB 夹角为α.∴sin α=。

2018高考分类汇总——解析几何文理大题

2018高考分类汇总——解析几何文理大题
3.设 ,是否存在以 为邻边的矩形 ,使得点 在 上?若存在,求点 的坐标;若不存在,说明理由
20.答案:1.
2.由题可知 ,直线 方程为 ,联立为 ,解得 点 的面积为
3.存在,焦点为 ,设 ,根据 ,解得 ,所以
解析:1.由抛物线的性质可知 到点 的距离为
2.由题可知 ,直线 方程为 ,联立为 ,解得 点 的面积为
所以,椭圆的方程为 .
(Ⅱ)解:设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>y2>0,故 .又因为 ,而∠OAB= ,故 .由 ,可得5y1=9y2.
由方程组 消去x,可得 .易知直线AB的方程为x+y–2=0,由方程组
消去x,可得 .由5y1=9y2,可得5(k+1)= ,两边平方,整理得 ,解得 ,或 .
(II)解:设点P的坐标为 ,点M的坐标为 ,由题意, ,
点 的坐标为 由 的面积是 面积的2倍,可得 ,
从而 ,即 .
易知直线 的方程为 ,由方程组 消去y,可得 .由方程组 消去 ,可得 .由 ,可得 ,两边平方,整理得 ,解得 ,或 .
当 时, ,不合题意,舍去;当 时, , ,符合题意.
所以, 的值为 .
即 的两个不同的实数根.
所以 .
因此, 垂直于 轴.
(Ⅱ)由(Ⅰ)可知
所以 , .
因此, 的面积 .
因为 ,所以 .
因此, 面积的取值范围是 .
设常数 ,在平面直角坐标系 中,已知点 ,直线 ,曲线 , 与 轴交于点 ,与 交于点 , 、 分别是曲线 与线段 上的动点。
1.用 表示 到点 的距离
2.设 ,线段 的中点在线 上,求 的面积
答案:1.

2018年北京市高三期末文科数学试题分类汇编之解析几何

2018年北京市高三期末文科数学试题分类汇编之解析几何
(2018·昌平期末·5)直线 y kx 2 被圆 x y 4 y 0 所截得的弦长是
A.2 【答案】B
B. 4
C. 2 6
D. 6
2 2 4. (2018·房山期末·12)如果直线 y x 1 把圆 x y kx my 4 0 的面积分成
1.( 2018· 丰台期末 · 12)已知直线 x 2 y 1 0 和圆 则 AB 【答案】2 2.(2018·通州期末·13)已知圆 C 的圆心在 x 轴上,半径长是 5 ,且与直线 x 2 y 0 相切,那么圆 C 的方程是_______. 【答案】 . 交于 A, B 两点,
求椭圆的离心 率、方程、利用 距离比值求参数 的值
求椭圆的方程、直 线和椭圆的位置关 系 求椭圆的方程、求 弦长最大值
2018·通州期末·19
2018·昌平期末·19 2018·房山期末·19
求椭圆的离心 率、方程、直线
和椭圆的位置关系
(二)试题解析
1.(2018·西城期末·19) (本小题满分 14 分) 已知椭圆 (Ⅰ)求椭圆 C 的方程及离心率; 过 A(2, 0) , B(0,1) 两点.
(Ⅱ)设点 Q 在椭圆 C 上.试问直线 x y 4 0 上是否存在点 P ,使得四边形 PAQB 是 平 行四边形?若存在,求出点 P 的坐标;若不存在,说明理由.
【答案】解:(Ⅰ)由题意得, a 2 , b 1 . 分] 所以椭圆 C 的方程为 分] 设椭圆 C 的半焦距为 c ,则 c a 2 b 2 3 , 分] 所以椭圆 C 的离心率 分] . .
A.椭圆的一部分 B.双曲线的一部分 C.一段圆弧 D.一条线段 【答案】D B A M C D P

2018届高三文科数学解析几何解题方法规律技巧详细总结版

2018届高三文科数学解析几何解题方法规律技巧详细总结版

2018届高三文科数学解析几何解题方法规律技巧详细总结版【简介】圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.【3年高考试题比较】通过比较近三年的高考题,不难发现,集中考察的是圆、抛物线和椭圆,均主要考察的是直线与圆、椭圆或抛物线的位置关系,以坐标运算为主,难度适中.从考查形式上分析,主要是求解圆锥曲线方程,轨迹问题(也涉及到挖点),直线与圆、椭圆、抛物线的位置关系、定点定值问题、范围问题、证明问题等.【必备基础知识融合】一、椭圆1.椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质二、双曲线1.双曲线的定义平面内与两个定点F1,F2(|F1F2|=2c>0)的距离差的绝对值等于常数(小于|F1F2|且大于零),则点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:(1)若a<c时,则集合P为双曲线;(2)若a=c时,则集合P为两条射线;(3)若a>c时,则集合P为空集.2.双曲线的标准方程和几何性质1三、抛物线1.抛物线的定义(1)平面内与一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(2)其数学表达式:|MF |=d (其中d 为点M 到准线的距离). 2.抛物线的标准方程与几何性质3. 1122(1)y 1y 2=-p 2,x 1x 2=p 24;(2)若直线AB 的倾斜角为θ,则|AB |=2psin 2θ;|AB |=x 1+x 2+p ;(3)若F 为抛物线焦点,则有1|AF |+1|BF |=2p. 四、曲线与方程 1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上点的坐标与一个二元方程f (x ,y )=0的实数解满足如下关系: (1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线. 2.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系. (2)设点——设轨迹上的任一点P (x ,y ). (3)列式——列出动点P 所满足的关系式.(4)代换——依条件式的特点,将其转化为x ,y 的方程式,并化简. (5)证明——证明所求方程即为符合条件的动点轨迹方程. 3.两曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎪⎨⎪⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解. 若此方程组无解,则两曲线无交点. 五、直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程,即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2|=1+1k2·|y 1-y 2|【解题方法规律技巧】典例1:已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.【规律方法】求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:(1)直接法,直接根据题目提供的条件列出方程;(2)定义法,根据圆、直线等定义列方程;(3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.典例2:已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明:直线l过定点.(2)证明由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2), 将y =kx +b 代入y 2=8x 中, 得k 2x 2+(2bk -8)x +b 2=0. 其中Δ=-32kb +64>0.由根与系数的关系得,x 1+x 2=8-2bkk 2,①x 1x 2=b 2k2,②因为x 轴是∠PBQ 的角平分线,所以y 1x 1+1=-y 2x 2+1,即y 1(x 2+1)+y 2(x 1+1)=0, (kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0③将①,②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),即直线l 过定点(1,0).【规律方法】利用直接法求轨迹方程(1)利用直接法求解轨迹方程的关键是根据条件准确列出方程,然后进行化简. (2)运用直接法应注意的问题①在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的.②若方程的化简过程是恒等变形,则最后的验证可以省略.典例3:已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .求C 的方程.【规律方法】(1)求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程.(2)理解解析几何中有关曲线的定义是解题关键.(3)利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.典例4:如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D四点.点A 1,A 2分别为C 2的左,右顶点.求直线AA 1与直线A 2B 交点M 的轨迹方程. 解 由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0).设点A 的坐标为(x 0,y 0);由曲线的对称性, 得B (x 0,-y 0), 设点M 的坐标为(x ,y ),直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y = -y 0x 0-3(x -3).②由①②相乘得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).【规律方法】“相关点法”的基本步骤:(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 0,y 0);(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 0=f (x ,y ),y 0=g (x ,y );(3)代换:将上述关系式代入主动点满足的曲线方程,便可得到所求被动点的轨迹方程. 典例5:已知点M (6,2)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△PAB 的面积.则x 0=x 1+x 22=-34m ,y 0=x 0+m =14m ,即D ⎝⎛⎭⎫-34m ,14m . 因为AB 是等腰三角形PAB 的底边,所以PD ⊥AB ,即PD 的斜率k =2-m 4-3+3m 4=-1,解得m =2.此时x 1+x 2=-3,x 1x 2=0,则|AB |=2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=32, 又点P 到直线l :x -y +2=0的距离为d =32, 所以△P AB 的面积为S =12|AB |·d =92.【规律方法】(1)求椭圆方程的基本方法是待定系数法,先定形,再定量,即首先确定焦点所在位置,然后根据条件建立关于a ,b 的方程组,如果焦点位置不确定,可设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),求出m ,n 的值即可.(2)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. (3)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率). 提醒 利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.典例6:已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8. (1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△FAB 的面积.Δ=64+32m >0,∴m >-2.y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 21y 2264=m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0, ∴m =8或m =0(舍),∴直线l 2:x =y +8,M (8,0). 故S △FAB =S △FMB +S △FMA =12·|FM |·|y 1-y 2|=3(y 1+y 2)2-4y 1y 2=24 5. 【规律方法】(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.(3)涉及弦的中点、斜率时,一般用“点差法”求解.典例7:已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-x+3与椭圆E 有且只有一个公共点T . (1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A ,B ,且与直线l 交于点P .证明:存在常数λ,使得|PT |2=λ|PA |·|PB |,并求λ的值.由方程组⎩⎨⎧x 26+y 23=1,y =12x +m ,可得3x 2+4mx +(4m 2-12)=0.②方程②的判别式为Δ=16(9-2m 2), 由Δ>0,解得-322<m <322.由②得x 1+x 2=-4m3,x 1x 2=4m 2-123.所以|PA |=⎝⎛⎭⎫2-2m 3-x 12+⎝⎛⎭⎫1+2m 3-y 12=52⎪⎪⎪⎪2-2m 3-x 1,同理|PB |=52⎪⎪⎪⎪2-2m 3-x 2.所以|PA |·|PB |=54⎪⎪⎪⎪⎝⎛⎭⎫2-2m3-x 1⎝⎛⎭⎫2-2m 3-x 2 =54⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3(x 1+x 2)+x 1x 2 =54⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3⎝⎛⎭⎫-4m 3+4m 2-123 =109m 2. 故存在常数λ=45,使得|PT |2=λ|PA |·|PB |.【规律方法】有关圆锥曲线弦长问题的求解方法:涉及弦长的问题中,应熟练的利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解. 典例8:设抛物线过定点A (-1,0),且以直线x =1为准线. (1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围.所以y 0=-12k +m .所以m =y 0+12k =34y 0.由点P ⎝⎛⎭⎫-12,y 0在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3.所以-334<m <334,且m ≠0.【规律方法】处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解. 典例9:已知椭圆x 2a 2+y 2b 2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x轴正半轴和y 轴分别交于Q ,P ,与椭圆分别交于点M ,N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →. (1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.典例10:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形. (1)求椭圆的方程;(2)过点S ⎝⎛⎭⎫0,-13的动直线l 交椭圆C 于A ,B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标;若不存在,请说明理由.解 (1)∵椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,∴b =c .又斜边长为2,即2c =2,故c =b =1,a =2,椭圆方程为x 22+y 2=1.(2)当l 与x 轴平行时,以线段AB 为直径的圆的方程为x 2+⎝⎛⎭⎫y +132=169; 当l 与y 轴平行时,以线段AB 为直径的圆的方程为x 2+y 2=1.【规律方法】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.典例11:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知c a =32,12ab =1.又a 2=b 2+c 2,解得a =2,b =1,c = 3.∴|AN |=|2-x N |=⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪1+2y 0x 0-2=⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2,所以|AN |·|BM |=4.故|AN |·|BM |为定值. 【规律方法】圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值; (2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得; (3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.典例12:设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e |FA |,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.(2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0.解得x =2或x =8k 2-64k 2+3.由题意得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k .因为直线MH 的方程为y =-1k x +9-4k212k.设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k 消去y ,解得x M =20k 2+912(k 2+1).在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |, 即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1,解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝⎛⎦⎤-∞,-64或⎣⎡⎭⎫64,+∞.典例13:已知圆x 2+y 2=1过椭圆x 2a 2+y 2b2=1(a >b >0)的两焦点,与椭圆有且仅有两个公共点,直线l :y =kx +m与圆x 2+y 2=1相切,与椭圆x 2a 2+y 2b 2=1相交于A ,B 两点.记λ=OA →·OB →,且23≤λ≤34.(1)求椭圆的方程; (2)求k 的取值范围;(3)求△OAB 的面积S 的取值范围.λ=OA →·OB →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=k 2+11+2k 2,由23≤λ≤34,得12≤k 2≤1, 即k 的取值范围是⎣⎡⎦⎤-1,-22∪⎣⎡⎦⎤22,1. (3)|AB |2=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2-2(2k 2+1)2, 由12≤k 2≤1,得62≤|AB |≤43. 设△OAB 的AB 边上的高为d , 则S =12|AB |d =12|AB |,所以64≤S ≤23.即△OAB 的面积S 的取值范围是⎣⎡⎦⎤64,23.【规律方法】解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系; (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.典例14:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3x +4y +6=0与圆x 2+(y -b )2=a 2相切. (1)求椭圆C 的方程;(2)已知过椭圆C 的左顶点A 的两条直线l 1,l 2分别交椭圆C 于M ,N 两点,且l 1⊥l 2,求证:直线MN 过定点,并求出定点坐标;(3)在(2)的条件下求△AMN 面积的最大值.①m ≠±1时,k MN =5m4(m 2-1),l MN :y =5m 4(m 2-1)⎝⎛⎭⎫x +65.此时过定点⎝⎛⎭⎫-65,0. ②m =±1时,l MN :x =-65,过点⎝⎛⎭⎫-65,0. ∴l MN 恒过定点⎝⎛⎭⎫-65,0. (3)由(2)知S △AMN =12×45|y M -y N |=25⎪⎪⎪⎪4m m 2+4+4m 4m 2+1=8⎪⎪⎪⎪⎪⎪m 3+m 4m 4+17m 2+4=8⎪⎪⎪⎪m +1m 4⎝⎛⎭⎫m +1m 2+9=84⎪⎪⎪⎪m +1m +9⎪⎪⎪⎪m +1m . 令t =⎪⎪⎪⎪m +1m ≥2,当且仅当m =±1时取等号, ∴S △AMN ≤1625,且当m =±1时取等号.∴(S △AMN )max =1625.【规律方法】处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.【归纳常用万能模板】1.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,点(2,2)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值.所以直线OM的斜率与直线l的斜率的乘积为定值.12分❶列出方程组,解出a 2,b 2得4分.❷设出直线l 的方程后与椭圆方程联立消去y 得到关于x 的方程准确者得4分.❸求出点M 的坐标得1分,再得到直线OM 的斜率与直线l 的斜率的乘积为定值得2分. ❹结论得1分.解答圆锥曲线中的定点、定值问题的一般步骤第一步:研究特殊情形,从问题的特殊情形出发,得到目标关系所要探求的定点、定值. 第二步:探究一般情况.探究一般情形下的目标结论. 第三步:下结论,综合上面两种情况定结论.2. (本小题满分12分)(2016·全国Ⅰ卷)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.(2)解 当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN|=1+k2|x1-x2|=12(k2+1)4k2+3.6分得分点③高考状元满分心得1.正确使用圆锥曲线的定义:牢记圆锥曲线的定义,能根据圆锥曲线定义判断曲线类型,如本题第(1)问就涉及椭圆的定义.2.注意分类讨论:当用点斜式表示直线方程时,应分直线的斜率存在和不存在两种情况求解,易出现忽略斜率不存在的情况,导致扣分,如本题第(2)问中的得分10分,导致失2分.3.写全得分关键:在解析几何类解答题中,直线方程与圆锥曲线方程联立后得到的一元二次方程,根据一元二次方程得到的两根之和与两根之积、弦长、目标函数等一些关键式子和结果都是得分点,在解答时一定要写清楚.解题程序第一步:利用条件与几何性质,求|EA|+|EB|=4.第二步:由定义,求点E 的轨迹方程x 24+y 23=1(y ≠0). 第三步:联立方程,用斜率k 表示|MN |. 第四步:用k 表示出|PQ |,并得出四边形的面积.第五步:结合函数性质,求出当斜率存在时S 的取值范围. 第六步:求出斜率不存在时面积S 的值,正确得出结论.【易错易混温馨提醒】一、忽视椭圆的焦点轴导致方程出错.易错1:已知椭圆2222:1(0)y x W a b a b +=>>的焦距与椭圆22:14x y Ω+=的短轴长相等,且W 与Ω的长轴长相等,这两个椭圆在第一象限的交点为A ,直线l 与直线OA (O 为坐标原点)垂直,且l 与W 交于,M N 两点. (1)求W 的方程;(2)求MON ∆的面积的最大值.【答案】(1)22143y x +=(2试题解析:(1)由题意可得2224{ 1a a b =-=,∴ 224{ 3a b ==,故W 的方程为22143y x +=.二、多解问题的取舍.易错2:已知椭圆2222:1(0)x yC a ba b+=>>的左、右焦点分别为1F,2F,B为椭圆的上顶点,12BF F∆为A为椭圆的右顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于,M N 两点(,M N 不是左、右顶点),且满足MA NA ⊥,试问:直线l 是否过定点?若过定点,求出该定点的坐标,否则说明理由.【答案】(Ⅰ) 22143x y +=;(Ⅱ)直线l 过定点,定点坐标为207⎛⎫⎪⎝⎭,.三、巧用均值不等式求最值,避免大量运算.易错3:已知椭圆()222210x y a b a b +=>>的离心率e =左、右焦点分别为12,F F ,且2F 与抛物线24y x =的焦点重合.(1)求椭圆的标准方程;(2)若过1F 的直线交椭圆于,B D 两点,过2F 的直线交椭圆于,A C 两点,且AC BD ⊥,求AC BD +的最小值.【答案】(1)椭圆的标准方程为22132x y +=;(2)AC BD +.解析:(1)抛物线24y x =的焦点为()1,0,所以1c =,又因为13c e a a ===a = 所以22b =,所以椭圆的标准方程为22132x y +=. (2)(i )当直线BD 的斜率k 存在且0k ≠时,直线BD 的方程为()1y k x =+,代入椭圆方程22132x y +=, 并化简得()2222326360k x k x k +++-=.设()11,B x y , ()22,D x y ,则2122632k x x k +=-+, 21223632k x x k -=+,12BD x x =-=)22132k k +=+.易知AC 的斜率为1k-,所以)221112332k k AC k k⎫+⎪+⎝⎭==+⨯+. )2221113223AC BD k k k ⎛⎫+=++ ⎪++⎝⎭)()())()()22222222211322332232k k k k k k ++=≥++⎡⎤+++⎢⎥⎢⎥⎣⎦)()222212514k k +==+. 当21k =,即1k =±时,上式取等号,故AC BD +. (ii )当直线BD的斜率不存在或等于零时,易得AC BD +=>综上, AC BD +. 四、多元的最值问题.易错4:平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎫3,12在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO交椭圆E 于点Q . (ⅰ)求|OQ ||OP |的值;(ⅱ)求△ABQ 面积的最大值.(ⅰ)设P (x 0,y 0),|OQ ||OP |=λ,由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1,又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2.五、不能完全用韦达定理代换的坐标的处理..易错5:已知椭圆2222:1(0)x y C a b a b -=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点1F ,2F 为顶点的三角形的周长为)41.(1)求椭圆C 的标准方程;(2)设该椭圆C 与y 轴的交点为M , N (点M 位于点N 的上方),直线y=kx+4与椭圆C 相交于不同的两点,A B ,求证:直线MB 与直线NA 的交点D 在定直线上.【答案】(1) 22184x y += (2)见解析(2)设(),4A A A x kx +, (),4B B B x kx + ,则由联立方程组2228{4x y y kx +==+,化简得()222116240k x kx +++=,由()232230k =->解得232k >,由韦达定理,得21621A B k x x k -+=+, 22421A Bx x k =+ 直线MB 的方程22B B kx y x x +=+ ① 直线NA 的方程62A Akx y x x +=- ②联立①②,得()233A B A B B Akx x x x y x x ++==- 222241622212116421B B k k x k k K x K -⎛⎫++ ⎪++⎝⎭--+ 82221116421B B k x k k x k ⎛⎫+ ⎪+⎝⎭==++,即1cy =∴直线MB 与直线NA 的交点D 在定直线1y =上 六、求曲线方程时的挖点问题易错6:已知定点()3,0A -、()3,0B ,直线AM 、BM 相交于点M ,且它们的斜率之积为19-,记动点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)设直线l 与曲线C 交于P 、Q 两点,若直线AP 与AQ 斜率之积为118-,求证:直线l 过定点,并求定点坐标.【答案】(1)曲线C 的方程为2219x y += ()3x ≠±;(2)直线l 过定点,定点坐标为()1,0.故曲线C 的方程为2219x y += ()3x ≠±.七、设直线斜率前要对于直线斜率存在否要进行讨论.易错7:已知圆M 的半径为3,圆心在x 轴正半轴上,直线3490x y -+=与圆M 相切. (1)求圆M 的标准方程;(2)过点()0,3N -的直线L 与圆M 交于不同的两点()()1122,,,A x y B x y ,而且满足221212212x x x x +=,求直线L 的方程.【答案】(1) (x ﹣2)2+y 2=9 (2) x ﹣y ﹣3=0,17x ﹣7y ﹣21=0,x=0 【解析】试题分析:(1)可设圆心坐标为(),0(0)a a >,由直线与圆相切,知圆心M 到切线的距离等于半径,可求得a ,从而得圆的标准方程;(2)注意分类讨论,当直线l 斜率不存在时,代入求出A 、B 两点坐标,检验是否符合题意;当直线l 斜率存在时,设斜率为k ,得直线方程为3y kx =-,代入圆的方程,由韦达定理得1212,x x x x +,代入已知等式221212212x x x x +=可求得k 的值,从而得直线方程. 试题解析:(I )设圆心为M (a ,0)(a >0), ∵直线3x ﹣4y +9=0与圆M 相切∴=3.解得a=2,或a=﹣8(舍去),所以圆的方程为:(x ﹣2)2+y 2=9。

2018年全国高考文科数学分类汇编----立体几何

2018年全国高考文科数学分类汇编----立体几何

2018年全国高考文科数学分类汇编----立体几何1.在某四棱锥的三视图中,侧面中直角三角形的个数为3个。

解决方法是通过对应的直观图,得出三角形PCD不是直角三角形,同时通过计算得出侧面中有三个直角三角形,分别为△PAB,△PBC和△PAD。

2.在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,E,F分别为AD,PB的中点。

需要证明PE⊥BC,平面PAB⊥平面PCD和EF∥平面PCD。

证明过程中,需要利用几何图形的性质,如平面PAD⊥平面ABCD,底面ABCD为矩形,可得BC∥AD等。

3.正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为4/3.解决方法是通过计算正方体中间四边形的边长,然后计算出棱锥的高和棱长,最后通过公式计算出多面体的体积。

4.在平行六面体ABCD-A1B1C1D1中,需要证明AB∥平面A1B1C和平面ABB1A1⊥平面A1BC。

证明过程中,需要利用平行六面体的性质,如AB∥A1B1等。

在平行四边形ABCM中,由XXX可知∠ABC=∠ACB,又∠XXX°,所以∠ABM=∠CBM,即BM=CM,所以四边形ABB1M和四边形CC1BM是菱形,进而可得AB1⊥XXX,AC1⊥CM,所以AB1∥AC1,又因为XXX⊥AC,所以AB1⊥AC,即AB1是平面ABC的法线,同理可得AD是平面ACD的法线,所以平面ACD⊥平面ABC。

2)若BM=2,求AD的长度。

因为AB=AC=3,所以BC=3,又因为BM=2,所以MC=1,由勾股定理可得AM=√8,又因为AB⊥DA,所以AD=√AB^2+BD^2,又因为ABCD是平行四边形,所以BD=AC=3,所以AD=√18,即AD=3√2.题目:求直线AC1与平面ABB1所成角的正弦值。

解答:I)证明:因为A1A垂直于平面ABC,B1B垂直于平面ABC,所以A1A∥B1B。

由于A1A=4,B1B=2,AB=2,所以A1B1=2.又因为AB1⊥A1B1,同理可得AB1⊥B1C1,且A1B1∩B1C1=B1,所以AB1⊥平面A1B1C1.II)解:取AC的中点O,过O作平面ABC的垂线OD,交A1C1于D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何
一、选择题:
1.设P 是椭圆22
153
x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( )
A .
B .
C .
D .2.双曲线2
213
x y -=的焦点坐标是( )
A .(),
) B .()2,0-,()2,0
C .(0,,(
D .()0,2-,()0,2
3.已知椭圆C :22
214
x y a +
=的一个焦点为()2,0,则C 的离心率为( )
A .
1
3
B .
1
2
C .2
D .
3
4.双曲线22
221x y a b
-=(0a >,0b >,则其渐近线方程为( )
A .y =
B .y =
C .2y x =±
D .2
y x =±
5.已知双曲线的C :22
221x y a b
-=(0a >,0b >,则点()4,0到C 的渐近
线的距离为( )
A B .2 C D .6.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,
则C 的离心率为( )
A .12
-
B .2
C .
1
2
D 1
7.直线20x y ++=分别与x 轴、y 轴交于点A 、B 两点,点P 在圆()2
222x y -+=上,则
ABP ∆面积的取值范围是( )
A .[]2,6
B .[]4,8
C .
D .⎡⎣
8.已知双曲线22
221x y a b
-=(0a >,0b >)的离心率为2,过右焦点且垂直于x 轴的直线
与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且
126d d +=,则双曲线的方程为( )
A .
22
139
x y -= B .22193x y -= C .221412x y -= D .22
1124
x y -= 二、填空题:
9.若双曲线22
214
x y a -=(0a >)的离心率为2,则a =_________.
10.双曲线2
214
x y -=的渐近线方程为___________. 11.在平面直角坐标系中,经过三点()0,0,()1,1,()2,0的圆的方程为__________. 12.直线1y x =+与圆2
2
230x y y ++-=交于A ,B 两点,则||AB =
13.在平面直角坐标系xOy 中,若双曲线22
221x y a b
-=(0a >,0b >)的右焦点(),0F c 到
,则其离心率的值为___________. 14.已知直线l 过点()1,0且垂直于x 轴,若l 被抛物线2
4y ax =截得的线段长为4,则抛物线的焦点坐标为_________.
15.在平面直角坐标系xOy 中,A 为直线l :2y x =上在第一象限内的点,()5,0B ,以AB
为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r
,则点A 的横坐标为___________.
16.已知点()0,1P ,椭圆22
4x y m +=(1m >)上两点A ,B 满足2AP PB =u u u r u u u r ,则当m =___________时,点B 横坐标的绝对值最大.
三、解答题:
17.设抛物线C :2
2y x =,点()2,0A ,()2,0B -,过点A 的直线l 与C 交于M ,N 两点.
(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.
18.设抛物线C :2
4y x =的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;
(2)求过点A ,B 且与C 的准线相切的圆的方程.
19.已知斜率为k 的直线l 与椭圆C :22
143
x y +=交于A 、B 两点,
线段AB 的中点为()1,M m (0m >).
(1)证明:1
2
k <-
; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=u u u r u u u r u u u r r .证明:2FP FA FB =+u u u r u u u r u u u r

20.已知椭圆M :22
221x y a b
+=(0a b >>k 的直
线l 与椭圆M 有两个不同的交点A ,B .
(1)求椭圆M 的方程;
(2)若1k =,求AB 的最大值;
(3)设()2,0P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71,42Q ⎛⎫
- ⎪⎝⎭
共线,求k .
21.设椭圆22
221x y a b +=(0a b >>)的右顶点为A ,上顶点为B .已知椭圆的离心率为53,
||13AB =.
(1)求椭圆的方程;
(2)设直线l :y kx =(0k <)与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,
M 均在第四象限.若BPM ∆的面积是BPQ ∆面积的2倍,求k 的值.
22.如图,在平面直角坐标系xOy 中,椭圆C 过点13,2⎛⎫ ⎪⎝⎭
,焦点为()13,0F -,
(
)
23,0F ,
圆O 的直径为12F F .
(1)求椭圆C 及圆O 的方程;
(2)设直线l 与圆O 相切于第一象限内的点P .
(i )若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; (ii )直线l 与椭圆C 交于A ,B 两点.若OAB ∆的面积为
26
7
,求直线l 的方程.
23.设常数2t >.在平面直角坐标系xOy 中,已知点()2,0F ,直线l :x t =,曲线Γ:
28y x =(0x t ≤≤,0y ≥).l 与x 轴交于点A 、与Γ交于点B .P 、Q 分别是曲线Γ与
线段AB 上的动点.
(1)用t 表示点B 到点F 的距离;
(2)设3t =,2FQ =,线段OQ 的中点在直线FP 上,求AQP ∆的面积;
(3)设8t =,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由.
24.如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :2
4y x =上存在不同的两点A ,
B 满足PA ,PB 的中点均在
C 上.
(1)设AB 中点为M ,证明:PM 垂直于y 轴;
(2)若P 是半椭圆2
2
14
y x +=(0x <)上的动点,求PAB ∆面积的取值范围.
答案:CBCA ;DDAA ;4;1
2
y x =±;2220x y x +-=;2;()1,0;3;5 17.答:(1)112y x =
+或1
12
y x =--;
(2)略 18.答:(1)1y x =-;(2)()()2
2
3216x y -+-=或()()2
2
116144x y -++= 19.答:(1)略;(2)略
20.答:(1)2
213
x y +=;(2;(3)1k = 21.答:(1)22194x y +=;(2)12
-
22.答:(1)C :2
214
x y +=,O :223x y +=;(2)(i ))
;(ii )22P ⎛ ⎝⎭

l :y =+
23.答:(1)2BF t =+;(2(3)2,55P ⎛ ⎝⎭
24.答:(1)略;(2)⎡⎢⎣⎦。

相关文档
最新文档