高中数学知识点归纳总结精华版

合集下载

高中数学知识点总结(精华版)

高中数学知识点总结(精华版)

高中数学知识点总结1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩;(3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.30.分数指数幂(1)m na =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数., (2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a am nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nn ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)22(||||)()OAB S OA OB OA OB ∆=⋅-⋅.54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ; (2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律:(1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式 ,A Bd =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式 (1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;80.夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π. 82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±.92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b⇔+>. 95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y ya b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<. 98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.过焦点弦长p x x px p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2 y py 或或)2,2(2pt pt P P (,)x y ,其中22y px =.102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>.(2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>.点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B ++++--=++.108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行;(3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD 共线且AB CD 、不共线⇔AB tCD =且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD x AB y AC =+⇔(1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =,222(,,)b x y z =,则a b ⇔(0)a b b λ=≠⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥⇔0a b ⋅=⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ==21||||||a b a b x ⋅=⋅+(其中θ(090θ<≤)为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量).129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB =⋅=135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ).136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式22cos d mn θ=.',d EA AF =.d =('E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a ,. 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++. 150.分步计数原理(乘法原理)12n N m m m =⨯⨯⨯.151.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 152.排列恒等式(1)1(1)m m n n A n m A -=-+;(2)1mmn n n A A n m -=-; (3)11m m n n A nA --=;(4)11n n nn n n nA A A ++=-; (5)11m m m n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.153.组合数公式m nC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).154.组合数的两个性质 (1)mn C =mn nC - ; (2) m n C +1-m nC =mn C 1+.注:规定10=n C .155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-;(3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n r n r r r r r rC C C C C . (6)nn n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9)rn m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)nn n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系m m n n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh hh A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +. 158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn nn nn mn nn mn nmn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--.(3)(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m =⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!!...211c b a m C C C N m m n n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n =1+++)个物体分给甲、乙、丙,……。

高中数学知识点总结归纳(完整版)

高中数学知识点总结归纳(完整版)

高中数学知识点总结归纳(完整版)高中数学知识点总结归纳(完整版)高中数学是中学数学的延伸和深化,内容较为广泛且复杂。

在这篇文章中,我们将全面总结归纳高中数学的各个知识点,帮助读者理清数学学科的脉络,更好地掌握数学知识。

本文将按照数学的不同分支来进行内容的整理,包括数学分析、几何与图形、概率与统计、数论以及代数与函数等。

一、数学分析1. 函数与极限函数是数学研究中的基本概念,而极限则为函数的重要性质之一。

我们需要了解函数的定义、性质,以及极限的概念、运算法则和重要性质。

2. 微积分微积分是数学分析的重要组成部分,主要包括导数、积分以及微分方程等知识点。

我们需要掌握导数的计算、应用,积分的概念和运算法则,以及微分方程的基本求解方法。

3. 级数级数是由数列部分和的序列构成,主要有等差级数、等比级数等。

我们需要了解级数的定义、性质以及常见级数的求和方法。

二、几何与图形1. 平面几何平面几何是研究平面点、线、面之间位置关系的数学分支。

我们需要了解平面几何的基本概念、性质,以及平面图形的判定和计算方法。

2. 立体几何立体几何是研究空间中点、线、面之间位置关系的数学分支。

我们需要掌握立体几何的基本概念、性质,以及常见立体图形的计算方法。

三、概率与统计1. 概率概率是研究随机事件发生可能性的数学分支,主要包括基本概率、条件概率、概率分布以及统计推断等。

我们需要了解概率的基本概念、性质,以及概率计算和统计推断的方法。

2. 统计统计是研究收集、整理、分析和解释数据的数学分支,主要包括数据的收集整理、描述性统计、参数估计和假设检验等。

我们需要掌握统计学的基本概念、性质,以及统计分析和统计推断的方法。

四、数论数论是研究整数性质和整数运算规律的数学分支,主要包括整数的性质、最大公因数、模运算以及数论中的应用等。

我们需要了解整数的基本性质、运算规律,以及数论在密码学等领域的应用。

五、代数与函数1. 代数运算代数是数学的基础,包括代数运算、方程和不等式、数列和数学归纳法等内容。

(精选试题附答案)高中数学选修一知识点归纳总结(精华版)

(精选试题附答案)高中数学选修一知识点归纳总结(精华版)

(名师选题)(精选试题附答案)高中数学选修一知识点归纳总结(精华版)单选题1、已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的右焦点与抛物线y 2=2px(p >0)的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD|=√2|AB|.则双曲线的离心率为( )A .√2B .√3C .2D .3答案:A分析:设公共焦点为(c,0),进而可得准线为x =−c ,代入双曲线及渐近线方程,结合线段长度比值可得a 2=12c 2,再由双曲线离心率公式即可得解. 设双曲线x 2a 2−y 2b 2=1(a >0,b >0)与抛物线y 2=2px(p >0)的公共焦点为(c,0),则抛物线y 2=2px(p >0)的准线为x =−c ,令x =−c ,则c 2a 2−y 2b 2=1,解得y =±b 2a ,所以|AB|=2b 2a , 又因为双曲线的渐近线方程为y =±b a x ,所以|CD|=2bc a , 所以2bc a =2√2b 2a ,即c =√2b ,所以a 2=c 2−b 2=12c 2,所以双曲线的离心率e =c a =√2.故选:A. 2、已知四棱锥P −ABCD ,底面ABCD 为平行四边形,M ,N 分别为棱BC ,PD 上的点,CM CB =13,PN =ND ,设AB ⃑⃑⃑⃑⃑ =a ,AD ⃑⃑⃑⃑⃑ =b ⃑ ,AP ⃑⃑⃑⃑⃑ =c ,则向量MN ⃑⃑⃑⃑⃑⃑⃑ 用{a ,b ⃑ ,c }为基底表示为( )A .a +13b ⃑ +12cB .−a +16b ⃑ +12c C .a −13b ⃑ +12c D .−a −16b ⃑ +12c 答案:D分析:由图形可得MN ⃑⃑⃑⃑⃑⃑⃑ =MC ⃑⃑⃑⃑⃑⃑ +CD ⃑⃑⃑⃑⃑ +DN ⃑⃑⃑⃑⃑⃑ ,根据比例关系可得MC ⃑⃑⃑⃑⃑⃑ =13AD ⃑⃑⃑⃑⃑ ,DN ⃑⃑⃑⃑⃑⃑ =12DP ⃑⃑⃑⃑⃑ ,再根据向量减法DP ⃑⃑⃑⃑⃑ =AP ⃑⃑⃑⃑⃑ −AD ⃑⃑⃑⃑⃑ ,代入整理并代换为基底向量.MN ⃑⃑⃑⃑⃑⃑⃑ =MC ⃑⃑⃑⃑⃑⃑ +CD ⃑⃑⃑⃑⃑ +DN ⃑⃑⃑⃑⃑⃑ =13AD ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ +12DP ⃑⃑⃑⃑⃑ =13AD ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ +12(AP ⃑⃑⃑⃑⃑ −AD ⃑⃑⃑⃑⃑ )=−AB ⃑⃑⃑⃑⃑ −16AD ⃑⃑⃑⃑⃑ +12AP ⃑⃑⃑⃑⃑ 即MN ⃑⃑⃑⃑⃑⃑⃑ =−a −16b ⃑ +12c 故选:D .3、已知直线l 的倾斜角为60∘,且经过点(0,1),则直线l 的方程为( )A .y =√3xB .y =√3x −2C .y =√3x +1D .y =√3x +3答案:C分析:先求出斜率,再由直线的点斜式方程求解即可.由题意知:直线l 的斜率为√3,则直线l 的方程为y =√3x +1.故选:C.4、在矩形ABCD 中,O 为BD 中点且AD =2AB ,将平面ABD 沿对角线BD 翻折至二面角A −BD −C 为90°,则直线AO 与CD 所成角余弦值为( )A .√55B .√54C .3√525D .4√225 答案:C分析:建立空间直角坐标系,利用向量法求得直线AO 与CD 所成角余弦值.在平面ABD 中过A 作AE ⊥BD ,垂足为E ;在平面CBD 中过C 作CF ⊥BD ,垂足为F .由于平面ABD ⊥平面BCD ,且交线为BD ,所以AE ⊥平面BCD ,CF ⊥平面ABD ,设AB =1,AD =2,12×BD ×AE =12×AB ×AD ⇒AE =√5OE =√OA 2−AE 2=2√5, 同理可得CF =√5OF =2√5, 以O 为原点,建立如图所示空间直角坐标系,则A(2√5√5),√52√50),D(−√52,0,0), CD ⃑⃑⃑⃑⃑ =(−√510,2√50),设AO 与CD 所成角为θ,则cosθ=|OA ⃑⃑⃑⃑⃑⃑ ⋅CD ⃑⃑⃑⃑⃑ |OA ⃑⃑⃑⃑⃑⃑ |⋅|CD ⃑⃑⃑⃑⃑ ||=320√52×12=3√525.故选:C5、如果AB >0且BC <0,那么直线Ax +By +C =0不经过( )A .第一象限B .第二象限C .第三象限D .第四象限答案:C分析:通过直线经过的点来判断象限.由AB >0且BC <0,可得A,B 同号,B,C 异号,所以A,C 也是异号;令x =0,得y =−C B >0;令y =0,得x =−C A >0;所以直线Ax +By +C =0不经过第三象限.故选:C.6、在棱长为1的正方体ABCD -A 1B 1C 1D 1中,设AB ⃑⃑⃑⃑⃑ =a ,AD ⃑⃑⃑⃑⃑ =b ⃑ ,AA 1⃑⃑⃑⃑⃑⃑⃑ =c ,则a ⋅(b ⃑ +c )的值为()A .1B .0C .-1D .-2答案:B分析:由正方体的性质可知AB ⃑⃑⃑⃑⃑ ,AD ⃑⃑⃑⃑⃑ ,AA 1⃑⃑⃑⃑⃑⃑⃑ 两两垂直,从而对a ⋅(b ⃑ +c )化简可得答案由题意可得AB ⊥AD,AB ⊥AA 1,所以a ⊥b ⃑ ,a ⊥c ,所以a ⋅b ⃑ =0,a ⋅c =0,所以a ⋅(b ⃑ +c )=a ⋅b ⃑ +a ⋅c =0,故选:B7、动点P 在抛物线x 2=4y 上,则点P 到点C (0,4)的距离的最小值为( )A .√3B .2√3C .12√3D .12答案:B分析:设出点P 坐标,用两点间距离公式表达出点P 到点C (0,4)的距离,配方后求出最小值.设P (x,x 24),则|PC |=√x 2+(x 24−4)2=√116(x 2−8)2+12,当x 2=8时,|PC |取得最小值,最小值为2√3 故选:B8、如图,在直三棱柱ABC −AB 1C 1中,AC =3,BC =4,CC 1=3,∠ACB =90∘ ,则BC 1与A 1C 所成的角的余弦值为( )A . 3√210B . √33C . √24D . √55答案:A分析:建立空间直角坐标系,写出CA 1⃑⃑⃑⃑⃑⃑⃑ ,BC 1⃑⃑⃑⃑⃑⃑⃑ 的坐标,由夹角公式可得结果.如图,以C 为坐标原点,CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,则C (0,0,0),A 1(3,0,3),B (0,4,0),C 1(0,0,3),所以CA 1⃑⃑⃑⃑⃑⃑⃑ =(3,0,3),BC 1⃑⃑⃑⃑⃑⃑⃑ =(0,−4,3),所以cos⟨CA 1⃑⃑⃑⃑⃑⃑⃑ ,BC 1⃑⃑⃑⃑⃑⃑⃑ ⟩=CA 1⃑⃑⃑⃑⃑⃑⃑⃑ ⋅BC 1⃑⃑⃑⃑⃑⃑⃑⃑ |CA 1⃑⃑⃑⃑⃑⃑⃑⃑ |⋅|BC 1⃑⃑⃑⃑⃑⃑⃑⃑ |=3√2×5=3√210, 所以直线BC 1与A 1C 所成角的余弦值为3√210.故选:A.9、如图所示,在空间四边形OABC 中,OA ⃑⃑⃑⃑⃑ =a ,OB ⃑⃑⃑⃑⃑ =b ⃑ ,OC ⃑⃑⃑⃑⃑ =c ,点M 在OA 上,且OM⃑⃑⃑⃑⃑⃑ =2MA ⃑⃑⃑⃑⃑⃑ ,N 为BC 中点,则MN ⃑⃑⃑⃑⃑⃑⃑ ( )A .12a −23b ⃑ +12cB .−23a +12b ⃑ +12c C .12a +12b ⃑ −12c D .−23a +23b ⃑ −12c 答案:B分析:由向量的加法和减法运算法则计算即可.MN ⃑⃑⃑⃑⃑⃑⃑ =ON ⃑⃑⃑⃑⃑⃑ −OM ⃑⃑⃑⃑⃑⃑ =12(OB ⃑⃑⃑⃑⃑ +OC ⃑⃑⃑⃑⃑ )−23OA ⃑⃑⃑⃑⃑ =−23a +12b ⃑ +12c 故选:B10、若圆x 2+y 2=1上总存在两个点到点(a,1)的距离为2,则实数a 的取值范围是( ) A .(−2√2,0)∪(0,2√2)B .(−2√2,2√2)C .(−1,0)∪(0,1)D .(−1,1)答案:A分析:将问题转化为圆(x−a)2+(y−1)2=4与x2+y2=1相交,从而可得2−1<√a2+12<2+1,进而可求出实数a的取值范围.到点(a,1)的距离为2的点在圆(x−a)2+(y−1)2=4上,所以问题等价于圆(x−a)2+(y−1)2=4上总存在两个点也在圆x2+y2=1上,即两圆相交,故2−1<√a2+12<2+1,解得−2√2<a<0或0<a<2√2,所以实数a的取值范围为(−2√2,0)∪(0,2√2),故选:A.填空题11、过圆C:(x−1)2+y2=1外一点P作圆C的两条切线,切点分别为A,B.若△PAB为等边三角形,则过D(2,1)的直线l被P点轨迹所截得的最短弦长为________.答案:2√2分析:先根据∠APC=30°,可得P点轨迹方程为圆,再数形结合可知当l与CD垂直时,l被圆所截得的弦长最短,结合垂径定理计算即可=2,所以P点轨迹的由题意知C(1,0),连接PC,因为△PAB为等边三角形,所以∠APC=30°,所以|CP|=1sin30∘方程为(x−1)2+y2=4.因为(2−1)2+12=2<4,所以点D(2,1)在圆(x-1)2+y2=4的内部.连接CD,结合图形可知,当l与CD垂直时,l被圆(x−1)2+y2=4所截得的弦长最短,最短弦长为2√4−CD2=2√4−2=2√2所以答案是:2√212、已知集合A={(x,y)|2x−(a+1)y−1=0},B={(x,y)|ax−y+1=0},且A∩B=∅,则实数a的值为___________.答案:1分析:利用已知条件可得直线2x−(a+1)y−1=0与直线ax−y+1=0平行,利用线线平行的结论,代入求解即可.∵集合A={(x,y)|2x−(a+1)y−1=0},B={(x,y)|ax−y+1=0},且A∩B=∅,∴直线2x−(a+1)y−1=0与直线ax−y+1=0平行,即−2=−a(a+1),且2≠−a,解得a=1.所以答案是:1.13、点P为直线3x−4y+2=0上任意一个动点,则P到点(3,−1)的距离的最小值为___________.答案:3分析:先判断出当点P和点(3,−1)的连线和直线3x−4y+2=0垂直时距离最小,再由点(3,−1)到直线的距离求解即可.由题意得当点P和点(3,−1)的连线和直线3x−4y+2=0垂直时距离最小,此时距离等于点(3,−1)到直线3x−4y+2=0的=3,故P到点(3,−1)的距离的最小值为3.距离√32+(−4)2所以答案是:3.14、如图,在棱长为4的正方体ABCD−A1B1C1D1中,E为BC的中点,点P在线段D1E上,点Р到直线CC1的距离的最小值为_______.答案:4√55##45√5 分析:建立空间直角坐标系,借助空间向量求出点Р到直线CC 1距离的函数关系,再求其最小值作答. 在正方体ABCD −A 1B 1C 1D 1中,建立如图所示的空间直角坐标系,则C(0,4,0),D 1(0,0,4),E(2,4,0),C 1(0,4,4),CE ⃑⃑⃑⃑⃑ =(2,0,0),CC 1⃑⃑⃑⃑⃑⃑⃑ =(0,0,4),ED 1⃑⃑⃑⃑⃑⃑⃑ =(−2,−4,4),因点P 在线段D 1E 上,则λ∈[0,1],EP ⃑⃑⃑⃑⃑ =λED 1⃑⃑⃑⃑⃑⃑⃑ =(−2λ,−4λ,4λ),CP ⃑⃑⃑⃑⃑ =CE ⃑⃑⃑⃑⃑ +EP ⃑⃑⃑⃑⃑ =(2−2λ,−4λ,4λ),向量CP ⃑⃑⃑⃑⃑ 在向量CC 1⃑⃑⃑⃑⃑⃑⃑ 上投影长为d =|CP ⃑⃑⃑⃑⃑ ⋅CC 1⃑⃑⃑⃑⃑⃑⃑ ||CC 1⃑⃑⃑⃑⃑⃑⃑ |=4λ, 而|CP⃑⃑⃑⃑⃑ |=√(2−2λ)2+(−4λ)2+(4λ)2,则点Р到直线CC 1的距离 ℎ=√|CP ⃑⃑⃑⃑⃑ |2−d 2=2√5λ2−2λ+1=2√5(λ−15)2+45≥4√55,当且仅当λ=15时取“=”, 所以点Р到直线CC 1的距离的最小值为4√55. 所以答案是:4√55 15、在直角坐标系中,若A (2,1)、B (1,2)、C (0,y )(y ∈R ),则|AC |+|BC |的最小值是______.答案:√10分析:作点A 关于y 轴的对称点M (−2,1),由对称性可得|AC |=|MC |,再利用当点C 为线段BM 与y 轴的交点时,|AC |+|BC |取最小值可得结果.由题意可知,点C 在y 轴上,点A 关于y 轴的对称点为M (−2,1),由对称性可得|AC |=|MC |,所以,|AC |+|BC |=|MC |+|BC |≥|MB |=√(1+2)2+(2−1)2=√10,当且仅当点C 为线段BM 与y 轴的交点时,等号成立,故|AC |+|BC |的最小值为√10.所以答案是:√10.解答题16、如图,已知在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是AD 1,BD ,B 1C 的中点,利用向量法证明:(1)MN ∥平面CC 1D 1D ;(2)平面MNP ∥平面CC 1D 1D .答案:(1)证明见解析;(2)证明见解析.分析:(1)建立空间直角坐标系,设出相关点的坐标,求出直线的方向向量和平面的法向量,利用直线的方向向量和平面的法向量的数量积为0进行证明;(2)证明两个平面有相同的一个法向量即可..(1)证明:以D 为坐标原点,DA ⃑⃑⃑⃑⃑ ,DC ⃑⃑⃑⃑⃑ ,DD 1⃑⃑⃑⃑⃑⃑⃑⃑ 的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,设正方体的棱长为2,则A (2,0,0),C (0,2,0),D (0,0,0),M (1,0,1),N (1,1,0),P (1,2,1).由正方体的性质,知AD ⊥平面CC 1D 1D ,所以DA ⃑⃑⃑⃑⃑ =(2,0,0)为平面CC 1D 1D 的一个法向量.由于MN⃑⃑⃑⃑⃑⃑⃑ =(0,1,-1), 则MN →·DA →=0×2+1×0+(-1)×0=0,所以MN⃑⃑⃑⃑⃑⃑⃑ ⊥DA ⃑⃑⃑⃑⃑ . 又MN ⊄平面CC 1D 1D ,所以MN ∥平面CC 1D 1D.(2)证明:因为DA⃑⃑⃑⃑⃑ =(2,0,0)为平面CC 1D 1D 的一个法向量, 由于MP⃑⃑⃑⃑⃑⃑ =(0,2,0),MN ⃑⃑⃑⃑⃑⃑⃑ =(0,1,-1), 则{MP →·DA →=0MN →·DA →=0,即DA⃑⃑⃑⃑⃑ =(2,0,0)也是平面MNP 的一个法向量, 所以平面MNP ∥平面CC 1D 1D.17、已知x 21−k −y 2|k|−3=−1,当k 为何值时:(1)方程表示双曲线;(2)表示焦点在x 轴上的双曲线;(3)表示焦点在y 轴上的双曲线.答案:(1)k <-3或1<k <3;(2)1<k <3;(3)k <-3.分析:利用双曲线标准方程中的分母的正负,即可得出结论.(1)∵x 21−k −y 2|k|−3=−1,即x 2k−1+y 2|k |−3=1,方程表示双曲线,∴(k -1)(|k |-3)<0,可得k <-3或1<k <3;(2)∵x 21−k −y 2|k|−3=−1,即x 2k−1+y 2|k |−3=1,焦点在x 轴上的双曲线,则{k −1>03−|k|>0, ∴1<k <3;(3)∵x 21−k −y 2|k|−3=−1,即x 2k−1+y 2|k |−3=1,焦点在y 轴上的双曲线,则{|k|−3>01−k >0, ∴k <-3.18、已知圆C 过点A (3,1),B (5,3),圆心在直线y =x 上.(1)求圆C 的方程.(2)判断点P (2,4)与圆C 的关系答案:(1)(x −3)2+(y −3)2=4;(2)P 在圆C 内部.分析:(1)由给定条件设出圆心C (a,a )、半径r ,进而写出圆的标准方程,再列出关于a ,r 的方程组即可得解(2)求出点P 与点C 的距离,再将它与r 比较即可得解.(1)由题意设圆心为C (a,a ),半径为r ,则圆的标准方程为(x −a)2+(y −a )2=r 2,由题意得{(3−a)2+(1−a )2=r 2(5−a)2+(3−a )2=r2 ,解得{a =3r =2 , 所以圆C 的标准方程为(x −3)2+(y −3)2=4;(2)由(1)知|PC |=√(3−2)2+(3−4)2=√2<rP (2,4)在圆C 内.19、如图,四边形ABCD 中,满足AB //CD ,∠ABC =90°,AB =1,BC =√3,CD =2,将△BAC 沿AC 翻折至△PAC ,使得PD =2.(Ⅰ)求证:平面PAC ⊥平面ACD ;(Ⅱ)求直线CD 与平面PAD 所成角的正弦值.答案:(Ⅰ)证明见解析;(Ⅱ)√155. 分析:(Ⅰ)过B 作BO ⊥AC ,垂足为O ,连PO ,DO ,作DE ⊥AC ,垂足为E ,易得PO ⊥AC ,通过勾股定理可得PO ⊥OD ,即可得PO ⊥平面ACD ,进而可得结果;(Ⅱ)建立如图所示的空间直角坐标系,平面PAD 的法向量,利用向量法即可得结果.(Ⅰ)过B 作BO ⊥AC ,垂足为O ,连PO ,DO ,则PO ⊥AC ,作DE ⊥AC ,垂足为E ,则DE =√3,OE =12,DO =√132所以PO 2+DO 2=PD 2,即PO ⊥OD又AC ∩DO =O ,所以PO ⊥平面ACD ,又PO ⊂平面PAC ,所以平面PAC ⊥平面ACD ;(Ⅱ)以O 为坐标原点,OC ,BO 所在的直线为x ,y 轴建立空间直角坐标系 则A (−12,0,0),C (32,0,0),D (12,√3,0),P (0,0,√32), AD ⃑⃑⃑⃑⃑ =(1,√3,0),AP ⃑⃑⃑⃑⃑ =(12,0,√32) 设平面PAD 的法向量为n ⃑ =(a,b,c),则{AP ⃑⃑⃑⃑⃑ ⋅n ⃑ =12a +√32c =0AD ⃑⃑⃑⃑⃑ ⋅n ⃑ =a +√3b =0 取法向量n ⃑ =(√3,−1,−1),CD⃑⃑⃑⃑⃑ =(−1,√3,0) 设直线CD 与平面PAD 所成角为θ,则sinθ=|cos <CD ⃑⃑⃑⃑⃑ ,n ⃑ >|=√155.。

高中数学知识知识点总结(3篇)

高中数学知识知识点总结(3篇)

高中数学知识知识点总结(3篇)由于篇幅较长,以下是三篇高中数学知识点总结,每篇围绕一个主题展开,分别为“函数与导数”、“三角函数与平面向量”和“数列与不等式”。

【篇一:函数与导数】一、函数的概念与性质1. 函数的定义:设A、B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

2. 函数的性质:单调性、奇偶性、周期性、对称性。

3. 反函数:如果函数f:A→B满足对B中任意元素y,都存在唯一元素x∈A,使得f(x)=y,则称f为可逆函数,记作f^{1}。

二、导数与微分1. 导数的定义:设函数y=f(x)在点x0处有定义,如果极限存在,则称函数y=f(x)在点x0处可导,并称该极限为函数y=f(x)在点x0处的导数,记作f'(x0)。

2. 导数的性质:线性、乘积、商、链式法则。

3. 微分:设函数y=f(x)在某区间内有定义,如果对于该区间内的任意一点x,都存在一个常数k,使得f(x+Δx)f(x)=kΔx+o(Δx),则称函数f(x)在该点可微,记作dy=f'(x)dx。

三、导数的应用1. 求极值:一阶导数为0的点可能是极值点,通过二阶导数判断是极大值还是极小值。

2. 求最值:闭区间上的连续函数在极值点和区间端点处取得最值。

3. 求切线方程:已知曲线y=f(x)在点(x0,y0)处的导数f'(x0),则该点处的切线方程为yy0=f'(x0)(xx0)。

4. 求曲率:曲率是描述曲线弯曲程度的量,曲率越大,曲线弯曲程度越大。

【篇二:三角函数与平面向量】一、三角函数1. 角的定义:锐角、直角、钝角、周角。

2. 三角函数的定义:正弦、余弦、正切、余切、正割、余割。

3. 三角函数的周期性、奇偶性、单调性。

4. 三角恒等变换:和差公式、倍角公式、半角公式、积化和差、和差化积。

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)高中数学知识点大全一、集合、简易逻辑1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。

二、函数1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。

四、三角函数1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。

五、平面向量1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面向量的坐标表示;5、线段的定比分点;6、平面向量的数量积;7、平面两点间的距离;8、平移。

六、不等式1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含绝对值的不等式。

七、直线和圆的方程1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的`一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简单线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。

八、圆锥曲线1、椭圆及其标准方程;2、椭圆的简单几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简单几何性质;6、抛物线及其标准方程;7、抛物线的简单几何性质。

高中数学知识点大全

高中数学知识点大全

高中数学知识大全
高中数学知识大全
一、集合与逻辑
1.集合的概念与表示
2.集合的运算
3.命题与逻辑连接词
4.充分条件与必要条件
5.全称量词与存在量词
二、函数与方程
1.函数的定义与性质
2.初等函数
3.函数的零点与方程的根
4.二次函数与一元二次方程
5.函数图象的变换与对称
6.抽象函数与分段函数
7.函数的导数与极值
8.函数的单调性与最值
9.函数图象的拟合与插值
三、不等式与数列
1.不等式的概念与性质
2.一元二次不等式及其解法
3.均值不等式及其应用
4.等差数列与等比数列的概念与性质
5.数列的通项公式与求和公式
6.数列的递推公式与迭代公式
7.数列的极限及其应用
8.裂项相消法与倒序相加法
9.数学归纳法及其应用
四、三角函数与平面向量
1.三角函数的概念与性质
2.三角恒等变换及其应用
3.正弦定理与余弦定理及其应用
4.平面向量的概念与运算
5.向量的数量积与向量夹角及其应用
6.向量的应用及其综合题解题思路
7.正弦定理与余弦定理的综合运用
8.平面向量的数量积及其应用
9.解三角形的方法及其应用
10.三角函数的图象变换及其应用
11.正切函数及其应用
12.三角恒等变换的综合运用
13.向量的应用题解题思路与方法探讨
14.解三角形中的范围问题及其求解方法
15.正弦定理与余弦定理中的边角转换关系及其应用
16.平面向量的坐标运算及其应用题解题思路探索。

高中数学知识知识点总结2024

高中数学知识知识点总结2024一、集合与函数1. 集合的基本概念集合是数学中最基本的概念之一,表示具有某种共同属性的事物的全体。

常见的集合表示方法有列举法和描述法。

列举法:将集合中的元素一一列举出来,如 \( A = \{1, 2, 3\} \)。

描述法:用集合中元素的共同属性来表示,如 \( B = \{x \mid x > 0\} \)。

2. 集合的运算集合的运算包括并集、交集、补集和差集。

并集:\( A \cup B = \{x \mid x \in A \text{ 或 } x \in B\} \)。

交集:\( A \cap B = \{x \mid x \in A \text{ 且 } x \in B\} \)。

补集:\( C_U A = \{x \mid x \in U \text{ 且 } x \notin A\} \),其中 \( U \) 是全集。

差集:\( A B = \{x \mid x \in A \text{ 且 } x \notin B\} \)。

3. 函数的概念函数是数学中描述两个变量之间依赖关系的重要工具。

函数的定义域、值域和对应关系是函数的三要素。

定义域:函数中自变量 \( x \) 的取值范围。

值域:函数中因变量 \( y \) 的取值范围。

对应关系:自变量 \( x \) 和因变量 \( y \) 之间的对应法则。

4. 常见函数类型一次函数:\( y = ax + b \),图像为一条直线。

二次函数:\( y = ax^2 + bx + c \),图像为一条抛物线。

指数函数:\( y = a^x \),其中 \( a > 0 \) 且 \( a \neq 1 \)。

对数函数:\( y = \log_a x \),其中 \( a > 0 \) 且 \( a \neq 1 \)。

三角函数:包括正弦函数 \( y = \sin x \)、余弦函数 \( y = \cos x \) 和正切函数 \( y = \tan x \)。

高中数学必修二第九章统计知识点归纳总结(精华版)(带答案)

高中数学必修二第九章统计知识点归纳总结(精华版)单选题1、下列问题中,最适合用简单随机抽样方法抽样的是()A.某县从该县中、小学生中抽取200人调查他们的视力情况B.从15种疫苗中抽取5种检测是否合格C.某大学共有学生5600人,其中专科生有1300人、本科生3000人、研究生1300人,现抽取样本量为280的样本调查学生利用因特网查找学习资料的情况,D.某学校兴趣小组为了了解移动支付在大众中的熟知度,要对15−75岁的人群进行随机抽样调查答案:B解析:依次判断每个选项的合适的抽样方法得到答案.A. 中学,小学生有群体差异,宜采用分层抽样;B. 样本数量较少,宜采用简单随机抽样;C. 中专科生、本科生、研究生有群体差异,宜采用分层抽样;D. 年龄对于移动支付的了解有较大影响,宜采用分层抽样;故选:B.小提示:本题考查了抽样方法,意在考查学生对于抽样方法的掌握情况.2、10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有()A.a>b>c B.b>c>a C.c>a>b D.c>b>a答案:D分析:将数据从小到大重新排列(也可以是从大到小),计算出a,b,c的值即可比较大小.解:重新排列得:10,12,14,14,15,15,16,17,17,17.则有:a=110×(15+17+14+10+15+17+17+16+14+12)=14.7,b=12×(15+15)=15,c=17.所以c>b>a 故选:D.3、下列调查方式合适的是()A.为了了解一批炮弹的杀伤半径,采用普查的方式B.为了了解一批玉米种子的发芽率,采用普查的方式C.为了了解一条河流的水质,采用抽样调查的方式D.为了了解一个寝室的学生(共6个人)每周体育锻炼的时间,采用抽样调查的方式答案:C分析:根据普查和抽样调查的特征,即可求解.个体数少且易于完成的可以采用普查的方式;个体数量多,工作量大,或破坏性大,不易完成的可以采用抽样调查的方式.故选:C.4、为保障食品安全,某监管部门对辖区内一家食品企业进行检查,现从其生产的某种产品中随机抽取100件作为样本,并以产品的一项关键质量指标值为检测依据,整理得到如下的样本频率分布直方图.若质量指标值在[25,35)内的产品为一等品,则该企业生产的产品为一等品的概率约为()A.0.38B.0.61C.0.122D.0.75答案:B×组距,即可得解.分析:利用频率=频率组距根据频率分布直方图可知,质量指标值在[25,35)内的概率P=(0.080+0.042)×5=0.122×5=0.61故选:B5、某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论错误的是()注:90后指1990年及以后出生,80后指1980−1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后一定比80前多D.互联网行业中从事技术岗位的人数90后一定比80后多答案:D解析:根据整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,对四个选项逐一分析,即可得出正确选项.对于选项A,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术和运营岗位的人数占的比分别为39.6%和17%,则“90后”从事技术和运营岗位的人数占总人数的56%×(39.6%+17%)≈31.7%.“80前”和“80后”中必然也有从事技术和运营岗位的人,则总的占比一定超过三成,故选项A正确;对于选项B,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术岗位的人数占的比为39.6%,则“90后”从事技术岗位的人数占总人数的56%×39.6%≈22.2%.“80前”和“80后”中必然也有从事技术岗位的人,则总的占比一定超过20%,故选项B正确;对于选项C,“90后”从事运营岗位的人数占总人数的比为56%×17%≈9.5%,大于“80前”的总人数所占比3%,故选项C正确;选项D,“90后”从事技术岗位的人数占总人数的56%×39.6%≈22.2%,“80后”的总人数所占比为41%,条件中未给出从事技术岗位的占比,故不能判断,所以选项D错误.故选:D.小提示:关键点点睛:本题考查利用扇形统计图和条形统计图解决实际问题,解本题的关键就是利用条形统计图中“90后”事互联网行业岗位的占比乘以“90后”所占总人数的占比,再对各选项逐一分析即可.6、下表是某校校级联欢晚会比赛中12个班级的得分情况,则得分的30百分位数是()答案:D分析:根据百分位数的定义求解即可.12×30%=3.6,把12个班级的得分按照从小到大排序为7,7,8,9,9,10,10,10,11,13,13,14,可得30百分位数是第4个得分数,即9.故选:D7、为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间答案:C分析:根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.02+0.04=0.06=6%,故A正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.04+0.02×3=0.10=10%,故B正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.10+0.14+0.20×2=0.64=64%> 50%,故D正确;该地农户家庭年收入的平均值的估计值为3×0.02+4×0.04+5×0.10+6×0.14+7×0.20+8×0.20+ 9×0.10+10×0.10+11×0.04+12×0.02+13×0.02+14×0.02=7.68(万元),超过6.5万元,故C错误.综上,给出结论中不正确的是C.故选:C.小提示:本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的×组距.估计值.注意各组的频率等于频率组距8、下列调查方式合适的是().A.为了了解一批头盔的抗压能力,采用普查的方式B.为了了解一批玉米种子的发芽率,采用普查的方式C.为了了解一条河流的水质,采用抽查的方式D.为了了解一个寝室的学生(共5个人)每周体育锻炼的时间,采用抽查的方式答案:C分析:根据抽查和普查的特点,对每个选项进行逐一分析,即可判断和选择.对于选项A,采用普查的方式测试头盔的抗压能力,成本较高,不适合,故A错误;对于选项B,采用普查的方式测试玉米种子的发芽率,较为繁琐且工作量较大,不适合,故B错误;对于选项C,采用抽查的方式了解河流的水质,适合,故C正确;对于选项D,为了了解5个人每周体育锻炼的时间,适合采用普查的方式,故D错误.故选:C.多选题9、有一组互不相等....的数组成的样本数据x1、x2、⋯、x9,其平均数为a(a≠x i,i=1、2、⋯、9),若插入一个数a,得到一组新的数据,则()A.两组样本数据的平均数相同B.两组样本数据的中位数相同C.两组样本数据的方差相同D.两组样本数据的极差相同答案:AD分析:利用平均数公式可判断A选项;利用中位数的定义可判断B选项;利用方差公式可判断C选项;利用极差的定义可判断D选项.由已知可得x1+x2+⋯+x9=9a.(9a+a)=a,与原数据的平均数相等,A对;对于A选项,新数据的平均数为110对于B选项,不妨设x1<x2<⋯<x9,则原数据的中位数为x5,(max{a,x4}+x5)<x5,若a<x5,则中位数为12(x5+min{a,x6})>x5,B错;若a>x5,则中位数为12[(x1−a)2+(x2−a)2+⋯(x9−a)2+(a−a)2]对于C选项,新数据的方差为s′2=110[(x1−a)2+(x2−a)2+⋯(x9−a)2]=s2,C错;<19对于D选项,不妨设x1<x2<⋯<x9,则x1<a<x9,故新数据的极差仍为x9−x1,D对.故选:AD.10、某中学举行安全知识竞赛,对全校参赛的1000名学生的得分情况进行了统计,把得分数据按照[50,60),[60,70),[70,80),[80,90),[90,100]分成了5组,绘制了如图所示的频率分布直方图,根据图中信息,下列说法正确的是()A.这组数据的极差为50B.这组数据的众数为76D.这组数据的第75百分位数为85C.这组数据的中位数为5407答案:CD分析:根据频率分布直方图一一分析即可.解:对于A:由频率分布图无法得到这组数据的最大值和最小值,故这组数据的极差无法准确判断,故A错误;(70+80)=75,故B错误;数据的众数为12(0.005+0.02+0.035)×10=0.6>0.5,(0.005+0.02)×10=0.25<0.5,所以中位数位于[70,80)之间,设中位数为x,则(0.005+0.02)×10+(x−70)×0.035=0.5,解得x=540,7,故C正确;即这组数据的中位数为5407∵(0.005+0.02+0.035)×10=0.6,(0.005+0.02+0.035+0.03)×10=0.9,故估计第75分位数是80+0.75−0.6×10=85,故D正确;0.3故选:CD11、某环保局对辖区内甲、乙、丙、丁四个地区的环境治理情况进行检查督导,若连续10天,每天空气质量指数(单位:μg/m 3)不超过100,则认为该地区环境治理达标,否则认为该地区环境治理不达标.根据连续10天检查所得数据的数字特征推断,环境治理一定达标的地区是( ) A .甲地区:平均数为80,方差为40B .乙地区:平均数为50,众数为40 C .丙地区:中位数为50,极差为60D .丁地区:极差为10,80%分位数为90 答案:AD分析:根据平均数、方差、众数、中位数、极差、百分位数的知识对选项进行分析,从而确定正确选项. 设每天的空气质量指数为x i (i =1,2,⋯,10),则方差S 2=110∑(x i −x )210i=1. 对于A 选项,由110∑(x i −80)2=4010i=1,得∑(x i −80)210i=1=400,如果这10天中有1天的空气质量指数超过100,则必有∑(x i −80)210i=1>400矛盾, 所以这10天每天的空气质量指数都不超过100,A 正确.对于B 选项,有8天为40,有1天为150,有1天为30,此时:平均数为50,众数为40, 但该地区环境治理不达标,所以B 选项错误.对于C 选项,第1天为110,后面9天为50,此时中位数为50,极差为60, 但该地区环境治理不达标,所以C 选项错误.对于D 选项,如果最大值超过100,根据极差为10,则最小值超过90, 这与80%分位数为90矛盾,故最大值不超过100,D 正确. 故选:AD 填空题12、已知一组数据2x 1+4,2x 2+4,2x 3+4,2x 4+4,的平均数和方差均为4,则x 1+1,x 2+1,x 3+1,x 4+1的方差为______________. 答案:1分析:根据2x 1+4,2x 2+4,2x 3+4,2x 4+4,的平均数和方差均为4,得到x 1+x 2+x 3+x 4=0,x 12+x 22+x 32+x 42=4,从而求出x 1+1,x 2+1,x 3+1,x 4+1的平均数和方差.由题意得:2x 1+4+2x 2+4+2x 3+4+2x 4+4=16,解得:2x1+2x2+2x3+2x4=0,x1+x2+x3+x4=0,且14[(2x1+4−4)2+(2x2+4−4)2+(2x3+4−4)2+(2x4+4−4)2]=4,解得:x12+x22+x32+x42=4,故x1+1,x2+1,x3+1,x4+1的平均数为14(x1+1+x2+1+x3+1+x4+1)=1,故方差为14[(x1+1−1)2+(x2+1−1)2+(x3+1−1)2+(x4+1−1)2]=14(x12+x22+x32+x42)=1.所以答案是:113、某公司青年、中年、老年员工的人数之比为10∶8∶7,从中抽取100名作为样本,若每人被抽中的概率是0.2,则该公司青年员工的人数为__________.答案:200分析:先根据分层抽样的方法计算出该单位青年职工应抽取的人数,进而算出青年职工的总人数.由题意,从中抽取100名员工作为样本,需要从该单位青年职工中抽取1010+8+7×100=40(人).因为每人被抽中的概率是0.2,所以青年职工共有400.2=200(人).所以答案是:200.14、我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.答案:0.98.分析:本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.由题意得,经停该高铁站的列车正点数约为10×0.97+20×0.98+10×0.99=39.2,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.240=0.98.小提示:本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.解答题15、某学校组织“数学文化”知识竞赛,分为初赛和决赛,有400名学生参加知识竞赛的初赛(满分150分),根据初赛成绩依次分为[80,90),[90,100),[100,110),[110,120),[120,130),[130,140]这六组,得到如图所示的频率分布直方图.(1)求本次初赛成绩的平均数;(每组数据以区间中点值为代表)(2)若计划决赛人数为80,估计参加决赛的最低分数线.答案:(1)114.5(2)127.5分析:(1)根据矩形的面积之和为1计算出m,每个矩形的面积乘以对应的区间中点值再将每个积相加就得平均数.(2)设80%分位数为m(120<m<130),列方程解出m即可.(1)由题意有(0.005+0.010+0.020+m+0.020+0.015)×10=1,解得m=0.030.本次初赛成绩的平均数为85×0.05+95×0.1+105×0.2+115×0.3+125×0.2+135×0.15=114.5.(2)=0.8,所以决赛成绩的最低分为80%分位数.因为1−80400前四个矩形的面积之和为0.05+0.1+0.2+0.3=0.65,前五个矩形的面积之和为0 .05+0.1+0.2+0.3+ 0.2=0.85.设80%分位数为m(120<m<130),则0.65+(m−120)×0.02=0.8,解得m=127.5.因此,若计划决赛人数为80,估计参加决赛的最低分数线为127.5.。

高中数学函数知识点总结(精华版)知识分享

高中数学函数知识点总结(精华版)知识分

高中数学函数知识点总结(精华版)知识分享
1. 函数的定义和性质
- 定义:函数是一个将各个元素从一个集合映射到另一个集合的规则。

- 函数的性质:单调性、奇偶性、周期性等。

2. 基本函数
- 幂函数:y = x^n,n为常数,图像为直线或曲线。

- 三角函数:包括正弦函数、余弦函数、正切函数等,图像具有周期性。

- 指数函数:y = a^x,a为正常数,图像单调递增或递减。

- 对数函数:y = log_a(x),a为正常数,图像单调递增或递减。

3. 函数的运算与变换
- 四则运算:加法、减法、乘法、除法。

- 复合运算:由两个或多个函数构成一个新的函数。

- 反函数:原函数与定义域互为值域的函数。

- 平移、压缩、翻折等函数的变换。

4. 函数的图像与性质
- 函数图像的绘制和分析方法。

- 函数的最值、零点、极值等特性。

5. 函数的应用
- 函数在物理、经济等领域的应用。

- 函数在数学建模中的应用。

6. 解函数方程
- 求函数方程的解法与步骤。

以上是高中数学函数知识点的精华总结和知识分享。

掌握这些知识能够帮助学生更好地理解和应用函数概念,提升数学能力。

注:本文档内容仅为总结分享,并不保证所有内容的正确性,请酌情参考。

高中数学基础知识点总结归纳整理

高中数学基础知识点总结归纳整理引言高中数学是学生逻辑思维和解决问题能力培养的重要阶段。

为了帮助学生更好地掌握和复习高中数学知识,本文将对高中数学的主要基础知识点进行系统的总结归纳。

第一部分:代数基础1.1 基本概念数的分类:实数、复数、有理数和无理数代数式的运算:加减乘除和乘方1.2 方程与不等式一元一次方程和不等式的解法一元二次方程的解法和判别式的应用1.3 函数函数的概念:定义域、值域、映射基本初等函数:一次函数、二次函数、指数函数、对数函数和三角函数第二部分:几何基础2.1 平面几何三角形的分类和性质:等边三角形、等腰三角形和直角三角形四边形的分类和性质:平行四边形、矩形、菱形和正方形2.2 解析几何坐标系的引入:平面直角坐标系、极坐标系直线和圆的方程,以及它们的综合应用2.3 空间几何空间图形的基本概念:点、线、面的位置关系棱柱、棱锥和球体的表面积和体积计算第三部分:数列与级数3.1 数列的概念等差数列和等比数列的定义和性质等差数列和等比数列的通项公式和求和公式3.2 级数级数的概念:收敛和发散级数求和:几何级数和调和级数第四部分:概率与统计4.1 概率论基础事件的概率,包括古典概型和几何概型条件概率和独立事件的概念4.2 统计基础数据的收集、整理和描述均值、中位数和众数的计算第五部分:微积分初步5.1 极限与导数极限的概念和运算法则导数的定义和基本导数公式5.2 积分不定积分和定积分的概念积分的基本技巧和应用第六部分:综合应用6.1 函数与方程的综合应用函数与方程结合的问题6.2 几何与代数的综合应用几何与代数结合的问题6.3 数列与极限的综合应用数列与极限结合的问题结语高中数学基础知识点的掌握对于学生的数学素养和未来学术发展至关重要。

通过系统地复习和理解每个知识点,学生可以为进一步的数学学习打下坚实的基础。

希望本文档的总结能够帮助学生构建完整的知识体系,提高解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修+选修知识点归纳 引言

1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。

选修课程: 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系的扩充与复数 选修2—3:计数原理、随机变量及其分布列,统计案例。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。

,,,,,,

必修1数学知识点 第一章:集合与函数概念 §1.1.1、集合 1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。 2、只要构成两个集合的元素是一样的,就称这两个集合相等。 3、常见集合:正整数集:自然数集: 整数集:,有理数集:,实数集:. 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。记作. 2、如果集合,但存在元素,且,则称集合A是集合B的真子集.记作:AB. 3、把不含任何元素的集合叫做空集.记作:.并规定:空集合是任何集合的子集. 4、如果集合A中含有n个元素,则集合A有个子集,个真子集,非空子集有个; 非空的真子集有个. §1.1.3、集合间的基本运算 1、一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作:. 2、一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作:. 3、全集、补集: §1.2.1、函数的概念 1、设A、B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合A到集合B的一个函数,记作:.

2、一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,

并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法 1、函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 (1)定义法:设那么 上是增函数; 上是减函数. 步骤:取值—作差—变形—定号—判断 格式:解:设且,则:=… (2)等价表述:设那么

上是增函数; 上是减函数.

(3)导数法:设函数在某个区间内可导,若,则为增函数; 若,则为减函数. §1.3.2、奇偶性 1、一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为偶函数.偶函数图象关于轴对称. 2、一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为奇函数.奇函数图象关于原点对称. (注:奇偶函数的前提条件是:定义域必须关于原点对称) 奇偶函数间的关系: (1)、奇·偶=奇;(2)、奇·奇=偶; (3)、偶·偶=偶;(4)、奇±奇=奇函数 (5)、偶±偶=偶;(6)、奇±偶=非奇非偶函数

知识链接:函数与导数 1、函数在点处的导数的几何意义: 函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是. 2、几种常见函数的导数 ①;②; ③; ④;

⑤; ⑥; ⑦;⑧ 3、导数的运算法则 (1). (2).

(3). 4、复合函数求导法则 复合函数的导数和函数的导数间的关系为,即对的导数等于对的导数与对的导数的乘积.

解题步骤:分层—层层求导—作积还原.

5、函数的极值 (1)极值定义: 极值是在附近所有的点,都有<,则是函数的极大值; 极值是在附近所有的点,都有>,则是函数的极小值. (2)判别方法: ①如果在附近的左侧>0,右侧<0,那么是极大值; ②如果在附近的左侧<0,右侧>0,那么是极小值. 6、求函数的最值 (1)求在内的极值(极大或者极小值) (2)将的各极值点与比较,其中最大的一个为最大值,最小的一个为极小值。 注:极值是在局部对函数值进行比较(局部性质);最值是在整体区间上对函数值进行比较(整体性质)。

第二章:基本初等函数(Ⅰ)

§2.1.1、指数与指数幂的运算 1、一般地,如果,那么叫做的次方根。其中. 2、当为奇数时,; 当为偶数时,. 3、我们规定:

⑴ ;

⑵; 4、运算性质: ⑴; ⑵; ⑶ 注:上有理指数幂的运算性质,对实数指数幂都适用. §2.2.1、对数与对数运算 1、指数与对数互化式:; 2、对数恒等式:. 3、基本性质:,. 4、运算性质:当时: ⑴;

⑵; ⑶.

5、换底公式: .

6、重要公式: 7、倒数关系:.

§2..2.2、指数函数、对数函数与幂函数的性质

由指数、对数与幂的运算性质得到对应函数的性质: (1)正比例函数,. (2)指数函数,. (3)对数函数. (4)幂函数,.

表1 指数函数 对数数函数

定义域 值域

图象

性质 过定点 过定点 减函数 增函数 减函数 增函数

表2 幂函数 奇函数 偶函数 第一象限性质 减函数 增函数 过定点

第三章:函数的应用 §3.1.1、方程的根与函数的零点 1、方程有实根 函数的图象与轴有交点 函数有零点. 2、零点存在性定理: 如果函数在区间上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点,即存在,使得,这个也就是方程的根. §3.1.2、用二分法求方程的近似解 1、掌握二分法. §3.2.1、几类不同增长的函数模型 §3.2.2、函数模型的应用举例

必修2数学知识点 第一章:空间几何体 1、空间几何体的结构 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

⑵柱、锥、台、球的结构特征 棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧

棱平行且相等;平行于底面的截面是与底面全等的多边形。

棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多

面体叫做棱台。 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

圆柱: 以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

圆台:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 球体:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变; ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

相关文档
最新文档