期中试卷
人教版六年级语文下册期中测试卷及答案

六年级下学期语文期中检测试卷及答案及答案(考试时间:100分钟总分:100分)班级:______ 姓名:______ 考号:______一、积累与运用。
(共41分)1.看拼音,写词语。
bǐ cǐqīn xíjiǎo bàn zhǒnɡ zhànɡrǎn ɡānɡjì mò luò tuo qī liánɡ2.先将词语补充完整,再分别找出第一行、第二行中与其他三个不同类...的词语。
摘得桂得头筹金榜名独鳌头欣喜狂独出心头丧气惊万分无于事然不同堂大笑空而起3.下列加点字的读音完全正确....的一项是()。
A.正.月(zhēnɡ)细腻.(lì)B.混.乱(hún)熬粥.(zhōu)C.简陋.(lòu)晕眩.(xuàn)D.蓄.养(xù)翡.翠(fēi)4.下面加点字或者词语意思相同..的一组是()。
A.①腊月初旬.②年过六旬.B.①随心所欲.②跃跃欲.试C.①这句话运用了象征、夸张..的手法。
②这件事被别有用心的人肆意夸张..了。
D.①贩.药材②摊贩.5.《那个星期天》中“我”对“第一次盼望”记忆深刻,却记不清具体是要去哪里,是因为()A.焦急的等待和一次次的失望让“我”忽略了想去的地方。
B.母亲一次次的拒绝让“我”伤心绝望,以至于“我”刻意回避了想去的地方。
C.“我”的第一次盼望让“我”深刻体会到母亲的辛劳,以至于忘却了最初的盼望。
D.“我”和母亲没有约定好要去哪里。
6.对《匆匆》一文中“过去的日子如轻烟,被微风吹散了,如薄雾,被初阳蒸融了”这句话理解正确的是()A.作者连用了两个比喻,说明过去的日子非常轻非常薄。
B.作者用了两个比喻,让读者感受到时间流逝的动感和美感。
C.句中用了拟人的修辞手法,让人觉得时间像孩子一样不可捉摸。
D.日子逝去,如烟雾消散,两个比喻写出了时间的流逝悄无声息的特点。
七年级第二学期数学期中考试试卷

2022-2023学年第二学期初一练习卷数学2023.4学生练习答题须知:1.答题前,考生先将自己的姓名、考号、原班级均用阿拉伯数字填写清楚。
2.客观题必须使用2B 铅笔填写,主观题必须使用0.5毫米黑色签字笔,不得用铅笔、红笔或圆珠笔答题,不能用涂改液、修正带,字迹工整,笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效。
4.每道题右侧的方框为评分区,考生不得将答案写在该区域,也不得污损该区域。
5.保持卡面清洁,不要折叠,不要弄破。
一、选择题(本大题共8小题,每小题2分,共16分,请填在答题纸相对应的位置上)1.下列图形中,把△ABC 平移后能得到△DEF 的是()A. B. C. D.2.三角形的两边长分别是9、17,则此三角形第三边的长不可能是()A.15B.21C.8D.93.下列运算正确的是()A.x 3+x 3=2x 6B.−x 5 4=x 20C.xy m =xy mD.x 2⋅x 4=x 84.下列等式中,从左到右的变形是因式分解的是()A.x x −2 =x 2−2xB.x +1 2=x 2+2x +1C.x +2=x 1+2xD.x 2−4=x +2 x −25.若a =-22,b =2-2,c =12 −2,d =12 0.则()A.b <a <d <cB.a <b <c <dC.a <b <d <cD.a <c <b <d6.下列命题中,真命题有()个①同旁内角相等,两直线平行②若三条线段的长a 、b 、c 满足a +b >c ,则以a 、b 、c 为边一定能组成三角形③两条直线被第三条直线所截,同位角相等④三角形的三条高至少有一条在三角形内部⑤△ABC 在平移过程中,对应线段一定是平行的.A.1个B.2个C.3个D.4个7.如图,AB ∥CD ,将一副三角尺如图摆放,让一个顶点和一条边分别放在AB 和CD 上,则∠AEF =()A.18°B.15°C.12°D.10°8.如图,大正方形与小正方形的面积之差为S ,则图中阴影部分的面积是()A .12SB .SC .2SD .14S第7题第8题二、填空题(本大题共8小题,每小空格2分,共16分.请填在答题纸相对应的位置上)9.“春有约,花不误,年年岁岁不相负。
人教版数学八年级下册《期中考试试卷》附答案

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题1. 如下图是一次函数y=kx+b图象,当y<-2时,x的取值范围是( )A. x<3B. x>3C. x<-1D. x>-12. 正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )A. B. C. D.3. 直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A. B. C. D.4. 若点(x1,y1),(x2,y2),(x3,y3)都是一次函数y=﹣x﹣1图象上的点,并且y1<y2<y3,则下列各式中正确的是( )A. x1<x2<x3B. x1<x3<x2C. x2<x1<x3D. x3<x2<x15. 某一次函数的图象经过点()1,2,且y随x的增大而减小,则这个函数的表达式可能是()A 24y x =+ B. 24y x =-+ C. 31y x D. 31y x -=-6. 一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m,n 的值为( )A. m≠2,n=2B. m=2,n=2C. m≠2,n=1D. m=2,n=17. 一组数据:1,2,4,2,2,5,这组数据的众数是( )A. 1B. 2C. 4D. 58. 某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选( )A. 丁B. 丙C. 乙D. 甲9. 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是( )A. 10和7B. 5和7C. 6和7D. 5和610. 在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A. 中位数是90B. 平均数是90C. 众数是87D. 极差是911. 某车间20名工人每天加工零件数如下表所示:这些工人每天加工零件数的众数、中位数分别是( ).A. 5,5B. 5,6C. 6,6D. 6,512. 下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A. 甲队员成绩平均数比乙队员的大B. 乙队员成绩的平均数比甲队员的大C. 甲队员成绩的中位数比乙队员的大D. 甲队员成绩的方差比乙队员的大二.填空题13. 对于正比例函数23m y mx -=,y 的值随x 的值减小而减小,则m 的值为_______.14. 甲、乙二人沿相同的路线由A 到B 匀速行进,A B ,两地间的路程为20km.他们行进的路程()s km 与甲出发后的时间()t h 之间的函数图象如图所示根据图象信息,填空()1乙的速度是______ km /h()2从A 地到达B 地,甲比乙多用了______ h .15. 如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.16. 若二元一次方程组41,2x y y x m -=⎧⎨=-⎩的解是2,7,x y =⎧⎨=⎩则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为________.17. 一组数据1,2,a 的平均数为2,另一组数据﹣1,a ,1,2,b 的唯一众数为﹣l ,则数据﹣1,a ,1,2,b 的中位数为___________.18. 某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:植树棵数 3 4 5 6人数20 15 10 5那么这50名学生平均每人植树__________棵.19. 一组数据:﹣1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是__.20. 小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.三.解答题21. 已知一次函数图象经过(-2,1)和(1,3)两点.(1)求这个一次函数的解析式;x 时,求y的值.(2)当322. 如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.23. 一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).(1)由图可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求点B的坐标;②求a的值.24. 某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第1次第2次第3次第4次第5次第6次甲10 9 8 8 10 9乙10 10 8 10 7 9根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.25. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.平均数中位数众数九()1班85 85九()2班80()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.26. 某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?答案与解析一.选择题1. 如下图是一次函数y=kx+b的图象,当y<-2时,x的取值范围是( )A. x<3B. x>3C. x<-1D. x>-1[答案]C[解析]分析:本题利用一次函数的图像和性质得出结论即可.解析:通过图像,可知函数经过( -1,-2 ),( 3,1),图像的性质可以看出y随x的增大而增大∴当y<-2时,x<-1. 故选C.点睛:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.2. 正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为( )A. B. C. D.[答案]B[解析][分析]根据图象分别确定的取值范围,若有公共部分,则有可能;否则不可能.[详解]根据图象知:A、k<0,﹣k<0.解集没有公共部分,所以不可能;B、k<0,﹣k>0.解集有公共部分,所以有可能;C、k>0,﹣k>0.解集没有公共部分,所以不可能;D、正比例函数的图象不对,所以不可能.故选:B.[点睛]本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b的图象的四种情况是解题的关键.3. 直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A. B. C. D.[答案]B[解析]试题分析:已知直线y=ax+b经过第一、二、四象限,所以a<0,b>0,即可得直线y=bx﹣a的图象经过第一、二、三象限,故答案选B.考点:一次函数图象与系数的关系.4. 若点(x1,y1),(x2,y2),(x3,y3)都是一次函数y=﹣x﹣1图象上的点,并且y1<y2<y3,则下列各式中正确的是( )A. x1<x2<x3B. x1<x3<x2C. x2<x1<x3D. x3<x2<x1[答案]D[解析][分析]由k=-1<0,可得出y随x的增大而减小,再根据y1<y2<y3,即可得出x1>x2>x3.[详解]解:∵一次函数y=﹣x﹣1中k=﹣1<0,∴y随x的增大而减小,又∵y1<y2<y3,∴x1>x2>x3.故选:D .[点睛]本题考查了一次函数的性质,根据k <0找出y 随x 的增大而减小是解题的关键.5. 某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )A. 24y x =+B. 24y x =-+C. 31y xD. 31y x -=-[答案]B[解析][分析]设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.[详解]设一次函数关系式为y kx b =+,∵图象经过点()1,2, 2k b ∴+=;∵y 随x 增大而减小,∴0k <,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B .[点睛]本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.6. 一次函数y=(m ﹣2)x n ﹣1+3是关于x 一次函数,则m,n 的值为( )A. m≠2,n=2B. m=2,n=2C. m≠2,n=1D. m=2,n=1[答案]A[解析][分析]直接利用一次函数的定义分析得出答案.[详解]解:∵一次函数y=(m-2)x n-1+3是关于x的一次函数,∴n-1=1,m-2≠0,解得:n=2,m≠2.故选A.[点睛]此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.7. 一组数据:1,2,4,2,2,5,这组数据的众数是( )A. 1B. 2C. 4D. 5[答案]B[解析][分析]此题涉及的知识点是众数,根据众数的定义就可以判断得出结果[详解]一组数据中出现次数最多的那个数值,就是众数,根据题意,数据中出现最多的是2,所以众数是2,故选B[点睛]此题重点考察学生对于众数的理解和应用,掌握众数就是数据中出现次数最多的数是解题的最佳方法.8. 某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A. 丁B. 丙C. 乙D. 甲[答案]B[解析][分析]先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.[详解]∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.[点睛]本题考查了方差:一组数据中各数据与它们平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9. 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A. 10和7B. 5和7C. 6和7D. 5和6[答案]D[解析]分析:将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.详解:将这组数据按从小到大排列为:5,5,5,6, 7,7,10,∵数据5出现3次,次数最多,∴众数为:5;∵第四个数为6,∴中位数为6,故选D.点睛:本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.10. 在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是( )A. 中位数是90B. 平均数是90C. 众数是87D. 极差是9 [答案]C[解析][分析]根据中位数、平均数、众数、极差的概念求解.[详解]解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=915 6 ,众数是87,极差是97﹣87=10.故选C.[点睛]本题考查了中位数、平均数、众数、极差的知识,掌握各知识点的概念是解答本题的关键.11. 某车间20名工人每天加工零件数如下表所示:这些工人每天加工零件数的众数、中位数分别是().A. 5,5B. 5,6C. 6,6D. 6,5[答案]B[解析][分析]根据众数、中位数的定义分别进行解答即可.[详解]解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662=6,故选:B.[点睛]本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12. 下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A. 甲队员成绩的平均数比乙队员的大B. 乙队员成绩的平均数比甲队员的大C. 甲队员成绩的中位数比乙队员的大D. 甲队员成绩的方差比乙队员的大[答案]D[解析][分析]根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.[详解]甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8, 乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.[点睛]本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二.填空题13. 对于正比例函数23my mx -=,y 的值随x 的值减小而减小,则m 的值为_______.[答案]-2[解析][分析] 根据正比例函数的意义,可得答案.[详解]解:∵y 的值随x 的值减小而减小,∴m <0,∵正比例函数23my mx -=,∴m 2-3=1,∴m=-2,故答案为:-2[点睛]本题考查正比例函数的定义.14. 甲、乙二人沿相同的路线由A 到B 匀速行进,A B ,两地间的路程为20km.他们行进的路程()s km 与甲出发后的时间()t h 之间的函数图象如图所示根据图象信息,填空 ()1乙的速度是______ km /h()2从A 地到达B 地,甲比乙多用了______ h .[答案] (1). 20 (2). 3[解析][分析](1)根据图象确定出A 、B 两地间的距离以乙两人所用的时间,然后根据速度=路程÷时间求出两人的速度; (2)根据图象即可判断甲比乙晚到B 地的时间.[详解](1)由图可知,A. B 两地间的距离为20km ,从A 地到B ,乙用的时间为2−1=1小时,乙的速度是40÷1=40km/h ,故B 选项错误; (2)由图可知,甲4小时到达B 地,乙1小时到达B 地,所以,甲比乙晚到3小时.故答案为20,3.[点睛]本题考查函数的图像,解题的关键是清楚速度路程时间关系.15. 如图,直线510y x =+与x 轴、y 轴交于点A ,B ,则AOB 的面积为___.[答案]10[解析][分析]分别令x=0,y=0,可得A 、B 坐标,即可求出OA 、OB 的长,利用三角形面积公式即可得答案.[详解]∵直线510y x =+交x 轴于点A ,交y 轴于点B ,∴令0y =,则2x =-;令0x =,则10y =;∴()2,0A -,()0,10B ,∴2OA =,10OB =,∴AOB 的面积1210102=⨯⨯=. 故答案为10[点睛]本题考查一次函数与坐标轴的交点问题,分别令x=0,y=0即可求出一次函数与坐标轴的交点坐标;也考查了三角形的面积.16. 若二元一次方程组41,2x y y x m -=⎧⎨=-⎩的解是2,7,x y =⎧⎨=⎩则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为________.[答案](2,7).[解析][分析]根据一次函数图象交点坐标为两个一次函数解析式联立组成的方程组的解,确定一次函数2y x m =-与41y x =-的图象的交点坐标.[详解]解:若二元一次方程组412x y y x m -=⎧⎨=-⎩的解是27x y =⎧⎨=⎩,则一次函数2y x m =-的图象与一次函数41y x =-的图象的交点坐标为(2,7).故答案为:(2,7).[点睛]本题考查一次函数与二元一次方程组. 理解一次函数与二元一次方程(组)的关系是解决此类问题的关键.17. 一组数据1,2,a 的平均数为2,另一组数据﹣1,a ,1,2,b 的唯一众数为﹣l ,则数据﹣1,a ,1,2,b 的中位数为___________.[答案]1[解析][分析]根据平均数求得a 的值,然后根据众数求得b 的值后再确定新数据的中位数.[详解]试题分析:∵一组数据1,2,a 的平均数为2,∴1+2+a=3×2解得a=3∴数据﹣l ,a ,1,2,b 的唯一众数为﹣l ,∴b=﹣1,∴数据﹣1,3,1,2,b 的中位数为1.故答案为1.[点睛]本题考查了平均数、众数及中位数的定义,解题的关键是正确的利用其定义求得未知数的值. 18. 某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:那么这50名学生平均每人植树__________棵.[答案]4[解析][分析]利用加权平均数的计算公式进行计算即可.[详解]解:平均每人植树(3×20+4×15+5×10+6×5)÷50=4棵,故答案为4.[点睛]本题考查了加权平均数的计算,解题的关键是牢记加权平均数的计算公式,属于基础题.19. 一组数据:﹣1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是__.[答案]3[解析][分析]先根据数据的众数确定出x的值,即可得出结论.[详解]∵一组数据:﹣1,3,2,x,5,它有唯一的众数是3,∴x=3,∴此组数据为﹣1,2,3,3,5,∴这组数据的中位数为3.故答案为3.[点睛]本题考查了数据的中位数,众数的确定,掌握中位数和众数的确定方法是解答本题的关键.20. 小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试平均成绩不少于80分的目标,他第三次数学考试至少得____分.[答案]82[解析][分析]设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.[详解]设第三次考试成绩为x,∵三次考试的平均成绩不少于80分, ∴7286803x ++≥, 解得:82x ≥,∴他第三次数学考试至少得82分,故答案为:82[点睛]本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.三.解答题21. 已知一次函数图象经过(-2,1)和(1,3)两点.(1)求这个一次函数的解析式;(2)当3x =时,求y 的值.[答案](1)2733y x =+;(2)y 的值是133. [解析][分析](1)设该直线解析式为()0y kx b k =+≠,把(-2,1)和(1,3)代入可得关于k 、b 的二元一次方程组,解方程组求出k 、b 的值即可得答案;(2)把x=3代入(1)中所求的解析式,求出y 值即可得答案.[详解](1)设该直线解析式为()0y kx b k =+≠,∵一次函数图象经过(-2,1)和(1,3)两点,∴213k b k b -+=⎧⎨+=⎩, 解得2373k b ⎧=⎪⎪⎨⎪=⎪⎩. 故该一次函数解析式为:2733y x =+;(2)把3x =代入(1)中的函数解析2733y x =+得:27133333y =⨯+=, ∴3x =时,y 的值是133. [点睛]本题主要考查了待定系数法求一次函数解析式,根据一次函数图象上的点的坐标特征列出方程组求解是解题关键.22. 如图,直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,﹣2).(1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.[答案](1)直线AB 的解析式为y=2x ﹣2,(2)点C 的坐标是(2,2).[解析][分析]待定系数法,直线上点的坐标与方程的.(1)设直线AB 的解析式为y=kx+b ,将点A (1,0)、点B (0,﹣2)分别代入解析式即可组成方程组,从而得到AB 的解析式.(2)设点C 的坐标为(x ,y ),根据三角形面积公式以及S △BOC =2求出C 的横坐标,再代入直线即可求出y 的值,从而得到其坐标.[详解]解:(1)设直线AB 的解析式为y=kx+b ,∵直线AB 过点A (1,0)、点B (0,﹣2),∴k b 0{ b=2+=-,解得k 2{ b=2=-. ∴直线AB 的解析式为y=2x ﹣2.(2)设点C 的坐标为(x ,y ),∵S △BOC =2,∴12•2•x=2,解得x=2. ∴y=2×2﹣2=2.∴点C的坐标是(2,2).23. 一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).(1)由图可知,不等式kx+b>0的解集是;(2)若不等式kx+b>﹣4x+a的解集是x>1.①求点B的坐标;②求a的值.[答案](1)x>﹣2;(2)①(1,6);②10.[解析][分析](1)求不等式kx+b>0的解集,找到x轴上方的范围就可以了,比C点横坐标大就行了(2)①我们可以先根据B,C两点求出k值,因为不等式kx+b>﹣4x+a的解集是x>1所以B点横坐标为1,利用x=1代入y1=kx+b,即求出B点的坐标;②将B点代入y2=﹣4x+a中即可求出a值.[详解]解:(1)∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴不等式kx+b>0的解集是x>﹣2,故答案为x>﹣2;(2)①∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴b=4-2k+b=0⎧⎨⎩,得b=4k=2⎧⎨⎩,∴一次函数y1=2x+4,∵不等式kx+b>﹣4x+a的解集是x>1, ∴点B的横坐标是x=1,当x=1时,y1=2×1+4=6,∴点B 坐标为(1,6);②∵点B (1,6),∴6=﹣4×1+a ,得a =10, 即a 的值是10.[点睛]本题主要考查学生对于一次函数图像性质的掌握程度24. 某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.[答案](1)甲、乙六次测试成绩的方差分别是223S =甲,243S =乙;(2)甲 [解析][分析](1)根据方差的定义,利用方差公式分别求出甲、乙的方差即可;(2)根据平均数相同,利用(1)所求方差比较,方差小的成绩稳定,即可得答案.[详解](1)甲、乙六次测试成绩的方差分别是: (222222212[(109)(99)(89)(89)(109)99)63S ⎤=⨯-+-+-+-+-+-=⎦甲, (222222214[(109)(109)(89)(109)(79)99)63S ⎤=⨯-+-+-+-+-+-=⎦乙, (2)推荐甲参加全国比赛更合适,理由如下:∵两人的平均成绩相等,∴两人实力相当;∵甲的六次测试成绩的方差比乙小,∴甲发挥较为稳定,∴推荐甲参加比赛更合适.故答案为:甲[点睛]本题考查方差的求法及利用方差做决策,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;熟练掌握方差公式是解题关键.25. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.平均数中位数众数九()1班85 85九()2班80()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.[答案](1)详见解析;(2)九()1班成绩好些;(3)九()1班的成绩更稳定,能胜出.[解析][分析]()1由条形图得出两班的成绩,根据中位数、平均数及众数分别求解可得;()2由平均数相等得前提下,中位数高的成绩好解答可得;()3分别计算两班成绩的方差,由方差小的成绩稳定解答.[详解]解:()1九()1班5位同学的成绩为:75、80、85、85、100,其中位数为85分;九()2班5位同学的成绩为:70、100、100、75、80,九()2班平均数为70100100758085(5++++=分),其众数为100分, 补全表格如下:()2九()1班成绩好些,两个班的平均数都相同,而九()1班的中位数高,在平均数相同的情况下,中位数高的九()1班成绩好些.()3九()1班的成绩更稳定,能胜出.()(22222211[(7585)(8085)(8585)(8585)10085)70(5S ⎤=⨯-+-+-+-+-=⎦九分2), ()(22222221[(7085)(10085)(10085)(7585)8085)160(5S 九⎤=⨯-+-+-+-+-=⎦分2), ()()2212S S 九九∴<,九()1班的成绩更稳定,能胜出.[点睛]本题考查了平均数、中位数、众数和方差的意义即运用方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.26. 某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元.(1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A 、B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?[答案](1)A 型空调和B 型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,案三:采购A 型空调12台,B 型空调18台;(3)采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.[解析]分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.详解:(1)设A 型空调和B 型空调每台各需x 元、y 元,3239000456000x y x y +⎧⎨-⎩==,解得,90006000x y ⎧⎨⎩==, 答:A 型空调和B 型空调每台各需9000元、6000元;(2)设购买A 型空调a 台,则购买B 型空调(30-a )台,()()13029000600030217000a a a a ⎧≥-⎪⎨⎪+-≤⎩, 解得,10≤a≤1213, ∴a=10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为w 元,w=9000a+6000(30-a)=3000a+180000,∴当a=10时,w 取得最小值,此时w=210000,即采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.。
人教版2024-2025学年八年级数学上册期中试卷(解析版)

2024-2025八年级上册期中模拟试卷一、填空题(本题满分30分,每小题3分)1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A. B. C. D.【答案】D【解析】【分析】利用轴对称图形的概念可得答案.【详解】解:A .不是轴对称图形,故此选项不合题意;B .不是轴对称图形,故此选项不合题意;C .不是轴对称图形,故此选项不合题意;D .是轴对称图形,故此选项符合题意;故选:D .【点睛】本题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2. 已知长为a ,b ,c 的三条线段首尾顺次相接组成一个三角形.若7a =,9b =,则c 的取值范围是( ) A. 2>cB. 16c <C. 216c ≤≤D. 216c <<【答案】D【解析】【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边,进行求解即可.【详解】解:∵长为a ,b ,c 的三条线段首尾顺次相接组成一个三角形,7a =,9b =, ∴b a c a b −<<+,即:9779c −<<+,∴216c <<;故选D .【点睛】本题考查三角形的三边关系.熟练掌握两边之和大于第三边,两边之差小于第三边,是解题的关键.3. 如图,ACE △≌DBF ,若11cm AD =,5cm =BC ,则AB 长为( )A. 6cmB. 7cmC. 4cmD. 3cm【答案】D【解析】 【分析】根据全等三角形的性质得到AC BD =,结合图形计算,得到答案.【详解】解:ACE ≌DBF ,AC BD ∴=,AC BC BD BC ∴−=−,即AB CD =,11cm AD = ,5cm =BC ,()11523cm AB ∴=−÷=,故选D .【点睛】本题考查全等三角形的性质,线段的和与差.掌握全等三角形的对应边相等是解题的关键. 4. 下列命题:①经过一点有且只有一条直线;②线段垂直平分线上的点到这条线段两端的距离相等;③有两边及其一角对应相等的两个三角形全等;④等腰三角形底边上的高线和中线重合.其中是真命题的有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据直线、线段垂直平分线的性质、三角形全等的判定、等腰三角形的性质逐个判断即可得.【详解】解:①经过一点有无数条直线;则这个命题是假命题;②线段垂直平分线上的点到这条线段两端的距离相等;则这个命题是真命题;③有两边及其夹角对应相等的两个三角形全等;则这个命题是假命题;④等腰三角形底边上的高线和中线重合;则这个命题是真命题;综上,是真命题的有2个,故选:B .【点睛】本题考查了直线、线段垂直平分线的性质、三角形全等的判定、等腰三角形的性质,熟练掌握各判定定理与性质是解题关键.5. 如图,四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴, 1.6 cm AB =, 2.3 cm CD =,则四边形ABCD 的周长为( )A. 3.9cmB. 7.8cmC. 4cmD. 4.6cm【答案】B【解析】 【分析】本题考查了轴对称的性质,熟记性质得到相等的边是解题的关键.根据轴对称图形的性质得出 1.6cm AB BC ==, 2.3cm CD AD ==,进而求出即可.【详解】∵四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴, 1.6cm AB =, 2.3cm CD =, ∴ 1.6cm AB BC ==, 2.3cm CDAD ==, 则四边形ABCD 的周长为:1.6 1.6 2.3 2.37.8cm +++=.故选:B .6. 如图,CD ,CE ,CF 分别是ABC 的高、角平分线、中线,则下列各式中错误的是( )A. 2AB BF =B. 12ACE ACB ∠=∠C. AE BE =D. CD BE ⊥【答案】C【解析】 【分析】本题考查了三角形的角平分线、中线和高,从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高,三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线,三角形一边的中点与此边所对顶点的连线叫做三角形的中线,依此即可求解,熟悉它们的定义和性质是解题的关键.【详解】解:∵CD ,CE ,CF 分别是ABC 的高、角平分线、中线,∴CD BE ⊥,12ACE ACB ∠=∠,2AB BF =,无法确定AE BE =,故选:C .7. 如图90B C ∠=∠=°,AD AE =,添加下列条件后不能..使ABD ECA △≌△的是( )A. 2AD BD =B. BD AC =C. =90DAE ∠°D. AB EC =【答案】A【解析】 【分析】要判断能不能使ABD ECA △≌△,主要看添加上条件后能否符合全等三角形判定方法所要求的条件即可.【详解】解:A .添加2AD BD =,无法证明ABD ECA △≌△,故此选项符合题意;B .添加BD AC =,可以利用HL 证明ABD ECA △≌△,故此选项不符合题意;C .添加=90DAE ∠°,可以利用AAS 证明ABD ECA △≌△,故此选项不符合题意;D .添加AB EC =,可以利用HL 证明ABD ECA △≌△,故此选项不符合题意;故选:A .AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等.8. 一个正多边形的边长是3,从一个顶点可以引出4条对角线,则这个正多边形的周长是( )A. 12B. 15C. 18D. 21【答案】D【解析】【分析】由n 边形从一个顶点出发可引出()3n −条对角线,可求出多边形的边数即可解答.【详解】解:∵经过多边形的一个顶点有4条对角线,∴这个多边形有437+=条边, ∴此正多边形的周长为3721×=,故选:D .【点睛】本题考查了多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.熟记n 边形从一个顶点出发可引出()3n −条对角线是解题的关键.9. 如图,在ABC 中,AB AC =,AB 的垂直平分线交AC 于点P ,若10cm AB =,6cm BC ,则PBC △的周长等于( )A. 16cmB. 12cmC. 8cmD. 20cm【答案】A【解析】 【分析】先求出10cm AC =,再根据线段垂直平分线的性质可得PA PB =,从而可得PB PC BC PA PC BC AC BC ++=++=+,由此即可得.【详解】解:AB AC = ,10cm AB =,10cm AC ∴=,AB 的垂直平分线交AC 于点P ,PA PB ∴=,6cm BC = ,PBC ∴△的周长为16cm PB PC BC PA PC BC AC BC ++=++=+=,故选:A .【点睛】本题主要考查了线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题关键. 10. 如图,在ABC 中,BD 为AC 边上的中线,已知8BC =,5AB =,BCD △的周长为20,则ABD △的周长为( )A. 17B. 23C. 25D. 28【答案】A【解析】 【分析】根据三角形中线的性质可得AD CD =,进而根据三角形周长可得12BD AD +=,进而即可求解.【详解】解:∵在ABC 中,BD 为AC 边上的中线,∴AD CD =,8BC =,5AB =,BCD △的周长为20,20812BD AD ∴+−,∴ABD △的周长为51217AB BD AD ++=+=.故选A【点睛】本题考查了三角形中线的性质,掌握三角形中线的性质是解题的关键.11. 四盏灯笼的位置如图.已知A ,B ,C ,D 的坐标分别是()1,1−−,()1,1-,()2,1−,()3.2,1−,平移y 轴右侧的一盏灯笼,使得y 轴两侧的灯笼对称,则平移的方法可以是( )A. 将B 向左平移4.2个单位B. 将C 向左平移4个单位C. 将D 向左平移5.2个单位D. 将C 向左平移4.2个单位【答案】C【解析】 【分析】注意到A ,B 关于y 轴对称,只需要C ,D 关于y 轴对称即可,可以将点()2,1C −向左平移到()3.2,1−−,平移5.2个单位,或可以将()3.2,1D −向左平移到()2,1−−,平移5.2个单位.【详解】解:∵A ,B ,C ,D 这四个点的纵坐标都是1−,∴这四个点在一条直线上,这条直线平行于x 轴,∵()1,1A −−,()1,1B −,∴A ,B 关于y 轴对称,只需要C ,D 关于y 轴对称即可,∵()2,1C −,()3.2,1D −,∴可以将点()2,1C −向左平移到()3.2,1−−,平移5.2个单位,或可以将()3.2,1D −向左平移到()2,1−−,平移5.2个单位,故选:C .【点睛】本题考查了生活中的平移现象,关于y 轴对称的点的坐标,注意关于y 轴对称的点的坐标,横坐标互为相反数,纵坐标不变.12. 如图,在ABC ∆中,90A ∠=°,4AB =,3AC =,点O 为AB 的中点,点M 为ABC 内一动点且2OM =,点N 为OM 的中点,当BN CM +最小时,则ACM ∠的度数为( )A 15°B. 30°C. 45°D. 60°【答案】C【解析】 【分析】取OB 的中点D ,连接DM ,证明BON MOD ≌可得BN DM =,从而可判断当点D ,M ,C 共线时BN CM DM CM +=+最短,然后证明ACD 是等腰直角三角形即可.【详解】如图1,取OB 的中点D ,连接DM .∵4AB =,点O 为AB 中点,∴2AO BO ==,∵2OM =,∴OB OM =.∵D 是OB 的中点,点N 为OM 的中点,∴1ODON ==, ∵BON MOD ∠=∠,∴()SAS BON MOD ≌,∴BN DM =,∴BN CM DM CM +=+,∴当点D ,M ,C 共线时BN CM DM CM +=+最短.如图2,.的∵2,1OA OD ==, ∴3AD =,∵3AC =∴AD AC =.∵90A ∠=°,∴ACD 是等腰直角三角形,∴45ACD ∠=°. 故选C .【点睛】本题考查了全等三角形的判定与性质,两点之间线段最短,等腰直角三角形的判定与性质,正确作出辅助线是解答本题的关键.二.填空题(本题满分24分,每小题3分)13. 正五边形每个内角的度数为______.【答案】108°##108度【解析】分析】本题主要考查了正多边形内角和定理,外角和定理:方法一:先根据多边形的内角和公式()2180n −⋅°求出内角和,然后除以5即可;方法二:先根据正多边形的每一个外角等于外角和除以边数,再根据每一个内角与相邻的外角是邻补角列式计算即可得解.【详解】解:方法一:正五边形的内角和为()52180540−×°=°, ∴正五边形的一个内角度数为5405108°÷=°;方法二:正五边形一个外角的度数为360572°÷=°,∴正五边形的一个内角度数为18072108°−°=°;∴正五边形每个内角的度数为108°.故答案为:108°.【点评】本题考查了正多边形的内角与外角的关系,注意两种方法的使用,通常利用外角和与每一个外角的关系先求外角的度数更简单一些.【14. 若等腰三角形的一个内角为36°,则这个等腰三角形顶角的度数为_____________.【答案】36°或108°【解析】【分析】等腰三角形的一个内角是36°,则该角可能是底角,也可能是顶角,注意分情况讨论.【详解】解:分两种情况:当36°的角是底角时,则顶角度数为180°−36°×2=108°;当36°的角是顶角时,则顶角为36°.故答案为:36°或108°.【点睛】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,也是解答问题的关键.15. 点P (1,-2)关于y 轴的对称点的坐标是_________.【答案】()1,2−−【解析】【分析】根据若点(),a b 关于y 轴对称的点的坐标为(),a b −,据此可求解.【详解】解:点P (1,-2)关于y 轴的对称点的坐标是()1,2−−;故答案为()1,2−−.关键.16. 过12边形的一个顶点可以画对角线的条数是____.【答案】9【解析】【分析】根据对角线的定义,得出过多边形的一个顶点可以画对角线的条数的规律,代入求解即可.【详解】解:根据对角线的定义可知,多边形的一个顶点可以与自身以及相邻的两个点以外的()3n − 个点形成对角线当12n = ,31239n −=−=故答案:9.【点睛】本题考查了多边形的对角线问题,掌握过多边形的一个顶点的对角线条数与边数的关系是解题的关键.17. 如图,点D 在BC 上,AB AC CD ==,AD BD =,则BAC ∠=_____. 为【答案】108°##108度【解析】【分析】本题考查了等边对等角、三角形外角的定义及性质、三角形内角和定理,由等边对等角得出ABC ACB BAD ∠=∠=∠,结合三角形外角的定义及性质得出2CAD CDA ABD ∠=∠=∠,再由三角形内角和定理计算得出36ABC ACB BAD ∠=∠=∠=°,从而推出272DAC BAD ∠=∠=°,即可得解.【详解】解:∵AD BD =,∴ABD BAD ∠=∠,∵AB AC CD ==,∴A ABC CB =∠∠,CAD CDA ∠=∠,∴ABC ACB BAD ∠=∠=∠,∵2CDA BAD ABD ABD ∠=∠+∠=∠,∴2CAD CDA ABD ∠=∠=∠, ∵225180CAD CDA ACD ABD ABD ACD ABD ∠+∠+∠∠+∠+∠∠°,∴ABC ACB BAD ∠=∠=∠=°∴272DAC BAD ∠=∠=°,∴108BAC DAC BAD ∠=∠+∠=°,故答案为:108°.18. 如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN ,分别交边AB BC ,于点D 和E ,连接CD .若90BCA ∠=°,8AB =,则CD 的长为_______.【答案】4【解析】【分析】本题考查了基本作图−作线段的垂直平分线,线段垂直平分线的性质“线段垂直平分线上点到线段两端点的距离相等”,直角三角形斜边中线的性质“直角三角形斜边中线等于斜边的一半”.根据线段垂直平分线的性质即可得到BD CD =,再利用直角三角形斜边中线的性质求解即可.【详解】解:连接CD .由作图知,MN 是线段BC 的垂直平分线,∴BD CD =,∴B BCD ∠=∠,∵90BCA ∠=°,∴90B A BCD ACD ∠+∠=°=∠+∠,∴ACD A ∠=∠,∴CD AD =,∵8AB =, ∴142CD AB ==. 故答案为:4.三. 解答题(本大题满分62分)19. 如图,B D BC DC ∠=∠=,.求证:AB AD =.【答案】见解析【解析】【分析】连接BD ,根据等腰三角形的性质得CBD CDB ∠=∠,再根据等腰三角形的判定定理,即可得到结论.本题主要考查等腰三角形的判定和性质定理,添加辅助线,构造等腰三角形,是解题的关键.【详解】证明:连接BD ,∵BC DC =,∴CBD CDB ∠=∠, ∵ABC ADC ∠=∠,∴ABC CBD ADC CDB ∠−∠=∠−∠,∴ABD ADB ∠=∠,∴AB AD =.20. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.【答案】见解析【解析】【分析】利用AAS 证明PBD PCE ≌即可.本题考查了三角形全等的判定和性质,熟练掌握三角形全等的判定是解题的关键.【详解】证明:∵PD AB PE AC ⊥⊥,,∴90PDB PEC ∠=∠=°,∵AB AC =,∴B C ∠=∠,∵P 是边BC 的中点,∴PB PC =,∵PDB PEC B C PB PC ∠=∠ ∠=∠ =,∴PBD PCE ≌,∴PD PE =.21. 如图,ABC 中,16cm AC =,DE 为AB 的垂直平分线,交AC 于点E ,BCE 的周长为26cm ,求BC 的长.【答案】10cm BC =【解析】【分析】本题考查了线段垂直平分线的性质、三角形的周长,由线段垂直平分线的性质得出AE BE =,由BCE 的周长为26cm 得出()26cm BC AC +=,即可得解,熟练掌握线段垂直平分线的性质是解此题的关键.【详解】解:∵DE 垂直平分AB∴AED BED ≌,∴AE BE =,∵BCE 的周长为26cm ,∴()26cm BC CE BE BC CE AE BC AC ++=++=+=,∵16cm AC =,∴10cm BC =.22. 如图所示,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=°,求ACE ∠的度数.【答案】15ACE ∠=°.【解析】【分析】此题考查了等边三角形的性质、线段垂直平分线的性质等知识.根据等边三角形的性质可得ACB ∠的度数,并证得AD 是BC 的垂直平分线,利用线段垂直平分线性质定理可得BE CE =,再由等腰三角形的性质可求得ECB ∠的度数,即可求得结论.【详解】解:∵ABC 是等边三角形,AD BC ⊥,∴60ACB ∠=°,BD CD =,∴AD 是BC 的重直平分线,点E 在线段AD 上,∴BE CE =.∵45EBC ∠=°,∴45ECB EBC ∠=∠=°,∴604515ACE ACB ECB ∠=∠−∠=°−°=°.23. 在 ABC 中,CD ⊥AB 于D ,CE 是∠ACB 的平分线,∠A =20°,∠B =60°.求∠BCD 和∠ECD 的度数.【答案】∠BCD =30°,∠ECD =20°【解析】【分析】由CD ⊥AB 与∠B =60°,根据两锐角互余,即可求得∠BCD 的度数,又由∠A =20°,∠B =60°,求得∠ACB 的度数,由CE 是∠ACB 的平分线,可求得∠ACE 的度数,然后根据三角形外角的性质,求得∠CEB 的度数.【详解】∵CD ⊥AB ,∴∠CDB =90°,∵∠B =60°,∴∠BCD =90°﹣∠B =90°﹣60°=30°;∵∠A =20°,∠B =60°,∠A+∠B+∠ACB =180°,∴∠ACB =100°,∵CE 是∠ACB 的平分线,∴∠ACE =12∠ACB =50°, ∴∠CEB =∠A+∠ACE =20°+50°=70°,∠ECD =90°﹣70°=20°,∴∠BCD =30°,∠ECD =20°.【点睛】本题考查了三角形的外角性质,角平分线,直角三角形两锐角互余等知识点,灵活运用外角定理是快速解题的关键.24. ABC 在平面直角坐标系中的位置如图所示.(1)将ABC 先向下平移4个单位长度,再向右平移3个单位长度,画出平移后的111A B C △,并写出顶点1A ,1B ,1C 的坐标;(2)计算111A B C △的面积.【答案】(1)见解析,()11,1A −,()10.2B −,()12,3C −(2)1.5【解析】【分析】(1)利用点平移的坐标变换规律写出点1A ,1B ,1C 的坐标,然后描点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算111A B C △的面积.【小问1详解】∵将ABC 先向下平移4个单位长度,再向右平移3个单位长度,且()2,3A −,()3,2B −,()1,1C −∴()11,1A −,()10.2B −,()12,3C −,111A B C △如下图所示,【小问2详解】111A B C △的面积为:11122112112 1.5222×−××−××−××=. 【点睛】本题考查了作图与平移变换:作图时要先找到图形关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.25. 如图(1) ABC 和 DEC 都是等腰直角三角形,其中∠ACB =∠DCE =90°,BC =AC ,EC =DC ,点E 在 ABC 内部,直线AD 与BE 交于点F ,线段AF 、BF 、CF 之间存在怎么样的数量关系?(1)先将问题特殊化如图2,当点D 、F 重合时,直接写出线段AF 、BF 、CF 之间的数量关系式: ;(2)再探究一般情况如图1,当点D 、F 不重合时,证明(1)中的结论仍然成立.(3)如图3,若 ABC 和 DEC 都是含30°的直角三角形,若∠ACB =∠DCE =90°,∠BAC =∠EDC =30°,点E 在 ABC 内部,直线AD 、BE 交于点F ,直接写出一个等式,表示线段AF 、BF 、CF 之间的数量关系.【答案】(1)BF -AFCF的(2)见解析 (3)BF 【解析】【分析】(1)证明△ACD ≌△BCE (SAS ),则△CDE 为等腰直角三角形,故DE =EF CF ,进而求解; (2)由(1)知,△ACD ≌△BCE (SAS ),再证明△BCG ≌△ACF (ASA ),得到△GCF 为等腰直角三角形,则GF ,即可求解;问题拓展:证明△BCE ∽△CAD 和△BGC ∽△AFC ,得到BGBC GC AF AC CF ===,则,BG AF GC FC =,进而求解. 【小问1详解】结论:BF -AF ;理由:∵∠ACD +∠ACE =90°,∠ACE +∠BCE =90°,∴∠BCE =∠ACD ,∵BC =AC ,EC =DC ,∴△ACD ≌△BCE (SAS ),∴BE =AD ,∠EBC =∠CAD ,而点D 、F 重合,故BE =AD =AF ,而△CDE 为等腰直角三角形,故DE =EF CF ,则BF =BD =BE +ED =AF CF ;即BF -AF CF ;故答案为:BF -AF CF ;【小问2详解】如图(1),由(1)知,△ACD ≌△BCE (SAS ),∴∠CAF =∠CBE ,BE =AD ,过点C 作CG ⊥CF 交BF 于点G ,∵∠ACF +∠ACG =90°,∠ACG +∠GCB =90°,∴∠ACF =∠BCG ,∵∠CAF =∠CBE ,BC =AC ,∴△BCG ≌△ACF (ASA ),∴GC =FC ,BG =AF ,故△GCF 为等腰直角三角形,则GF CF ,则BF =BG +GF =AF CF ,即BF -AF CF ;【小问3详解】结论:BF AF FC =+. 理由:∵△ABC 和△DEC 都是含30°的直角三角形,∴,BC AC EC =,∴BCEC ACCD == ∵∠ACB =∠DCE ,∴∠BCE =∠ACD ,∴△BCE ∽△ACD ,∴∠CAD =∠CBE ,过点C 作CG ⊥CF 交BF 于点G ,由(2)知,∠BCG =∠ACF ,∴△BGC ∽△AFC ,∴BGBC GC AF AC CF===,则,,BG AF GC FC =,在Rt △CGF 中,GF ==,FG =则=+=+BF BG GF AF FC ,即BF AF FC =+. 理等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题.26. 在平面直角坐标系中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,∠ABC =90°,且AB BC =.(1)如图(1),(5,0)A ,(0,2)B ,点C 在第三象限,请直接写出点C 的坐标;(2)如图(2),BC 与x 轴交于点D ,AC 与y 轴交于点E ,若点D 为BC 的中点,求证:ADB CDE ∠=∠;(3)如图(3),(,0)A a ,M 在AC 延长线上,过点(,)M m a −作MN x ⊥轴于点N ,探究线段BM ,AN ,OB 之间的关系,并证明你的结论.【答案】(1)(2,3)C −−; (2)证明见解析; (3)AN BM OB =+.证明见解析.【解析】【分析】(1)过C 作CR y ⊥轴于R ,证明(AAS)AOB BRC ≌,得到5,2BRAO CR OB ====,即可得到答案;(2)作BF 平分ABC ∠交AD 于F 点,证明(SAS)CED BFD ≌即可得到结论; (3)在ON 上取一点H ,使NH BO =,证明(SAS)ABM MHA ≌,根据全等三角形的性质即可得出结论.【小问1详解】解:过C 作CR y ⊥轴于R ,如图1所示:则90BRC ∠=°, (5,0)A ,(0,2)B ,5,2OA OB ∴==,90AOB ABC BRC ∠=∠=∠=° , 90ABO CBR ∴∠+∠=°, 90CBR BCR ∠+∠=°, ABO BCR ∴∠=∠,AB BC = ,(AAS)AOB BRC ∴ ≌, 5,2BR AO CR OB ∴====, 3OR BR OB ∴=−=, (2,3)C ∴−−;【小问2详解】解:证明:作BF 平分ABC ∠交AD 于F 点,,90AB BC CBA =∠=° ,45C BAC DBF ABF ∴∠=∠=∠=∠=°,90CBE ABO BAF ABO ∠+∠=∠+∠=° ,CBE BAF ∴∠=∠,在BCE 和ABF △中,CBE BAF BC BABCE ABF ∠=∠ = ∠=∠, (ASA)BCE ABF ∴ ≌,CE BF ∴=,点D 为BC 的中点,CD BD ∴=,在CED △和BFD △中,CD BD C DBF CE BF = ∠=∠ =, (SAS)CED BFD ∴ ≌,CDE ADB ∴∠=∠;【小问3详解】解:AN BM OB =+.证明:在ON 上取一点H ,使NH BO =,如图3所示:(,0)A a ,AO a ∴=,MN x ⊥ 轴于G ,(,)M m a −,ON m MN a ∴=−=,AO MN ∴=,90AOB HNM ∠=∠=° ,(SAS)ABO MHN ∴ ≌,,BAO NMH AB HM ∴∠=∠=,AHG MHN ∠=∠ ,90ANM AGM ∴∠=∠=°,90,ABC BC AB ∠=°= ,45BAC ∴∠=°,AGM ∴ 是等腰直角三角形,45BAM GMA ∴∠=∠=°,又,AB HMAM MA == , (SAS)ABM MHA ∴ ≌,BM HA ∴=,AN AH NH =+ ,AN BM OB ∴=+.【点睛】本题主要考查了等腰直角三角形的判定与性质,全等三角形的判定和性质,坐标与图形性质,直角三角形的性质,熟练掌握等腰直角三角形的判定与性质,正确做出辅助线,构造全等三角形是解题的关键.。
扬州市宝应县2023-2024学年度第一学期期中测试试题八年级数学(PDF版含答案)

宝应县2023-2024学年度第一学期期中测试试题八年级数学八年级数学期中试卷参考答案一、选择题:题号12345678答案B AD B C A C D 二、填空题:9.-410.BC =DC 11.4012.x ≤313.5814.6315.1816.617.1318.10.三、解答题:19.解:(1)x =9±;…………4分(2)212=-x …………6分312=-x 23=x .…………8分20.(1)证明:∵BF =CE ,∴BF +CF =CE +CF ,即BC =EF ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF (ASA ).…………8分21.解:解:(1)如图,正方形ABCD 即为所求.…………2分(2)如图,点P 即为所求.…………4分(3)如图,C 1,C 2,C 3,C 4即为所求.…………8分(一个点1分)22.解:(1)∵∠APB =65°,∠CDP =∠ABP =90°,∴∠CPD =25°,∴∠C =∠APB =65°.…………4分(2)在△CPD 和△PAB 中,,∴△CPD ≌△PAB (ASA ).∴DP =AB .∵BD =13.2m ,BP =5m ,∴DP =BD ﹣BP =8.2(m ),即AB =8.2m .…………8分23.证明:(1)AE ⊥BD ………1分∵CD ⊥CE ,AC ⊥CB∴∠DCE =∠ACB =90°,∴∠ACE =∠BCD在△ACE 和△BCD 中,⎪⎩⎪⎨⎧=∠=∠=DC EC BCD ACE BC AC ,∴△ACE ≌△BCD (SAS ),∴∠AEC =∠BDC ,∵∠AEC +∠CFE =90°,∠AFD =∠CFE∴∠BDC +∠A =90°,∴AE ⊥BD ,………5分(2)∵△ACE ≌△BCD ,∴DC =CE ,AE =BD ,∠ACE =∠DCB ,∴∠DCE =∠ACB =90°,∴∠CDE =∠CED =45°,∴∠ADE =∠ADC +∠CDE =90°,∴AE ===1312522=+,∴BD =AE =13.………10分24.解:(1)∵一个正数x 的两个不同的平方根分别是3a ﹣5和7﹣a ,∴3a ﹣5+7﹣a =0,解得a =﹣1,∴x =(3a ﹣5)2=64.……………………5分(2)将x =64,a =﹣1代入x +28a 中,得64﹣28=36.∵36的算术平方根为6,∴x +28a 的算术平方根为6.……………………10分25.解:(1)∠C =2∠D ……………………1分∵AB =AC =AD∴∠ABD =∠D ,∠ABC =∠C∵AD ∥BC∴∠DBC =∠D∵∠ABC=∠ABD +∠DBC=2∠DBC=2∠D∴∠C =2∠D ……………………5分(2)∵在△ADE 和△CBE 中,⎪⎩⎪⎨⎧==∠=∠∠=∠3CE AE CEB AED EBC D ,∴△ADE ≌△CBE (AAS )∴BC =AD∵AD =AC =3+3=6∴BC =AD =6……………………10分26.(1)证明:(1)证明:连接AD .如图所示:∵DM 垂直平分线段AB ,∴DA =DB ,∵CD 平分∠ACB ,DE ⊥AC ,DF ⊥BC ,∴DE =DF ,∠DEB =∠DFC =90°,在Rt △DEA 和Rt △DFB中,,∴Rt △DEA ≌Rt △DFB (HL ),∴AE =BF .……………………5分(2)解:△ABC 是直角三角形,理由如下:在Rt △CDE 和Rt △CDF 中,,∴Rt △CDE ≌Rt △CDF (HL ),∴CE =CF ,由(1)得:Rt △DEA ≌Rt △DFB ,∴BF =AE =7,∴CF =BC +BF =7+10=17,∴AC =AE +CF =7+17=24,∴BC 2+AC 2=102+242=676,AB 2=262=676,∴BC 2+AC 2=AB 2,∴∠ACB =90°.∴△ABC 是直角三角形.……………………10分27.解:(1)因为边长为c 的正方形面积为c 2,它也可以看成是由4个直角三角形与1个边长为(a ﹣b )的小正方形组成的,它的面积为4×ab +(a ﹣b )2=a 2+b 2,所以c 2=a 2+b 2.;……………………5分(2)∵(a ﹣b )2≥0,∴a 2+b 2﹣2ab ≥0,∴a 2+b 2≥2ab ,当a =b 时,等号成立.………………………………10分(3)481………………………………12分28.(1)解:如图1中,在AC 上截取AP =3,Rt △ABC 中,∠C =90°,∵AB =10,BC =8,∴AC ==6,∵AP =PC =3,∴S △P AB =S △PBC ,∵△ABP 与△PBC 不全等,∴△ABP 与△CBP 为积等三角形,当AP =3时,△ABP 与△CBP 为积等三角形;……………………3分(2)解:如图2,延长AD 至E ,使DE =AD ,连接CE ,∵△ABD 与△ACD 为积等三角形,∴BD =CD ,∵AB ∥EC ,∴∠BAD =∠E ,∵∠ADB =∠EDC ,∴△ADB ≌△EDC (AAS ),∴AD =DE ,AB =EC =2,∵AC =5,∴5﹣2<AE <5+2,∴3<2AD <7,∴<AD <,∵AD 为正整数,∴AD =2或3,∴AD 的长为2或3;……………………7分(3)①∵∠CAB =∠DAE =90°,∴∠CAD +∠BAE =360°﹣90°﹣90°=180°;……………………9分②BE=2AF,理由如下:延长AF至G,使GF=AF,连接DG,如图3所示:∵F为CD的中点,∴DF=CF,在△GDF和△ACF中,,∴△GDF≌△ACF(SAS),∴∠DGF=∠CAF,GD=AC,∴DG∥AC,∴∠CAD+∠GDA=180°,由①得:∠CAD+∠BAE=180°,∴∠GDA=∠BAE,∵AC=AB,∴GD=AB,在△ADG和△EAB中,,∴△ADG≌△EAB(SAS),∴AG=BE,∵AG=2AF,∴BE=2AF.……………………12分。
初二年级数学下期中考试试卷

初⼆年级数学下期中考试试卷 数学被应⽤在很多不同的领域上,包括科学、⼯程、医学和经济学等,今天⼩编就给⼤家分享⼀下⼋年级数学,喜欢的来参考吧 ⼋年级数学下期中联考试卷 ⼀、选择题(本⼤题共10⼩题,每⼩题4分,共40分。
每⼩题都有四个选项,其中有且只有⼀个选项正确) 1.若⼆次根式a―2有意义,则a的取值范围是A.a≥0B.a≥2C.a>2D.a≠2 2.下列⼆次根式中,属于最简⼆次根式的是 A. B. C. D. 3.下列计算正确的是 A. B. C. D. 4. 正⽅形具有⽽菱形不⼀定具有的性质是A.四个⾓为直⾓B.对⾓线互相垂直C.对⾓线互相平分D.对边平⾏且相等 5.如图所⽰,在数轴上点A所表⽰的数为a,则a的值为A.﹣B.1﹣C.﹣1﹣D.﹣1+ 6. 以下各组数据为三⾓形的三边长,能构成直⾓三⾓形的是A.2,2,4B.2,3,4C.2,2,1D.4,5,6 7.化简(3―2)2002•(3+2)2003的结果为A.―1B.3+2C.3―2D.―3―2 8. 如图1,在△ABC中,∠C=90°,AC=2,点D在BC边上, ∠ADC=2∠B,AD= ,则BC的长为A. ﹣1B. +1C. ﹣1D. +1 9.如图2,在正⽅形ABCD的外侧作等边三⾓形DCE,若∠AED=15°, 则∠EAC=( )A.15°B.28°C.30°D.45° 10.若a=2016×2018-2016×2017, b=2015×2016-2013×2017,, 则a,b,c的⼤⼩关系是 A.a ⼆、填空题(本⼤题共6⼩题,每⼩题4分,共24分) 11.计算: = ; = . 12.在△ABC中,D,E分别是边AB,AC的中点,若BC=4,则DE=_______. 13.如图3,在□ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC,交BC边于点E,则BE= cm. 14.在中,,分别以AB、AC为边向外作正⽅形,⾯积分别记为 . 若,则BC=______. 15.如图4,已知正⽅形ABCD的边长为4,对⾓线AC与BD相交于点O,点E在DC 边的延长线上.若∠CAE=15°,则CE= . 16.公元3世纪,我国古代数学家刘徽就能利⽤近似公式a 2+r≈a+r2a得到2的近似值.他 的算法是:先将2看成12+1,由近似公式得2≈1+12×1=32;再将2看成 (32)2+(-14),由近似公式得2≈32+-142×32=1712;......依此算法,所得2的近似 值会越来越精确.当2取得近似值577408时,近似公式中的a是__________,r是__________. 三、解答题(本⼤题共9⼩题,共86分) 17.(本题满分12分,每⼩题6分)计算: (1)4 + ﹣ ; (2) (2 )(2 ) 18.(本题满分6分)计算: 19.(本题满分8分) 如图,在 ABCD中,E,F分别在边AD,BC上,且AE=CF,连接EF. 请你只⽤⽆刻度的直尺画出线段EF的中点O,并说明这样画的理由. 20.(本题满分8分) ,,求代数式的值 21. (本题满分8分) 古希腊的⼏何学家海伦(约公元50年)在研究中发现:如果⼀个三⾓形的三边长分别为,,,那么三⾓形的⾯积S与,,之间的关系式是 ① 请你举出⼀个例⼦,说明关系式①是正确的. 22.(本题满分8分)如图,在□ABCD中,点E,F分别是边AB,CD的中点, (1)求证:△CFB≌△AED; (2)若∠ADB=90°,判断四边形BFDE的形状,并说明理由; 23.(本题满分10分) 如图5,E,F分别是矩形ABCD的边AB,AD上的点, . (1)求证: AF=CD. (2)若AD=2,△EFC的⾯积为,求线段BE的长. 24.(本题满分12分) 如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上⼀点,过点D作DE⊥BC,交直线MN于点E,垂⾜为F,连接CD,BE (1)求证:CE=AD (2)若D为AB的中点,则∠A的度数满⾜什么条件时,四边形BECD是正⽅形?请说明理由. 25.(本题满分14分)如图6,我们把对⾓线互相垂直的四边形叫做垂美四边形 (1)概念理解:如图7,在四边形ABCD中,AB=AD,CB=CD,四边形ABCD是垂美四边形吗?请说明理由. (2)性质探究:试探索垂美四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系. 猜想结论: (要求⽤⽂字语⾔叙述).写出证明过程(先画出图形, 写出已知、求证,再证明) (3)问题解决:如图8,分别以Rt△ACB的直⾓边AC和斜边AB为边向外作正⽅形ACFG和正⽅形形ABDE,连接CE,BG,GE,若AC=4,AB=5,求GE的长. 2017-2018学年(下)六校期中联考⼋年级 数学科评分标准 ⼀、选择题(本⼤题有10⼩题,每⼩题4分,共40分.) 题号 1 2 3 4 5 6 7 8 9 10 选项 B D C A C A B D C B ⼆、填空题(本⼤题共6⼩题,每题4分,共24分) 11. ; . 12. . 13. . 14. . 15. . 16. , . 三、解答题(本⼤题共11⼩题,共86分) 17.(本题满分12分,每⼩题6分) (1)解:原式= …………… 3分 = …………… 4分 = …………… 6分 (2)解:原式= …………… 3分 = …………… 5分 = …………… 6分 注: 1.写出正确答案,⾄少有⼀步过程,不扣分. 2.只有正确答案,没有过程,只扣1分. 3.没有写出正确答案的,若过程不完整,按步给分. (以下题⽬类似) 18.(本题满分6分) 解:原式= …………… 3分 = …………… 5分 = …………… 6分 19. 20.(本题满分8分) 解:连接与相交于点,点为的中点。
期中测试卷
浙江省杭州地区2011-2012学年第二学期期中考试初二数学试卷一、选择题1.下列语句是命题的是( ) A .作直线AB 的垂线 B .在线段AB 上取点C C .同旁内角互补 D .垂线段最短吗?2.下列计算正确的是 ( ) A 、()13132-=- B 、12223=-C 、52553-=+-D 、636±= 3. 方程 x 2 + x – 1 = 0的一个根是 ( ) A. 1 –5 B.251- C. –1+5 D. 251+-4.如图,1∠、2∠、3∠、4∠是五边形ABCD 的外角,且0123470∠=∠=∠=∠=,则AED ∠的度数是 (▲ )A .0100 B .0108 C .0105 D . 01105.体育老师对九年级(1)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成频数分布直方图(如图)。
由图可知,最喜欢篮球的频率是 ( ) A .0.16 B .0.24 C .0.3 D .0.4 6.下列命题是真命题的是 ( )A .若2a =2b ,则a =b B .若x =y ,则2-3x ﹥2-3y C .若2x =2,则xD .若3x =8,则x =±27. 若关于x 的一元二次方程043)2(22=-++-m x x m 有一个根是0,则m 的值(▲ ) A 、0 B 、-2 C 、2 D 、2-28.关于x 的一元二次方程x 2﹣mx+5(m ﹣5)=0的两个正实数根分别为x 1,x 2,且2x 1+x 2=7,则m 的值是( )A .2B .6C .2或6D .79.如图,正方形ABCD 的边长为1,E 、F 分别是BC 、CD 上的点,且△AEF 是等边三角形,则BE 的长为( )A .B .C .D .10.如图,点C 是线段AB 上的一个动点,△ACD 和△BCE 是在AB 同侧的两个等边三角形,DM ,EN 分别是△ACD 和△BCE 的高,点C 在线段AB 上沿着从点A 向点B 的方向移动(不与点A ,B 重合),连接DE ,得到四边形DMNE .这个四边形的面积变化情况为( ) (A )逐渐增大 (B) 逐渐减小 (C) 始终不变 (D) 先增大后变小 二、填空题 11中x 的取值范围是 12..观察分析,探求规律,2……, (请在横线上写出第50个数)。
人教版五年级下册数学《期中考试试卷》含答案
人教版五年级下册数学《期中考试试卷》含答案人教版数学五年级下学期期中测试卷学校:________ 班级:________ 姓名:________ 成绩:________一、填空题(共12小题,满分23分)1.54的因数有____,其中质数有____。
2.根据XXX填适当的分数。
①AC是AF的____,②AE是AF的____,③BE是AF的____,④AC是BE的____,⑤AD是BF的____。
3.XXX身高135厘米,体重32千克,每天晚上9点30分睡觉。
4.用240厘米的铁丝做一个最大的正方体框架,再用纸板将6个面包起来,至少用纸板____平方厘米,纸盒的体积是____立方厘米。
5.一个正方体,从一个方向最多能看到____个面。
6.____÷____=____÷____。
7.1 ____的分数单位是____,它有个这样的分数单位,再加上个这样的分数单位就等于最小的质数。
8.450cm³=____dm³,3.06m³=____dm³,5.8L=____mL,2.4dm³=____L=____mL。
9.____的分子加上27,如果要使分数的大小不变,分母应该加上____。
10.把下面各数按要求分类。
xxxxxxxxxxxxxxxxxxx0偶数:____,奇数:____,2和5共同的倍数:____,3和5共同的倍数:____,2、3、5共同的倍数:____,质数:____,合数:____。
11.把一个棱长12厘米的正方体铁块铸造成一个长18厘米,宽12厘米的长方体,这个长方体的高是____厘米,表面积是____平方厘米。
12.一个三位数,它的个位上是最小的质数,十位上是最小的合数,百位上是最小的奇数,这个三位数是____,它是____的倍数。
二、判断题(共5小题,满分10分,每小题2分)13.把一个圆平均分成8份,每份是这个圆的1/8.(判断对错)。
七年级语文(下册期中)试卷及答案(完美版)
七年级语文(下册期中)试卷及答案(完美版)满分:120分考试时间:120分钟一、语言的积累与运用。
(35分)1、下列加点的字注音完全正确的一项是( )A.保姆.(mǚ)憎恶.(è)孤孀.(shuāng)B.福橘.(jǔ)惊骇.(hài)疏.懒(shú)C.渴慕.(mù)寂寞.(mó)掳.去(luē)D.絮.说(xù)诘.问(jié)搜.集(sōu)2、下列各组词语中字形有误的一项是( )A.仰慕窘迫鞠躬尽瘁迥乎不同B.彷徨混浊锋芒必露锲而不舍C.调羹轻捷慷慨淋漓炯炯有神D.咖啡栏杆沥尽心血当之无愧3、下列句子中加点词语使用不正确的一项是()A.许多家长强逼本该享受快乐童年的幼儿到早教机构上提高班,这种揠苗助长....的做法不可取。
B.神舟飞船发射基地的广大官兵,个个身怀绝技,却因工作的机密而鲜为人知....。
C.《中国诗词大会》影响巨大,上海复旦附中武亦姝现场的不俗表现至今让人记忆犹新....。
D.朱主任从小就养成了勤学好问的习惯,遇到问题总是不耻下问....地向上级领导请教。
4、下列句子中没有语病的一项是( )A.在会议期间,我们还参观了生态乡村处理生活垃圾的经验。
B.《中华文明之美》节目致力于弘扬中国传统文化,自开播以来深受观众喜爱的原因是其新颖的内容和多样的形式造成的。
C.中国结不仅造型完美,应用广泛,而且形态、颜色都蕴含着强烈的传统文化气息。
D.博物馆展出了两千多年前新出土的兵马俑,吸引了全国各地的游客。
5、下列句子所运用的修辞手法不同于其他三项的一项是()A.花白的毛,很活泼,常如带着泥土的白雪球似的,在廊前太阳光里滚来滚去。
B.那点儿薄雪好像忽然害了羞,微微露出点儿粉色。
C.远远的街灯明了,好像闪着无数的明星。
D.母亲啊!你是荷叶,我是红莲。
心中的雨点来了,除了你,谁是我无遮拦天空下的荫蔽。
6、将下列句子组成一段意思连贯的话,语序排列最恰当的一项是()①我们只能迎难而上,努力向前方挺进。
七年级期中考试数学试卷及答案
ACDB中考试 数学试卷一、选择题(3×10=30)1.在下图中, ∠1,∠2是对顶角的图形是( )2.下列图中,哪个可以通过左边图形平移得到( )3.如图, 不能推出a ∥b 的条件是.. )A.∠1=∠3 B 、∠2=∠4C.∠2=∠3 D 、∠2+∠3=1800 4.下列语句不是命题的是( )A. 明天有可能下雨B.同位角相等C.∠A 是锐角D. 中国是世界上人口最多的国家 5.下列长度的三条线段能组成三角形的是( )A、1, 2, 3 B、1, 7, 6 C、2, 3, 6 D.6, 8, 106.点C在轴的下方, 轴的右侧, 距离轴3个单位长度, 距离轴5个单位长度, 则点C的坐标为( ) A、(-3, 5) B、(3, -5) C、(5, -3) D、(-5, 3)7.一辆汽车在笔直的公路上行使, 两次拐弯后, 仍在原来的方向上平行前进, 那么两次拐弯的角度是( )A.第一次右拐50°, 第二次左拐130°B.第一次左拐50°, 第二次右拐50°C.第一次左拐50°, 第二次左拐130°D.第一次右拐50°, 第二次右拐50°8.如图,能表示点到直线(或线段)距离的线段有.. ) A. 2条 B.3条 C.4条 D.5条9.如图两条非平行的直线AB ,CD 被第三条直线EF.截,交点为PQ ,那么这条直线将所在平面分成..)A. 5个部分B.6个部分C.7个部分D. 8个部分 10.以下叙述正确的有. )①对顶角相等 ②同位角相等 ③两直角相等 ④邻补角相等⑤有且只有一条直线垂直于已知直线 ⑥三角形的中线把原三角形分 成面积相等的两个三角形A 2121B 21C 21D4 3 21 c b a 第3题A、2个 B、3个 C、4个 D、5个 二、填空题(3×10=30)11.如图直线AB、CD、EF相交于点O, ∠AOC的邻补角......________.若∠AOC=500,则∠COB.....0 12.剧院里5排2号可以用(5,2)表示,则7排4号..... 表示.13.两条平行线被第三条直线所截.如果同旁内角之比为1:3,则这两个角分别为________和________.14.两个角的两边互相平行, 其中一个角30°, 则是另一个角的度数....... 15.已知, xy ﹤0, 则点P在坐标平面的位置是第________象限 16.若直线a ⊥b,a ∥c,则c___b.17.一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为___________cm 18.点A距离每个坐标轴都是4个单位长度, 则点A的坐标为__________.19.如图, 天地广告公司为某商品设计的商品图案, 图中阴影部分是彩色, 若每个小长方形的面积都是1, 则彩色的面积为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题(每题5分,共40分)
1、设, 且
,则= ;
2、设A是n阶方阵,且AA
′
=E, A <0,则 A+E = ;
3、已知,,,,,,31211321设,AT则A ;
4、线性方程组,满足条件 时有惟
一解;
5、已知向量组123,,线性无关,则向量组122313,,的秩为 ;
6、已知三维线性空间的一组基为,则向量在这组
基下的坐标是 ;
7、设有n级行列式
xaax⋯⋯a
a
⋮⋮
⋱⋮
aa
⋯x
,则A11+A12+⋯+A1n= ;
8、已知AB−B=A,其中B=
1−20
210
002
,则 A−E −1= ;
1112121222121112111121212222122212120m
m
mmmm
nm
nm
nnnnnnnm
aaa
aaa
aaa
Dbbbcccbbbcccbbbccc
111212122212m
m
mmmm
aaa
aaa
aaaa
111212122212n
n
nnnn
bbb
bbb
bbbb
D
433332231342332222124133122111kxkxkxk
kxkxkxk
kxkxkxk
123
1101,0,10112
00
二、计算行列式(11分)。
xaaa
axaaaaxaaaaax
.
三、求矩阵的秩及行最简形(11分)。
12102242662102333334
四、设,AB均为n阶方阵,且2BB,ABE,证明A可逆,并求逆。(11分)
五、将下列向量组标准正交化。(12分)
五、设向量组12,,,s的秩为1r,向量组12,,,t的秩为2r,向量组
1212,,,,,,,st的秩为3r,证明. 12312
max{,}rrrrr
。(15分)
1234
11111001,,,00110101aaaa