贵州省2011年高考理科数学试卷及答案

合集下载

2011年高考理科数学安徽卷(word版含答案)

2011年高考理科数学安徽卷(word版含答案)

2011年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试题分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1、 答题前,务必在试题卷,答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2、 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案的标号。

3.、. 答Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔记清晰。

作图题可先用铅笔在答题卡规定的位置绘出,确认后在用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写........的答案无效,在试题卷、草稿纸上答题无效。

....................4、 考试结束,务必将试题卷和答题卡一并上交。

参考公式:如果事件A 与B 互斥,那么 锥体积V=13Sh, 其中S 为锥体的底面面积, P(A+B)=P(A)+P(B) h 为锥体的高如果事件A 与B 相互独立,那么P(AB)=P(A)P(B)第Ⅰ卷(选择题 共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设i 是虚数单位,复数2i ai i+-为纯虚数,则实数a 为 (A )2 (B )-2 (C )12- (D )12 (2)双曲线2228x y -=的实轴长是(A)2 (B) (C)4 (D)(3)设()f x 是定义在R上的奇函数,当0x ≤时,()22f x x x =-,则()1f = (A)-3 (B)-1 (C)1 (D)3(4)设变量,x y 满足1,x y +≤则2x y +的最大值和最小值分别为(A)1,-1 (B)2,-2 (C)1,-2 (D)2,-1 (5) 3π 到圆2cos ρθ= 的圆心的距离为(A )((6)一个空间几何体得三视图如图所示,则该几何体的表面积为(A )48(B )32+8,17(C )48+8,17(D )50(7)命题“所有能被2整除的数都是偶数”的否定..是 (A )所有不能被2整除的数都是偶数(B )所有能被2整除的数都不是偶数(C )存在一个不能被2整除的数都是偶数(D )存在一个不能被2整除的数都不是偶数 (8)设集合{}1,2,3,4,5,6,A ={}4,5,6,7,B =则满足S A ⊆且SB Z ≠的集合S 为(A )57 (B )56 (C )49 (D )8 (9)已知函数()sin(2)f x x φ=+为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是 (A ),()36k k k Z ππππ⎧⎫-+∈⎨⎬⎩⎭ (B ),()2k k k Z πππ⎧⎫+∈⎨⎬⎩⎭(C )2,()63k k k Z ππππ⎧⎫++∈⎨⎬⎩⎭ (D ),()2k k k Z πππ⎧⎫-∈⎨⎬⎩⎭(10)函数()()1n m f x nx x =-在区间[]0,1上的图像如图所示,则,m n 得知可能是 (A )1,1m n == (B) 1,2m n ==(C) 2,1m n == (D) 3,1m n ==第Ⅱ卷 (非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡....上作答,在试题卷上答题无效.........。

2024年贵州省高考数学真题及参考答案

2024年贵州省高考数学真题及参考答案

2024年贵州省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。

1.已知1i z =--,则||z =().A.0B.1D.22.已知命题:R p x ∀∈,|1|1x +>;命题:0q x ∃>,3x x =.则().A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题3.已知向量a ,b 满足||1a = ,|2|2a b += ,且(2)b a b -⊥ ,则||b =().A.12B.22C.32D.14.某农业研究部门在面积相等的100块稻田上种植新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理如下表所示.根据表中数据,下列结论正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中的亩产量低于1100kg 的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg 到300kg 之间D.100块稻田亩产量的平均值介于900kg 到1000kg 之间5.已知曲线22:16(0)C x y y +=>,从C 上任意一点P 向x 轴作垂线PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为().A.221(0)164x y y +=> B.221(0)168x y y +=>C.221(0)164y x y +=> D.221(0)168y x y +=>6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =和()y g x =恰有一个交点,则a =()A.-1B.12C.1D.27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为().A.12 B.1C.2D.38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为().A.18B.14C.12D.1二、多项选择题:本题共3小题,每小题6分,共18分。

2011年湖南高考理科数学真题及答案

2011年湖南高考理科数学真题及答案

2011年湖南高考理科数学真题及答案本试题卷包括选择题、填空题和解答题三部分,共6页,时量120分钟,满分150分。

参考公式:(1)()()()P AB P B A P A =,其中,A B 为两个事件,且()0P A >, (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高。

(3)球的体积公式343V R π=,其中R 为求的半径。

一选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求的。

1.若,a b R ∈,i 为虚数单位,且()a i i b i +=+,则( )A .1,1a b ==B .1,1a b =-=C .1,1a b =-=-D .1,1a b ==- 答案:D解:因()1a i i ai b i +=-+=+,根据复数相等的条件可知1,1a b ==-。

2.设{1,2}M =,2{}N a =,则“1a =”是“N M ⊆”则( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 答案:A解:因“1a =”,即{1}N =,满足“N M ⊆”,反之“N M ⊆”,则2{}={1}N a =,或2{}={2}N a =,不一定有“1a =”。

3.设图一是某几何体的三视图,则该几何体的体积为( )正视图侧视图俯视图图1A .9122π+ B .9182π+ C .942π+ D .3618π+ 答案:B解:有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439+332=18322V ππ=⨯⨯+()。

4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由22()()()()()n ad bc K a b c d a c b d -=++++算得22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯ 附表:参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别有关”3答案:C解:由27.8 6.635K ≈>,而2( 6.635)0.010P K ≥=,故由独立性检验的意义可知选C.5.设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为( ) A .4 B .3 C .2 D .1 答案:C解:由双曲线方程可知渐近线方程为3y x a=±,故可知2a =。

2011年浙江高考数学(理科)Word解析

2011年浙江高考数学(理科)Word解析

2011年普通高等学校招生全国统一考试数学(理科)(浙江省)本试卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页,非选择题部分3至4页。

满分150分,考试时间120分钟。

选择题部分(共50分)请考生按规定用笔将所有试题的答案涂、写在答题纸上。

1.答题前,考生务必将自己的姓名、准备考证号用黑色字迹的签字笔或钢笔分别填写在试卷个答题纸规定的位置上。

2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:如果事件互斥,那么柱体的体积公式如果事件相互独立,那么其中表示柱体的底面积,表示柱体的高锥体的体积公式一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设函数,若,则实数(A)4或 2 (B)4或2 (C)2或4 (D)2或2(2)把复数的共轭复数记作,i为虚数单位,若z=1+i,则(A)(B)(C)(D)(3)若某几何体的三视图如图所示,则这个几何体的直观图可以是(4)下列命题中错误..的是(A)如果平面⊥平面,那么平面内一定存在直线平行于平面(B)如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面(C)如果平面⊥平面,平面⊥平面,,那么⊥平面(D)如果平面⊥平面,那么平面内所有直线都垂直于平面(5)设实数、是不等式组,若、为整数,则的最小值是(A)14 (B)16 (C)17 (D)19(6)若,,,,则(A)(B)(C)(D)(7)若、为实数,则“”是“或”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(8)已知椭圆(>>0)与双曲线有公共的焦点,的一条渐近线与以的长轴为直径的圆相交于两点,若恰好将线段三等分,则(A)(B)13 (C)(D) 2(9)有5本不同的书,其中语文书2本,数学书2本,物理书1本。

2011年高考数学(广东卷,理科)word版(全解全析)

2011年高考数学(广东卷,理科)word版(全解全析)

2011年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。

注意事项:1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”.2、 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求做大的答案无效。

4、 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。

漏涂、错涂、多涂的,答案无效。

5、 考生必须保持答题卡得整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.线性回归方程 y bxa =+ 中系数计算公式121()()()nii i nii xx y y b xx ==--=-∑∑ , ay b x =- . 其中,x y 表示样本均值.n 是正整数,则()n na b a b -=-12(n n a a b --++ (21)n n ab b --+).一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设复数z 满足()12i z +=,其中i 为虚数单位,则z =A .1i +B .1i -C .22i +D .22i - 【解析】B ;依题意得211z i i==-+,故选B .2.已知集合{(,)|A x y =,x y 为实数,且}221x y +=,{(,)|B x y =,x y 为实数,且}y x =,则A B 的元素个数为A .0B .1C .2D .3 【解析】C;题意等价于求直线y x =与圆221x y +=的交点个数,画大致图像可得答案为C . 3. 若向量a ,b ,c 满足a ∥b 且a ⊥c ,则⋅(2)=c a +bA .4B .3C .2D .0 【解析】D;因为a ∥b 且a ⊥c ,所以b ⊥c ,从而⋅⋅⋅(2)=20c a +b c a +c b =,故选D . 4. 设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是A .()()f x g x +是偶函数B .()()f x g x -是奇函数C .()()f x g x +是偶函数D .()()f x g x -是奇函数 【解析】A;依题意()(),()()f x f x g x g x -=-=-,故()|()|()|()|f x g x f x g x -+-=+,从而()|()|f x g x + 是偶函数,故选A .5. 在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定,若(,)M x y 为D 上的动点,点A 的坐标为,则z OM OA =⋅的最大值为A .B .C .4D .3【解析】C;目标函数即z y =+,画出可行域如图所示,代入端点比较之,易得当2x y ==时z 取得最大值4,故选C .6. 甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获 得冠军的概率为A .12B .35C .23D .34【解析】D;设甲队获得冠军为事件A ,则A 包含两种情况:(1)第一局胜;(2)第一局负但第二局胜;故所求概率1113()2224P A =+⨯=,从而选D .7. 如图1-3,某几何体的正视图(主视图)是平行四边形, 侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A .B .C .D .【解析】B ;该几何体是以正视图所在的平行四边形为底面,高为 3的四棱柱,又平行四边形的底边长为3,,所以面积 S=从而所求几何体的体积V Sh ==故选B . 8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的. 若T ,V 是Z 的两个不相交的非空子集,T V Z = 且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B . ,T V 中至多有一个关于乘法是封闭的C . ,T V 中有且只有一个关于乘法是封闭的D . ,T V 中每一个关于乘法都是封闭的【解析】A;因为T V Z = ,故必.有.1∈T 或1∈V ,不妨设1∈T ,则令1c =,依题意对,a b T ∀∈,有ab T ∈,从而T 关于乘法是封闭的;(其实到此已经可以选A 了,但为了严谨,我们往下证明可以有一个不封闭以及可以两个都封闭),取T N =,则V 为所有负整数组成的集合,显然T 封闭,但V 显然是不封闭的,如(1)(2)2V -⨯-=∉;同理,若{T =奇数},{V =偶数},显然两者都封闭,从而选A .二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2011年高考数学试题分类汇编-专题立体几何-理

2011年高考数学试题分类汇编-专题立体几何-理

2011年高考试题数学(理科)立体几何一、选择题:1。

(2011年高考山东卷理科11)下图是长和宽分别相等的两个矩形.给定下列三个命题: ①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如 下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是 (A )3 (B)2 (C )1 (D)0 【答案】A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以。

2.(2011年高考浙江卷理科3)若某几何体的三视图如图所示,则这个几何体的直观图可以是【答案】D【解析】由正视图可排除A 、B 选项;由俯视图可排除C 选项. 3。

(2011年高考浙江卷理科4)下列命题中错误的是(A)如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面β(B )如果平面不垂直于平面β,那么平面α内一定不存在直线垂直于平面β (C )如果平面αγ⊥平面,平面βγ⊥平面,=l αβ⋂,那么l γ⊥平面 (D )如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β 【答案】D【解析】若面⊥α面β,在面α内与面的交线不相交的直线平行平面β,故A 正确;B 中若α内存在直线垂直平面β,则βα⊥,与题没矛盾,所以B 正确;由面⊥面的性质知选项C正确。

4.(2011年高考安徽卷理科6)一个空间几何体得三视图如图所示,则该几何体的表面积为(A) 48 (B)32+817 (C) 48+817(D) 80【答案】C【命题意图】本题考查三视图的识别以及空间多面体表面积的求法.【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,。

故S2+4=⨯4⨯2+4⨯2+4⨯4+4⨯17⨯2 2=48+817表【解题指导】:三视图还原很关键,每一个数据都要标注准确.5.(2011年高考辽宁卷理科8)如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确...的是( )(A)AC⊥SB(B)AB∥平面SCD(C) SA与平面SBD所成的角等于SC与平面SBD所成的角(D)AB与SC所成的角等于DC与SA所成的角答案: D解析:对于A:因为SD⊥平面ABCD,所以DS⊥AC。

2011届高三数学综合检测卷及答案

Read xIf x >0 Then1y x ←+Else1y x ←-End If Print y (第7题)2011届高三数学综合检测卷一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.) 1.复数ii4321+-在复平面上对应的点位于第 ▲ 象限. 2.设全集{1,3,5,7}U =,集合{1,5}M a =-,M U ⊆,{}5,7U M =ð,则实数a 的值为 ▲ .3.过点()1,0且倾斜角是直线210x y --=的倾斜角的两倍的直线方程是 ▲ . 4.若连续投掷两枚骰子分别得到的点数m 、n 作为点P 的坐标()n m 、,求点P 落在圆1622=+y x 内的概率为 ▲ .5.若双曲线2221613x y p-=的左焦点在抛物线22y px =的准线上,则p 的值为 ▲ .6.如图所示,设P 、Q 为△ABC 内的两点,且2155AP AB AC =+ , AQ =23AB+14AC ,则△ABP 的面积与△ABQ 的面积之比为 ▲ .7.下图是根据所输入的x 值计算y 值的一个算法程序,若x 依次取数1100n ⎧⎫-⎨⎬⎩⎭()n N +∈ 中的前200项,则所得y 值中的最小值为 ▲ .8.在ABC ∆中,若,,AB AC AC b BC a ⊥==,则ABC ∆的外接圆半径r ,将此结论拓展到空间,可得出的正确结论是:在四面体S ABC -中,若SA SB SC 、、两两垂直,,,SA a SB b SC c ===,则四面体S ABC -的外接球半径R = ▲ .9.若a 是12b +与12b -的等比中项,则22aba b+的最大值为 ▲ .10.空间直角坐标系中,点,3sin ),(0,3cos ,4cos )A B αββα-,则A 、B 两点间距离的最大值为 ▲ .(第6题)11请将错误的一个改正为lg ▲ = ▲ .12.如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1,l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 ▲ .13.已知数列{}n a 、{}n b 都是等差数列,n n T S ,分别是它们的前n 项和,并且317++=n n T S n n ,则1612108221752b b b b a a a a ++++++= ▲ .14.已知函数)(x f 的值域为[][]0,4(2,2)x ∈-,函数()1,[2,2g x a x x =-∈-,1[2,2]x ∀∈-,总0[2,2]x ∃∈-,使得01()()g x f x =成立,则实数a 的取值范围是▲ .二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)15.(本小题满分14分)在ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对应的三边,已知222b c a bc +=+。

2011年高考湖南卷理科数学试题及答案2011年高考湖南卷理科数学试题及答案

正视图侧视图俯视图 图1 2011年普通高等学校招生全国统一考试 理科数学(湖南卷)参考公式:(1)()()()P AB P B A P A =,其中,A B 为两个事件,且()0P A >, (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高。

(3)球的体积公式343V R π=,其中R 为求的半径。

2011年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若,a b R ∈,i 为虚数单位,且()a i i b i +=+则 A .1a =,1b = B .1,1a b =-=C .1,1a b =-=-D .1,1a b ==-2.设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件3.设图1是某几何体的三视图,则该几何体的体积为 A .9122π+B .9182π+C .942π+D .3618π+4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由()()()()()22n ad bc K a b c d a c b d -=++++算得,()22110403020207.860506050K ⨯⨯-⨯=≈⨯⨯⨯.2()P K k ≥0.050 0.010 0.001 k3.8416.635 10.828参照附表,得到的正确结论是A .再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”5.设双曲线()222109x y a a -=>的渐近线方程为320x y ±=,则a 的值为A .4B .3C .2D .16.由直线,,033x x y ππ=-==与曲线cos y x =所围成的封闭图形的面积为A .12B .1C .32D .37.设m >1,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m 的取值范围为 A .(1,12+) B .(12+,+∞)C .(1,3 )D .(3,+∞)8.设直线x=t 与函数2()f x x = ()ln g x x = 的图像分别交于点M,N,则当MN 达到最小时t 的值为A .1B .12C .52 D .22一天下午化学教案天气很热化学教案一位年轻小伙子大汗淋漓二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡...中对应号后的横线上。

2011年山东高考理科数学试题及答案(word版)

2011年普通高等学校招生全国统一考试(山东卷)柱体的体积公式:V Sh =,其中S 是柱体的底面积,h 是柱体的高。

圆柱的侧面积公式:S cl =,其中c 是圆柱的底面周长,l 是圆柱的母线长。

球的体积公式:343V R π=,其中R 是球的半径。

球的表面积公式:24S Rπ=,其中R 是球的半径。

用最小二乘法求线性回归方程系数公式:12241ˆˆ,ni ii ni x y nx ybay bx xnx==-==--∑∑, 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B )第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只有一项是满足题目要求的. 1.设集合 M ={x|260x x +-<},N ={x|1≤x ≤3},则M ∩N =A .[1,2)B .[1,2]C .[2,3]D .[2,3]2.复数z=22ii-+(i 为虚数单位)在复平面内对应的点所在象限为A .第一象限B .第二象限C .第三象限D .第四象限3.若点(a,9)在函数3xy =的图象上,则tan=6a π的值为 A .0 B.3C .1 D4.不等式|5||3|10x x -++≥的解集是A .[-5,7]B .[-4,6]C .(][),57,-∞-+∞D .(][),46,-∞-+∞5.对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要6.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= A .3B .2C .32D .237.某产品的广告费用x 与销售额y 的统计数据如下表广告费用x (万元) 42 35销售额y (万元) 49 26 39 54根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元8.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -= B .22145x y -= C .22136x y -= D .22163x y -= 9.函数2sin 2xy x =-的图象大致是10.已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为 A .6B .7C .8D .911.右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯 视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命 题的个数是 A .3 B .2 C .1 D .012.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R ),1412A A A A μ=(μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知平面上的点C ,D 调和分割点A ,B 则下面说法正确的是A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.执行右图所示的程序框图,输入l=2,m=3,n=5,则输出的y 的值是14.若6(x 展开式的常数项为60,则常数a 的值为 .15.设函数()(0)2xf x x x =>+,观察: 1()(),2xf x f x x ==+21()(()),34xf x f f x x ==+32()(()),78xf x f f x x ==+43()(()),1516xf x f f x x ==+根据以上事实,由归纳推理可得:当n N +∈且2n ≥时,1()(())n n f x f f x -== .16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A-2cos C 2c-a=cos B b.(I )求sin sin CA的值; (II )若cosB=14,b=2,ABC ∆的面积S 。

2011年全国高考理科数学试题及答案-重庆

2011年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)满分150分.考试时间120分钟.注意事项:1.答题前,务必将自己的姓名,准考证号填写在答题卡规定的位置上. 2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.复数A. B. C. D.2.“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要3.已知,则A. B. 2 C.3 D.64.的展开式中的系数相等,则n=A.6 B.7 C.8 D.95.下列区间中,函数在其上为增函数的是A.(- B. C. D.6.若△ABC的内角A、B、C所对的边a、b、c满足,且C=60°,则ab的值为A. B. C. 1 D.7.已知a>0,b>0,a+b=2,则y=的最小值是A. B.4 C. D.58.在圆内,过点E(0,1)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为A. B. C. D.9.高为的四棱锥S-ABCD的底面是边长为1的正方形,点S、A、B、C、D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为A. B. C.1 D.10.设m,k为整数,方程在区间(0,1)内有两个不同的根,则m+k的最小值为A.-8 B.8 C.12 D.13二、填空题:本大题共5小题,每小题5分,共25分,把答案写在答题卡相应位置上11.在等差数列中,,则__________12.已知单位向量,的夹角为60°,则__________13.将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率__________14.已知,且,则的值为__________15.设圆C位于抛物线与直线x=3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为__________三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤16.(本小题满分13分)设,满足,求函数在上的最大值和最小值.17.(本小题满分13分)(Ⅰ)小问5分,(Ⅱ)小问8分)某市公租房的房源位于A,B,C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的求该市的任4位申请人中:(Ⅰ)恰有2人申请A片区房源的概率;(Ⅱ)申请的房源所在片区的个数的分布列与期望18.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)设的导数满足,其中常数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)设,求函数的极值.19.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)如题(19)图,在四面体中,平面平面,,,.(Ⅰ)若,,求四面体的体积;(Ⅱ)若二面角为,求异面直线与所成角的余弦值.20.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分.)如题(20)图,椭圆的中心为原点,离心率,一条准线的方程为.(Ⅰ)求该椭圆的标准方程;(Ⅱ)设动点满足:,其中是椭圆上的点,直线与的斜率之积为,问:是否存在两个定点,使得为定值?若存在,求的坐标;若不存在,说明理由.21.(本小题满分12分,(I)小问5分,(II)小问7分)设实数数列的前n项和,满足(I)若成等比数列,求和;(II)求证:对参考答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分50分. 1—5 CADBD 6—10 ACBCD二、填空题:本题考查基本知识和基本运算,每小题5分,满分25分. 11.74 12. 13. 14. 15.三、解答题:满分75分.16.(本题13分)解:由因此当为增函数,当为减函数,所以又因为故上的最小值为17.(本题13分)解:这是等可能性事件的概率计算问题.(I)解法一:所有可能的申请方式有34种,恰有2人申请A片区房源的申请方式种,从而恰有2人申请A片区房源的概率为解法二:设对每位申请人的观察为一次试验,这是4次独立重复试验.记“申请A片区房源”为事件A,则从而,由独立重复试验中事件A恰发生k次的概率计算公式知,恰有2人申请A片区房源的概率为(II)ξ的所有可能值为1,2,3.又综上知,ξ有分布列ξ 1 2 3P从而有18.(本题13分)解:(I)因故令由已知又令由已知因此解得因此又因为故曲线处的切线方程为(II)由(I)知,从而有令当上为减函数;当在(0,3)上为增函数;当时,上为减函数;从而函数处取得极小值处取得极大值19.(本题12分)(I)解:如答(19)图1,设F为AC的中点,由于AD=CD,所以DF⊥AC.故由平面ABC⊥平面ACD,知DF⊥平面ABC,即DF是四面体ABCD的面ABC上的高,且DF=ADsin30°=1,AF=ADcos30°=.在Rt△ABC中,因AC=2AF=,AB=2BC,由勾股定理易知故四面体ABCD的体积(II)解法一:如答(19)图1,设G,H分别为边CD,BD的中点,则FG//AD,GH//BC,从而∠FGH是异面直线AD与BC所成的角或其补角.设E为边AB的中点,则EF//BC,由AB⊥BC,知EF⊥AB.又由(I)有DF⊥平面ABC,故由三垂线定理知DE⊥AB.所以∠DEF为二面角C—AB—D的平面角,由题设知∠DEF=60°设在从而因Rt△ADE≌Rt△BDE,故BD=AD=a,从而,在Rt△BDF中,,又从而在△FGH中,因FG=FH,由余弦定理得因此,异面直线AD与BC所成角的余弦值为解法二:如答(19)图2,过F作FM⊥AC,交AB于M,已知AD=CD,平面ABC⊥平面ACD,易知FC,FD,FM两两垂直,以F为原点,射线FM,FC,FD分别为x轴,y轴,z轴的正半轴,建立空间直角坐标系F—xyz.不妨设AD=2,由CD=AD,∠CAD=30°,易知点A,C,D的坐标分别为显然向量是平面ABC的法向量.已知二面角C—AB—D为60°,故可取平面ABD的单位法向量,使得设点B的坐标为,有易知与坐标系的建立方式不合,舍去.因此点B的坐标为所以从而故异面直线AD与BC所成的角的余弦值为20.(本题12分)解:(I)由解得,故椭圆的标准方程为(II)设,则由得因为点M,N在椭圆上,所以,故设分别为直线OM,ON的斜率,由题设条件知因此所以所以P点是椭圆上的点,设该椭圆的左、右焦点为F1,F2,则由椭圆的定义|PF1|+|PF2|为定值,又因,因此两焦点的坐标为21.(本题12分)(I)解:由题意,由S2是等比中项知由解得(II)证法一:由题设条件有故从而对有①因,由①得要证,由①只要证即证此式明显成立.因此最后证若不然又因矛盾.因此证法二:由题设知,故方程(可能相同).因此判别式又由因此,解得因此由,得因此。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页
2011年普通高等学校招生全国统一考试
一选择题 12小题,每小题5分,共60分。
(1)复数z=1+i,z为z的共轭复数,则zz-z-1= ( )
(A)-2i (B)-i (C)i (D)2i
(2)函数y=2x(x≥0)的反函数为 ( )

(A)y=24x(x∈R)(B)y=24x(x≥0)
(C)y=24x(x∈R)(D)y=24x(x≥0)
(3)下面四个条件中,使a>b成立的充分而不必要的条件是( )
(A)a>b+1 (B)a>b-1 (C)2a>2b (D)3a>3b

(4)设nS为等差数列na的前n项和,若11a,公差d = 2, 224kkSS,则k = ( )
(A ) 8 (B) 7 (C) 6 (D) 5
(5) 设函数cos0fxx,将yfx的图像向右平移3个单位长度后,所得的图像与原图
像重合,则的最小值等于 ( )
(A)13 (B)3 (C)6 (D)9
(6)已知直二面角α –ι- β, 点A∈α ,AC ⊥ ι ,C为垂足,B∈β,BD⊥ ι,D为垂足,若AB=2,
AC=BD=1,则D到平面ABC的距离等于( )

(A)23 (B)33 (C) 63 (D) 1
(7) 某中学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1
本,则不同的赠送方法共有( )
(A)4种 (B) 10种 (C) 18种 (D)20种

(8)曲线21xye在点(0,2)处的切线与直线0y和yx围成的三角形的面积为( )
(A)1/3 (B)1/2 (C) (D)1

(9)设()fx是周期为2的奇函数,当01x时,()fx2(1)xx,则5()2f
(A)12 (B)14 (C)14 (D)12
(10)已知抛物线C:2y=4x的焦点为F,直线y=2x-4与C交于A,B两点,则cos第2页

(A) 54 (B)53 (C).—53 (D) —54
(11)已知平面α截一球面得圆M,过圆心M且与a 成60̊ 二面角的平面β截该球面得N。若该球
面的半径为4,圆M的面积为4л,则圆N的面积为( )
(A) .7л (B). 9л (C). 11л (D). 13л

(12)设向量,,abc满足1ab,12ab,0,60acbc,则c的最大值等于( )
(A)2 (B)3 (C)2 (D)1
二、填空题:本大题共4小题,每小题5分,共20分。把答案填在题中横线上。(注意:在试题
卷上作答无效)

(13)(1-x)20的二项展开式中,x 的系数与x9的系数之差为____________________.

(14)已知(,)2 ,sin= 55,则tan2 =______________
(15)已知F1、F2分别为双曲线C: 221927xy的左、右焦点,点AC ,点M的坐标为(2,0),AM
为∠F1AF2的平分线,则2AF______________
(16)已知E、F分别在正方体ABCD、A1B1C1D1楞BB1,CC1上,且B1F=2EB,CF=2FC1,则面AEF
与面ABC所成的二面角的正切值等于_______________。
三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分10分)(注意:在试题卷上作答无效)

△ ABC的内角A、B、C的对边分别为a、b、c.已知A-C=90°,a+c=2b,求C.
(18)(本小题满分12分)(注意:在试题卷上作答无效)
根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率
为0.3.设各车主购买保险相互独立.
(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种概率;
(Ⅱ)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X的期望.

(19)(本小题满分12分)(注意:在试题卷上作答无效)
如图,棱锥SABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1。
(I)证明:SD⊥平面SAB;
(II)求AB与平面SBC所成的角的大小。

(20)(本小题满分12分)(注意:在试题卷上作答无效)
第3页

设数列{}na满足10a且111111nnaa。
(I)求{}na的通项公式;
(II)设11nnabn,记1nnkkSb,证明:1nS。
(21)(本小题满分12分)(注意:在试题卷上答无效)
已知O为坐标原点,F为椭圆C:2212yx在y轴正半轴上的焦点,

过F且斜率为-2的直线l与C交于A、B两点,点P满足
.
(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆
上。
(22)(本小题满分12分)(注意:在试题卷上答无效)

(Ⅰ)设函数2()ln(1)2xfxxx,证明:当x>0时,()fx>0;
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,
设抽得的20个号码互补相同的概率为p.证明:p<(910)19<21e.

相关文档
最新文档