人教版九年级上册《一元二次方程》测试卷(含有答案解析)

合集下载

(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试卷(答案解析)(1)

(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试卷(答案解析)(1)

一、选择题1.一次围棋比赛,参赛的每两位棋手之间都要比赛一场,根据赛程计划共安排45场比赛,设本次比赛共有x 个参赛棋手,则可列方程为( )A .12x (x ﹣1)=45B .12x (x+1)=45 C .x (x ﹣1)=45D .x (x+1)=45 2.若x m =是方程210x x +-=的根,则22020m m ++的值为( )A .2022B .2021C .2019D .2018 3.欧几里得的《原本》记载,方程x 2+ax =b 2的图解法是:画Rt △ABC ,使∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =BC .则该方程的一个正根是( )A .AC 的长B .CD 的长C .AD 的长 D .BC 的长 4.下列方程中,是一元二次方程的是( ) A .12x += B .21x y += C .243x x -= D .35-=xy 5.学校准备举办“和谐校园”摄影作品展黛,现要在一幅长30cm ,宽20cm 的矩形作品四周外围上宽度相等的彩纸,并使彩纸的面积恰好与原作品面积相等,设彩纸的宽度为cm x ,则x 满足的方程是( )A .()()3022023020=++⨯x xB .()()30203020++=⨯x xC .()()30220223020--=⨯⨯x xD .()()30220223020++=⨯⨯x x 6.定义运算:21a b ab ab =--☆.例如:23434341=⨯-⨯-☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根 7.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( )A .10B .12C .14D .12或14 8.新冠肺炎传染性很强,曾有2人同时患上新冠肺炎,在一天内一人平均能传染x 人,经过两天传染后128人患上新冠肺炎,则x 的值为( )A .10B .9C .8D .7 9.关于x 的一元二次方程2x 2x m 0-+=无实数根,则实数m 的取值范围是( ) A .1m < B .m 1≥ C .1m D .1m 10.下列关于一元二次方程,说法正确的是( )A .方程2450x x --=配方变形为2(2)2x -=B .方程2x x =的解为1x =C .关于x 的方程2230ax x +-=有实数根,则13a -D .方程221x x -=的解为121x x ==11.下列说法不正确的是( )A .打开电视剧,电视里播放《小猪佩奇》是偶然事件B .了解一批灯泡的使用寿命,适合抽样调查C .一元二次方程2210x x -+=只有一个根D .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36S =甲,20.54S =乙,甲的射击成绩稳定 12.下列一元二次方程没有实数根的是( )A .2-20x =B .2-20x x =C .210x x ++=D .()()-1-30x x =二、填空题13.设m 、n 分别为一元二次方程2370x x +-=的两个实数根,则2mn m n --=______.14.一个等腰三角形的腰和底边长分别是方程28120x x -+=的两根,则该等腰三角形的周长是________.15.若关于x 的一元二次方程x 2﹣2kx +k 2﹣k +1=0有两个不相等的实数根,则实数k 的取值范围是_____.16.已知关于x 的一元二次方程m 2x ﹣nx ﹣m ﹣3=0,对于任意实数n 都有实数根,则m 的取值范围是_____.17.已知m ,n 是一元二次方程2410x x -=+的两实数根,则11m n+=_________. 18.用换元法解方程221x x -﹣21x x -=1,设y =21x x-,那么原方程可以化为关于y 的整式方程为_____.19.对于有理数a ,b ,定义{}min ,a b :当a b ≥时,{}min ,a b b =;当a b ≤时,{}min ,a b a =.若{}22min 40,12440m n m n -+--=,则n m 的值为______. 20.经过两年的连续治理,某城市的大气环境有了明显改善,其每月每平方公里的降尘量从50吨下降到40.5吨,则平均每年下降的百分率是 _________%.三、解答题21.阅读下面材料,并完成问题.任意给定一个矩形A ,若存在另一个矩形B ,使它的周长和面积分别是矩形A 的一半,则称矩形,A B 是“兄弟矩形”.探究:当矩形A 的边长分别为7和1时,是否存在A 的“兄弟矩形”B ?小亮同学是这样探究的:设所求矩形的两边分别是x和y,由题意,得472 x yxy+=⎧⎪⎨=⎪⎩①②由①,得4y x=-,③把③代入②,得7(4)2x x-=,整理,得22870-+=x x.24645680b ac-=-=>,A∴的“兄弟矩形”B存在.(1)若已知矩形A的边长分别为3和2,请你根据小亮的探究方法,说明A的“兄弟矩形”B是否存在?(2)若矩形A的边长为m和n,当A的“兄弟矩形”B存在时,求,m n应满足的条件.22.2020年,受新冠疫情影响,众多学校开展了“停课不停学”的线上教学活动,因此,手写板的需求量大幅上升.某网店抓住时机销售A,B两款手写板,A型手写板的单价为360元,B型手写板的单价为240元.(1)商家在1月共销售两种型号手写板600个,若A型手写板的销售额不低于B型手写板销售额的3倍,求1月A型手写板至少售出多少个?(2)该商家在2月继续销售这两种型号的手写板并适当的进行了调整,A型手写板的售价降低了13a%.B型手写板的销价不变.结果A型手写板的销售量在1月最低销售量的基础上增加了43a%,B型手写板的销售量在一月保证A最低销量的基础上增加了15a%,结果2月两种手写板的总销售额比1月两种手写板的总销售额增加了35a%,求a的值.23.某住宅小区在住宅建设时留下一块1248平方米的空地,准备建一个矩形的露天游泳池,设计如图所示,游泳池的长是宽的2倍,在游泳池的前侧留一块5米宽的空地,其它三侧各保留2米宽的道路及1米宽的绿化带.请你计算出游泳池的长和宽.24.阅读下列材料:已知实数x,y满足()()22221163x y x y+++-=,试求22x y+的值.解:设22x y a+=,则原方程变为(1)(1)63a a+-=,整理得2163a-=,264a=,根据平方根意义可得8a=±,由于220x y+,所以可以求得228x y+=.这种方法称为“换元法”,用一个字母去代替比较复杂的单项式、多项式,可以达到化繁为简的目的. 根据阅读材料内容,解决下列问题:(1)已知实数x ,y 满足(223)(223)27x y x y +++-=,求x y +的值.(2)已知a ,b 满足方程组22223212472836a ab b a ab b ⎧-+=⎨++=⎩;求112a b +的值; (3)填空:已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是95x y =⎧⎨=⎩,则关于x ,y 的方程组21111122222222a x a x b y c a a x a x b y c a ⎧-+=-⎨-+=-⎩的解是_______. 25.已知关于x 的方程22(31)220x k x k k -+++=.(1)若方程有两个相等实数根,求k 的值;(2)若等腰三角形ABC 的底边长为3,两腰恰好是这个方程的两个根,求此三角形的周长.26.如图,抛物线与x 轴交于点1,0A ,()3,0B ,与y 轴交于点()0,3C .(1)求二次函数的表达式及顶点坐标;(2)若点P 为抛物线上的一点,且1ABP S ∆=,求点P 的坐标;;(3)连接BC ,在抛物线的对称轴上是否存在一点E ,使BCE ∆是直角三角形?若存在,请直接写出点E 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】关系式为:棋手总数×每个棋手需赛的场数÷2=45,把相关数值代入即可.【详解】解:本次比赛共有x 个参赛棋手, 所以可列方程为:12x (x -1)=45. 故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2. 2.B解析:B【分析】利用一元二次方程根的定义,代入变形计算即可.【详解】∵x m =是方程210x x +-=的根,∴210m m +-=,∴21m m +=,∴22020m m ++=2021,故选B .【点睛】本题考查了一元二次方程根的定义,熟练把方程的根转化为所含字母的一元二次方程是解题的关键.3.C解析:C【分析】在Rt ABC 中,由勾股定理可得222AC BC AB +=,结合AB AD BD =+,,2a ACb BD BC ===,即可得出22AD aAD b +=,进而可得出AD 的长是方程22x ax b +=的一个正根.【详解】在Rt ABC 中,由勾股定理可得222AC BC AB +=,2a AC b BD BC === 22222222a a a b AD AD aAD ⎛⎫⎛⎫⎛⎫∴+=+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴22AD aAD b +=22AD aAD b +=与方程22x ax b +=相同,且AD 的长度是正数∴AD 的长是方程22x ax b +=的一个正根.故选:C .【点睛】本题考查了一元二次方程的应用以及勾股定理,利用勾股定理及各边的长得出22AD aAD b +=是解题关键.4.C解析:C【分析】只含有一个未知数,并且未知数的最高次数是2的方程是一元二次方程,根据定义解答即可.【详解】A 、是一元一次方程,不符合题意;B 、是二元一次方程,不符合题意;C 、是一元二次方程,符合题意;D 、是二元二次方程,不符合题意;故选:C .【点睛】此题考查一元二次方程,熟记定义是解题的关键.5.D解析:D【分析】由彩纸的面积恰好与原画面面积相等,即可得出关于x 的一元二次方程,此题得解.【详解】解:依题意,得()()30220223020++=⨯⨯x x .故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.A解析:A【分析】根据新定义运算法则以及利用△>0可判断方程根的情况.【详解】解:由题意可知:1☆x=x 2-x-1=0,∴△=1-4×1×(-1)=5>0,∴有两个不相等的实数根故选:A .【点睛】本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型.7.B解析:B【分析】用因式分解法求得方程的根,后根据三角形三边关系判断三角形的存在性,后计算周长.【详解】∵212350-+=,x x∴(x-7)(x-5)=0,∴x=7或x=5;当x=7时,3+4=7,∴三角形不存在;当x=5时,3+4>5,∴三角形存在,∴三角形的周长为3+4+5=12;故选B.【点睛】本题考查了一元二次方程的因式分解求解法和三角形的存在性,熟练求方程的根,准确判断三角形的存在性是解题的关键.8.D解析:D【分析】根据两天后共有128人患上流感,列出方程求解即可.【详解】解:依题意得2+2x+x(2+2x)=128,解得x1=7,x2=-9(不合题意,舍去).故x值为7.故选:D.【点睛】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.9.D解析:D【分析】根据判别式的意义得到△=(-2)2-4m<0,然后解不等式即可.【详解】解:∵关于x的一元二次方程2x2x m0-+=无实数根,∴△=(-2)2-4m<0,解得m>1.故选:D .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.10.C解析:C【分析】根据一元二次方程的解法及一元二次方程根的判别式来判断即可【详解】解:A.用配方法解方程2450x x --=,245x x -=,24454x x -+=+,∴()229x -=,故A 不正确; B.用因式分解法解方程2x x =,20x x -=,()10x x -=,∴120,1x x ==,故B 不正确;C.∵ 关于x 的方程2230ax x +-=有实数根,∴当a=0,时,230x -=,方程有实根,当a 0≠时,()224a 30=-⨯-≥△ ,解得13a ≥-, 综上所述,若方程有实根时,则13a ≥-,故C 正确;D.解方程221x x -=, 22111x x -+=+,()212x +=,1x ∴+=,121,1x x ∴== ,故D 不正确;故选:C .【点睛】本题考查了解一元二次方程及一元二次方程根的判别式,正确理解一元二次方程的解法是解本题的关键,解题时运用了分类讨论思想.11.C【分析】根据必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差依次判断即可.【详解】解:A. 打开电视剧,电视里播放《小猪佩奇》是偶然事件,正确,不符合题意;B. 了解一批灯泡的使用寿命,适合抽样调查,正确,不符合题意;C. 一元二次方程2210x x-+=中,24440b ac∆=-=-=,有两个相等的实数根,故原说法错误,符合题意;D. 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36 S=甲,20.54S=乙,甲的射击成绩稳定,正确,不符合题意;故选:C.【点睛】本题考查必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差,注意当0∆=时,一元二次方程有两个相等的实数根.12.C解析:C【分析】直接利用根的判别式△=b2−4ac判断即可.【详解】解:A、△ =8>0,方程有两个不相等的实数根;B、△=4>0,,方程有两个不相等的实数根;C、△=−3<0,方程没有实数根;D、2430x x-+=,△=4>0,方程有两个不相等的实数根;故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.二、填空题13.-11【分析】根据一元二次方程根与系数的关系即可得出m+n=-3mn=-7将其代入中即可求出结论【详解】解:∵mn分别为一元二次方程的两个实数根∴m+n=-3mn=-7则故答案为:-11【点睛】本题解析:-11根据一元二次方程根与系数的关系即可得出m+n=-3,mn=-7,将其代入22()mn m n mn m n --=-+中即可求出结论.【详解】解:∵m ,n 分别为一元二次方程2370x x +-=的两个实数根,∴m+n=-3,mn=-7,则22()2(7)(3)14311mn m n mn m n =--=-+⨯---=-+=-.故答案为:-11.【点睛】本题考查了根与系数的关系,根据一元二次方程根与系数的关系得出m+n=-2,mn=-1是解题的关键.14.14【分析】运用因式分解法解一元二次方程求出两根因为三角形是等腰三角形分情况讨论:腰为2时和腰为6时再利用三角形三边关系验证是否符合题意即可求出周长;【详解】解:(x-2)(x-6)=0x1=2x2解析:14【分析】运用因式分解法解一元二次方程,求出两根,因为三角形是等腰三角形,分情况讨论:腰为2时和腰为6时,再利用三角形三边关系验证是否符合题意,即可求出周长;【详解】解:28120x x -+=,(x-2)(x-6)=0,x 1=2,x 2=6,当腰长为2时,三角形的三边为2,2,6,不符合三角形的三角关系,舍去;当腰长为6时,三角形的三边关系为6,6,2,符合三角形的三角关系,则周长为:6+6+2=14,故答案为:14.【点睛】本题考查因式分解解一元二次方程和三角形的三边关系,求解后验三角形的三边关系是解题的关键.15.k >1【分析】根据方程有两个不相等的实数根可得△=(2k )2﹣4(k2﹣k+1)>0求出k 的取值范围【详解】解:∵原方程有两个不相等的实数根∴△=b2﹣4ac =(2k )2﹣4(k2﹣k+1)=4k ﹣解析:k >1【分析】根据方程有两个不相等的实数根可得△=(2k )2﹣4(k 2﹣k +1)>0,求出k 的取值范围.【详解】解:∵原方程有两个不相等的实数根,∴△=b 2﹣4ac =(2k )2﹣4(k 2﹣k +1)=4k ﹣4>0,解得k>1;故答案为:k>1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.16.m>0或m≤-3【分析】把方程有实数根转型为根的判别式大于等于零根据n的任意性构造不等式求解即可【详解】∵关于x的一元二次方程m﹣nx﹣m﹣3=0对于任意实数n都有实数根∴△≥0且m≠0∴≥0∴≥0解析:m>0或m≤-3.【分析】把方程有实数根,转型为根的判别式大于等于零,根据n的任意性,构造不等式求解即可.【详解】∵关于x的一元二次方程m2x﹣nx﹣m﹣3=0,对于任意实数n都有实数根,∴△≥0,且m≠0,∴2()4(3)n m m-++≥0,∴22412n m m++≥0,∵对于任意实数n都有实数根,∴2412m m+≥0,∴30mm≥⎧⎨+≥⎩或30mm≤⎧⎨+≤⎩,∴m≥0或m≤-3,且m≠0,∴m>0或m≤-3,故答案为:m>0或m≤ -3.【点睛】本题考查了一元二次方程的根的判别式,熟练掌握根的判别式,并规范把问题转化为不等式组求解是解题的关键.17.4【分析】先由根与系数的关系求出m•n及m+n的值再把化为的形式代入进行计算即可【详解】是一元二次方程的两实数根故答案为:4【点睛】本题考查的是根与系数的关系将根与系数的关系与代数式变形相结合解题是解析:4【分析】先由根与系数的关系求出m•n及m+n的值,再把化为11m nm n mn++=的形式代入进行计算即可.【详解】m ,n 是一元二次方程2410x x -=+的两实数根,4,1m nm n , 11441m nm n mn. 故答案为:4【点睛】本题考查的是根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系为:x 1+x 2=−b a ,x 1•x 2=c a. 18.y2+y ﹣2=0【分析】可根据方程特点设y =则原方程可化为﹣y =1化成整式方程即可【详解】解:方程﹣=1若设y =把设y =代入方程得:﹣y =1方程两边同乘y 整理得y2+y ﹣2=0故答案为:y2+y ﹣2解析:y 2+y ﹣2=0 【分析】可根据方程特点设y =21x x-,则原方程可化为2y ﹣y =1,化成整式方程即可. 【详解】解:方程221x x -﹣21x x-=1, 若设y =21x x-, 把设y =21x x-代入方程得:2y ﹣y =1, 方程两边同乘y ,整理得y 2+y ﹣2=0.故答案为:y 2+y ﹣2=0.【点睛】本题主要考查用换元法解分式方程,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.19.36【分析】根据与40的大小再根据从而确定mn 的值即可得出的值【详解】解:∵∴40≤;∴∴(m+6)2+(n-2)2≤0∵(m+6)2+(n-2)20∴m+6=0n-2=0∴m=-6n=2∴故答案为解析:36【分析】根据22124-+--m n m n 与40的大小,再根据{}22min 40,12440m n m n -+--=,从而确定m ,n 的值即可得出n m 的值.【详解】解:∵{}22min 40,12440m n m n-+--=,∴40≤22124-+--m n m n ;∴22412400+-≤++m n n m∴(m+6)2+(n-2)2≤0,∵(m+6)2+(n-2)2≥0,∴m+6=0,n-2=0,∴m=-6,n=2,∴()2636=-=n m 故答案为:36.【点睛】本题考查了配方法的应用和非负数的性质.根据题意理解新定义的计算公式是解题的关键.20.10%【分析】设平均每年下降的百分率是x 利用原有降尘量乘以(1-平均每年下降的百分率)2=现在降尘量列出方程解答即可【详解】设平均每年下降的百分率是x 解得x1=01=10x2=19(舍去)答:平均每解析:10%【分析】设平均每年下降的百分率是x ,利用原有降尘量乘以(1-平均每年下降的百分率)2=现在降尘量,列出方程解答即可.【详解】设平均每年下降的百分率是x ,250(1)40.5x -=,解得x 1=0.1=10%,x 2=1.9(舍去),答:平均每年下降的百分率是10%,故答案为:10%.【点睛】此题考查一元二次方程的实际应用—增长率问题,正确理解题意并掌握增长率问题计算公式是解题的关键.三、解答题21.(1)不存在;(2)2260m mn n -+【分析】(1)按照小亮的方法,进行计算即可;(2)先根据小亮的方法列出方程组,转化为一元二次方程,利用根的判别式列不等式即可.【详解】解:(1)设所求矩形的两边分别是x 和y ,由题意,得5,23.x y xy ⎧+=⎪⎨⎪=⎩①②由①,得52y x =-,③ 把③代入②,得532x x ⎛⎫-=⎪⎝⎭, 整理,得22560x x -+=,242548230b ac -=-=-<,A ∴的“兄弟矩形”B 不存在.(2)设所求矩形的两边分别是x 和y , 由题意,得,2.2m n x y mn xy +⎧+=⎪⎪⎨⎪=⎪⎩①② 由①,得2m n y x +=-,③ 把③代入②,得22m n mn x x +⎛⎫-=⎪⎝⎭, 整理,得22()0x m n x mn -++=,22224()86b ac m n mn m mn n -=+-=-+,又,x y 都是正数,∴当2260m mn n -+时,A 的“兄弟矩形”B 存在.【点睛】本题考查了一元二次方程的应用以及根的判别式,解题的关键是熟练运用一元二次方程根的判别式.22.(1)A 型手写板至少售出400个;(2)60a =.【分析】(1)设A 型手写板售出x 个,则B 型手写板售出(600-x )个,根据题意列出不等式求解即可;(2)根据售价×销量=销售额,别表示出A 型手写板和B 型手写板的销售额相加等于总销售额列出方程求解即可.【详解】解:(1)设A 型手写板售出x 个,则B 型手写板售出(600-x )个,根据题意 3603240(600)x x ≥⨯-,解得400x ≥,故A 型手写板至少售出400个;(2)由(1)得,A 型手写板售出400个,B 型手写板售出200个,根据题意可知1413360(1%)400(1%)240200(1%)(400360200240)(1%)3355a a a a -⨯++⨯+=⨯+⨯+解得:60a =或0a =(舍去).所以60a =.【点睛】本题考查一元一次不等式的应用,一元二次方程的应用.根据题意找出等量或者不等量关系,列出方程(不等式)是解题关键.(2)中计算过程较为复杂,可先领%y a =,求出y 后,再求a .23.游泳池的长为40米,宽为20米.【分析】设游泳池的宽为x 米,而游泳池的长是宽的2倍,那么原来的空地的长为(2x +8),宽为(x +6),根据空地面积为1248平方米即可列出方程解题.【详解】解:设游泳池的宽为x 米,依题意得(x +6)(2x +8)=1248整理得x 2+10x ﹣600=0,解得x 1=20,x 2=﹣30(负数不合题意,舍去),∴x =20,2x =40.答:游泳池的长为40米,宽为20米.【点睛】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.24.(1)±3;(2)54±;(3)45x y =⎧⎨=⎩或25x y =-⎧⎨=⎩【分析】(1)设22x y a +=,则原方程变为(3)(3)27a a +-=,解之求得a 的值,继而可得x y +的值;(2)设a ²+4b ²=x ,ab=y ,可将原方程组变形为二元一次方程组,解出x 、y 的值再代入即可.(3)将原方程组变为21112222(1)(1)a x b y c a x b y c ⎧-+=⎨-+=⎩,由题意得出2(1)95x y ⎧-=⎨=⎩,即可得出答案. 【详解】解:(1)设22x y a +=,则原方程变为(3)(3)27a a +-=,整理,得:2927a -=,即236a =,解得:6a =±,则226x y +=±,3x y ∴+=±;(2)令224a b x +=,ab y =,则原方程变为:3247236x y x y -=⎧⎨+=⎩,解之得:172x y =⎧⎨=⎩, ∴22417a b +=,2ab =,∴()22224417825a b a ab b +=++=+=, ∴25a b +=±, ∴1125224b a a b ab ++==±; (3)由方程组21111122222222a x a x b yc a a x a x b y c a ⎧-+=-⎨-+=-⎩,得21111122222222a x a x a b y c a x a x a b y c ⎧-++=⎨-++=⎩, 整理,得:21112222(1)(1)a x b y c a x b y c ⎧-+=⎨-+=⎩, 方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是95x y =⎧⎨=⎩, ∴方程组21112222(1)(1)a x b y c a x b y c ⎧-+=⎨-+=⎩的解是:2(1)95x y ⎧-=⎨=⎩, 13x ∴-=±,且5y =,解得:45x y =⎧⎨=⎩或25x y =-⎧⎨=⎩. 【点睛】本题主要考查换元法解方程、方程组及因式分解,根据方程和代数式的特点设出合适的新元是解题的关键.25.(1)1;(2)7【分析】(1)计算方程的根的判别式,令△=b 2-4ac=0,即可求出k 的值;(2)先将k=1代入方程,得到x 2-4x+4=0,解方程求出两腰的长为2,又已知底边是3,则根据三角形的周长公式即可求解.【详解】解:(1)∵△=b 2-4ac=[-(3k+1)]2-4•(2k 2+2k )=k 2-2k+1=(k-1)2=0,∴k=1;(2)将k=1代入方程,得x 2-4x+4=0,解得:x 1=x 2=2.此时△ABC 三边为3,2,2;所以周长为7.【点睛】本题主要考查了一元二次方程根的判别式及三角形的周长,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.26.(1)243y x x =-+;()2,1-;(2)P ()2、()2、()2,1-;(3)存在,E ()2,5,()2,1-,3172,2、3172,2.【分析】 (1)根据题意,设二次函数的一般式解析式,再代入1,0A 、()3,0B 、()0,3C ,转化为解三元一次方程组即可解得一般式解析式,再利用配方法将一般式解析式化为顶点式解析式即可;(2)先解得2AB =,再结合三角形面积公式及绝对值的几何意义解题即可(3)当BCE ∆是直角三角形时,分三种情况讨论:BC BE ⊥或BC CE ⊥或BE CE ⊥,分别结合勾股定理解题即可.【详解】解:(1)设二次函数的表达式为2y ax bx c =++将1,0A 、()3,0B 、()0,3C 分别代入得09303a b c a b c c ++=⎧⎪++=⎨⎪=⎩解得:143a b c =⎧⎪=-⎨⎪=⎩∴二次函数表达式为243y x x =-+()224321y x x x ∴=-+=--∴顶点坐标为()2,1-;(2)312AB =-= 12p ABP AB y S ∆⋅==1p y ∴= 1p y ∴=±当1p y =时,2431x x-+=解得12x =,22x =当1p y =-时,2431x x -+=-解得122x x ==,∴点p 的坐标为()2-、()2+、()2,1-;(3)存在,符合条件的点E 共有4个,坐标分别为()2,5,()2,1-,3172,2、3172,2,理由如下:抛物线的对称轴为2x =,设(2,)E t 得, 2223+3=18BC =2222=(23)=1+BE t t -+22222(3)613CE t t t =+-=-+ 当BC BE ⊥时,222+BC BE CE =22181613t t t ∴++=-+1t ∴=-(2,1)E ∴-; 当BC CE ⊥时,222+BC CE BE =22186131t t t ∴+-+=+5t ∴= (2,5)E ∴; 当BE CE ⊥时,222+BE CE BC =22161318t t t ∴++-+=2320t t ∴--=1,3,2a b c ==-=-224(3)41(2)17b ac ∴∆=-=--⨯⨯-=12332222b b t t a a -++--∴==== 此时3172,2E 或3172,2,综上所述,符合条件的点E 共有4个,坐标分别为()2,5,()2,1-,3172,2、3172,.2【点睛】本题考查待定系数法解二次函数的解析式、化二次函数的一般式解析式为顶点式解析式、直角三角形的判定与性质、勾股定理、解一元二次方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.。

(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试卷(有答案解析)(2)

(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试卷(有答案解析)(2)

一、选择题1.一元二次方程x 2=2x 的根是( ).A .0B .2C .0和2D .0和﹣2 2.一元二次方程x 2﹣2x +5=0的根的情况为( ) A .有两个不相等的实数根 B .有两个相等实数根C .只有一个实数根D .没有实数根3.某商品的售价为100元,连续两次降价%x 后售价降低了36元,则x 的值为( )A .60B .20C .36D .18 4.如图①,在矩形ABCD 中,AB >AD ,对角线AC ,BD 相交于点O ,动点P 由点A 出发,沿A→B→C 运动.设点P 的运动路程为x ,△AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AB 边的长为( )A .3B .4C .5D .6 5.定义运算:21a b ab ab =--☆.例如:23434341=⨯-⨯-☆.则方程10x =☆的根的情况为( ) A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根6.用配方法解方程2420x x -+=,下列配方正确的是( ) A .()222x -= B .()222x += C .()222x -=- D .()226x -= 7.已知a 是方程2210x x --=的一个根,则代数式2245a a -+的值应在( ) A .4和5之间 B .3和4之间 C .2和3之间 D .1和2之间 8.某小区附近新建一个游泳馆,馆内矩形游泳池的面积为2300m ,且游泳池的宽比长短10m .设游泳池的长为xm ,则可列方程为( )A .()10300x x -=B .()10300x x +=C .()2210300x x -= D .()2210300x x +=9.若12,x x 是方程2420200x x --=的两个实数根,则代数式211222x x x -+的值等于( )A .2020B .2019C .2029D .202810.某养殖户的养殖成本逐年增长,已知第1年的养殖成本为10万元,第3年的养殖成本为16万元,设每年平均增长的百分率为x ,则下面所列方程中正确的是( ) A .10(1﹣x )2=16 B .16(1﹣x )2=10C .16(1+x )2=10D .10(1+x )2=1611.受非洲猪瘟及其他因素影响,2020年9月份猪肉价格两次大幅度上涨,瘦肉价格由原来23元/千克,连续两次上涨x%后,售价上升到60元/千克,则下列方程中正确的是( )A .23(1﹣x%)2=60B .23(1+x%)2=60C .23(1+x 2%)=60D .23(1+2x%)=6012.若关于x 的一元二次方程kx 2-3x +1=0有实数根,则k 的取值范围为( ) A .k ≥94 B .k ≤94且k ≠0 C .k <94且k ≠0 D .k ≤94二、填空题13.某电脑公司计划两年内将产品成本由原来2500元下降到1600元,则每年平均下降的百分率是________.14.已知关于x 的一元二次方程m 2x ﹣nx ﹣m ﹣3=0,对于任意实数n 都有实数根,则m 的取值范围是_____.15.某超市1月份营业额为90万元,1月、2月、3月总营业额为144万元,设平均每月营业额增长率为x ,则可列方程为__.16.若x=2是一元二次方程x 2+x+c=0的一个解,则c 2=__.17.已知:(x 2+y 2)(x 2+y 2﹣1)=20,那么x 2+y 2=_____.18.有一个人患了流感,两轮传染后共有225人患了流感,则平均每轮传染______人. 19.一个农业合作社以64000元的成本收获了某种农产品80吨,目前可以以1200元/吨的价格售出,如果储藏起来,每星期会损失2吨,且每星期需支付各种费用1600元,但同时每星期每吨的价格将上涨200元.设储藏x 个星期再出售这批农产品,可获利122000元.根据题意,可列方程______.20.已知关于x 的二次方程(1﹣2k )x 2﹣2x ﹣1=0有实数根,则k 的取值范围是_______.三、解答题21.一个直角三角形的两条直角边的和是7cm ,面积是26cm ,求两条直角边的长. 22.解下列方程:2(1)3(1)x x x -=-23.解方程:(1)2(2)3(2)0x x ++=-;(2)2101x x-=+. 24.2020年年末,大丰迈入高铁时代,建设部门打算对高铁站广场前一块长为20m ,宽为8m 的矩形空地进行绿化,计划在其中间修建两块相同的矩形绿地(图中阴影部分),若它们的面积之和为102m 2,两块绿地之间及周边留有宽度相等的人行通道,问人行通道的宽度是多少米?25.用适当的方法解下列方程:(1)22210x x +-= (2)225(3)9x x +=-26.在ABC 中,90,10cm B AB BC ∠===,点P 、Q 分别从A 、C 两点同时出发,均以1cm/s 的速度作直线运动,已知点P 沿射线AB 运动,点Q 沿边BC 的延长线运动,设点P 运动时间为(s)t ,PCQ △的面积为()2cm S .当P 运动到几秒时625ABC S S =?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据一元二次方程的性质,先提公因式,通过计算即可得到答案.【详解】移项得,x 2-2x =0,提公因式得,x (x-2)=0,解得,x 1=0,x 2=2,故选:C .【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.2.D【分析】根据根的判别式判断 .【详解】解:∵△=4﹣20=﹣16<0,∴方程没有实数根.故选:D .【点睛】本题考查一元二次方程的根的情况,熟练掌握根判别式的计算方法及应用是解题关键. 3.B解析:B【分析】起始价为100元,终止价为100-36=64元,根据题意列方程计算即可.【详解】∵起始价为100元,终止价为100-36=64元,∴根据题意,得1002(1-%)x =64,解得x=20或x=180(舍去),故选B .【点睛】本题考查了一元二次方程的增长率问题,熟练掌握增长率问题的计算方法,正确布列方程是解题的关键.4.D解析:D【分析】当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,结合图象可得△AOP 面积最大为6,得到AB 与BC 的积为24;当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为10,得到AB 与BC 的和为10,构造关于AB 的一元二方程可求解.【详解】解:当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,△AOP 面积最大为6. ∴12AB·12BC=6,即AB•BC=24. 当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为10,∴AB+BC=10.则BC=10-AB ,代入AB•BC=24,得AB 2-10AB+24=0,解得AB=4或6,因为AB >BC ,所以AB=6.【点睛】本题主要考查动点问题的函数图象,解一元二次方程,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.5.A解析:A【分析】根据新定义运算法则以及利用△>0可判断方程根的情况.【详解】解:由题意可知:1☆x=x2-x-1=0,∴△=1-4×1×(-1)=5>0,∴有两个不相等的实数根故选:A.【点睛】本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型.6.A解析:A【分析】先把方程变形为x2-4x=-2,再把两方程两边加上4,然后把方程左边用完全平方公式表示即可.【详解】解:x2-4x=-2,x2-4x+4=2,(x-2)2=2.故选:A.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.A解析:A【分析】先依据一元二次方程的定义得到a式的取值范围.【详解】解:∵a是方程2210--=的一个根,x x∴2210a a--=,即221-=,a a∴原式=2-=+a a2(2)2∵459,∴23<<, ∴425<+<,即224a a -+的值在4和5之间,故选:A .【点睛】本题考查一元二次方程的解得定义,估算.掌握整体代入法是解题关键.8.A解析:A【分析】因为游泳池的长为xm ,那么宽可表示为(x-10)m ,根据面积为300,即可列出方程.【详解】解:因为游泳池的长为xm ,那么宽可表示为(x-10)m ;则根据矩形的面积公式:x (x-10)=300;故选:A .【点睛】本题考查了一元二次方程的应用,掌握“矩形面积=长×宽”是关键.9.D解析:D【分析】先根据一元二次方程的解的概念和根与系数的关系得出21142020x x -=,124x x +=,代入原式计算即可.【详解】解:∵1x ,2x 是方程2420200x x --=的两个实数根,∴211420200x x --=,即21142020x x -=,由根与系数之间关系可知124x x +=,∴211222x x x -+=21112422x x x x -++=2020+122()x x +=2020+8=2028.所以选项D 正确.故答案为:D【点睛】本题主要考查了一元二次方程的解、根与系数之间的关系,本题解题的关键是将211222x x x -+进行等量变形,并代入求解.10.D解析:D【分析】根据第一年的养殖成本×(1+平均年增长率)2=第三年的养殖成本,列出方程即可.【详解】设增长率为x ,根据题意得210(1)16x +=. 故选:D .【点睛】本题考查了从实际问题中抽象出一元二次方程,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为2(1)a x b ±=.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“-”). 11.B解析:B【分析】可先用x%表示第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于x%的方程.【详解】解:当猪肉第一次提价x%时,其售价为23+23x%=23(1+x%);当猪肉第二次提价x%后,其售价为23(1+x%)+23(1+x%)x%=23(1+x%)2. ∴23(1+x%)2=60.故选:B .【点睛】本题考查了一元二次方程的应用,要根据题意列出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于60即可.12.B解析:B【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】解:∵关于x 的一元二次方程kx 2-3x+1=0有实数根,∴()203410k k ≠⎧⎪⎨--⨯⨯≥⎪⎩=, ∴k≤94且k≠0. 故选:B .【点睛】 本题考查了一元二次方程的定义以及根的判别式,利用二次项系数非零及根的判别式△≥0,找出关于k 的一元一次不等式组是解题的关键.二、填空题13.20【分析】新成本=原成本×(1-平均每月降低的百分率)2把相关数值代入即可求解【详解】∵原开支为2500元设平均每月降低的百分率为x∴第一个月的开支为2500×(1-x)元第二个月的开支为2500解析:20%【分析】新成本=原成本×(1-平均每月降低的百分率)2,把相关数值代入即可求解.【详解】∵原开支为2500元,设平均每月降低的百分率为x,∴第一个月的开支为2500× (1-x)元,第二个月的开支为2500×(1-x)×(1-x) =2500×(1-x)2元,可列方程为:2500(1-x)2= 1600,解得:x=0.2=20%或x =-1.8(舍去)故答案为:20%.【点睛】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a (1土x) 2=b.14.m>0或m≤-3【分析】把方程有实数根转型为根的判别式大于等于零根据n的任意性构造不等式求解即可【详解】∵关于x的一元二次方程m﹣nx﹣m﹣3=0对于任意实数n都有实数根∴△≥0且m≠0∴≥0∴≥0解析:m>0或m≤-3.【分析】把方程有实数根,转型为根的判别式大于等于零,根据n的任意性,构造不等式求解即可.【详解】∵关于x的一元二次方程m2x﹣nx﹣m﹣3=0,对于任意实数n都有实数根,∴△≥0,且m≠0,∴2()4(3)n m m-++≥0,∴22412n m m++≥0,∵对于任意实数n都有实数根,∴2412m m+≥0,∴30mm≥⎧⎨+≥⎩或30mm≤⎧⎨+≤⎩,∴m≥0或m≤-3,且m≠0,∴m>0或m≤-3,故答案为:m>0或m≤ -3.【点睛】本题考查了一元二次方程的根的判别式,熟练掌握根的判别式,并规范把问题转化为不等式组求解是解题的关键.15.【分析】增长率问题一般用增长后的量=增长前的量×(1+增长率)由此可以求出2月份和3月份的营业额而第一季度的总营业额已经知道所以可以列出一个方程【详解】解:设平均每月营业额的增长率为x 则2月份的营业 解析:()()290190114490x x +++-=【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),由此可以求出2月份和3月份的营业额,而第一季度的总营业额已经知道,所以可以列出一个方程.【详解】解:设平均每月营业额的增长率为x ,则2月份的营业额为:90×(1+x ),3月份的营业额为:90×(1+x )2,则由题意列方程为:90(1+x )+90(1+x )2=144-90.故答案为:90(1+x )+90(1+x )2=144-90.【点睛】本题主要考查增长率问题,然后根据增长率和已知条件抽象出一元二次方程. 16.36【分析】根据一元二次方程的解的定义把x=2代入方程x2+x+c=0即可求得c 的值进而求得c2的值【详解】解:依题意得22+2+c=0解得c=-6则c2=(-6)2=36故答案为:36【点睛】本题解析:36【分析】根据一元二次方程的解的定义,把x=2代入方程x 2+x+c=0即可求得c 的值,进而求得c 2的值.【详解】解:依题意,得22+2+c=0,解得,c=-6,则c 2=(-6)2=36.故答案为:36.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.5【分析】应用换元法得到一元二次方程解方程问题可解【详解】解:设t =x2+y2(t≥0)则t (t ﹣1)=20整理得(t ﹣5)(t+4)=0解得t =5或t =﹣4(舍去)所以x2+y2=5故答案是:5【解析:5【分析】应用换元法,得到一元二次方程,解方程问题可解.【详解】解:设t =x 2+y 2(t ≥0),则t (t ﹣1)=20.整理,得(t ﹣5)(t +4)=0.解得t =5或t =﹣4(舍去).所以x 2+y 2=5.故答案是:5.【点睛】本题考查了换元法和解一元二次方程的知识,解答关键是根据题意选择合适未知量使用换元法法解题.18.14【分析】如果设每轮传染中平均每人传染了x 人那么第一轮传染中有x 人被传染第二轮则有x (x+1)人被传染已知共有225人患了流感那么可列方程然后解方程即可【详解】解:设每轮传染中平均每人传染了x 人则解析:14【分析】如果设每轮传染中平均每人传染了x 人,那么第一轮传染中有x 人被传染,第二轮则有x (x+1)人被传染,已知“共有225人患了流感”,那么可列方程,然后解方程即可.【详解】解:设每轮传染中平均每人传染了x 人,则第一轮传染中有x 人被传染,第二轮则有x(x+1)人被传染,又知:共有225人患了流感,∴可列方程:1+x+x(x+1)=225,解得,114x =,216x =-(不符合题意,舍去)∴每轮传染中平均一个人传染了14个人.故答案为14.【点睛】本题考查由实际问题抽象出一元二次方程,解题的关键是找准等量关系.19.【分析】设储藏x 星期出售这批农产品可获利122000元则需要支付费用1600x 元损失2x 吨价格为(1200+200x )元根据获利122000元列方程求解【详解】解:设储藏x 星期出售这批农产品可获利1解析:()()1200200802160064000122000x x x +⨯---=【分析】设储藏x 星期出售这批农产品可获利122000元,则需要支付费用1600x 元,损失2x 吨,价格为(1200+200x )元,根据获利122000元,列方程求解.【详解】解:设储藏x 星期出售这批农产品可获利122000元,由题意得(1200+200x )×(80-2x )-1600x-64000=122000,故答案为:()()1200200802160064000122000x x x +⨯---=.【点睛】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系列方程.20.且【分析】根据二次项系数非零及根的判别式△≥0即可得出关于k 的一元一次不等式组解之即可得出k 的取值范围【详解】解:∵关于x 的一元二次方程(1﹣2k )x2﹣2x ﹣1=0有实数根解得且故答案为:且【点睛解析:1k ≤且12k ≠【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】解:∵关于x 的一元二次方程(1﹣2k )x 2﹣2x ﹣1=0有实数根, 2120(2)4(1)(12)0k k -≠⎧∴⎨∆=--⨯-⨯-≥⎩解得1k ≤且12k ≠, 故答案为:1k ≤且12k ≠. 【点睛】本题考查了根的判别式以及一元二次方程的定义,利用二次项系数非零及根的判别式△≥0,找出关于k 的一元一次不等式组是解题的关键.三、解答题21.3cm ,4cm【分析】首先设一条直角边为xcm ,然后根据三角形的面积列出方程,从而求出x 的值,得出答案.【详解】解:设一条直角边为xcm ,则另一条直角边的长为(7)cm x -,根据题意得: 1(7)62x x -=,整理得: 27120x x -+=,解得:123,4x x ==,当3x =时,74x -=.当4x =时,73x -=.答:这两条直角边的长分别为3cm 和4cm .【点睛】本题考查一元二次方程在几何图形中运用,掌握根据面积列一元二次方程,及其解方程的方法.22.1231,2x x ==【分析】 移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:()()2131x x x -=-,移项得()()21310x x x ---=,因式分解得()()2310x x --=, 解得1231,2x x ==. 【点睛】本题考查了因式分解法解一元二次方程,正确理解因式分解法的基本思想是化成一元一次方程.23.(1)122=1x x =-,;(2)2x =-是原方程的解.【分析】(1)利用因式分解法解一元二次方程即可;(2)利用方程两边都乘以x(x+1)把分式方程转化为整式方程,解方程,检验即可.【详解】解:(1)2(2)3(2)0x x ++=-, 因式分解()(2)230x x ++-=,化为20-1=0x x +=,,∴122=1x x =-,;(2)2101x x-=+, 方程两边都乘以x(x+1)得()210x x +-=,去括号得:2+20x x -=,移项合并得:2x =-,检验当2x =-时,()()122120x x +=-⨯-+=≠,所以2x =-是原方程的解.【点睛】本题考查一元二次方程的解法与可化为一元一次方程的分式方程的解法,掌握一元二次方程的解法与可化为一元一次方程的分式方程的解法是解题关键.24.1【分析】根据矩形的面积和为102平方米列出一元二次方程求解即可.【详解】解:设人行通道的宽度为x 米,根据题意得,(20﹣3x )(8﹣2x )=102,解得:x 1=1,x 2293=(不合题意,舍去). 答:人行通道的宽度为1米.【点睛】本题考查了一元二次方程的应用,利用两块矩形的面积之和为102m 2得出等式是解题关键.25.(1)12x x ==2)1293,2x x =-=- 【分析】(1)根据公式法计算即可;(2)根据因式分解法计算即可;【详解】解:(1)22210x x +-=, 2242(1)12∆=-⨯⨯-=,222x -±=⨯,121122x x -+-∴==; (2)25(3)(3)(3)x x x +=+-,25(3)(3)(3)0x x x +-+-=,(3)[5(3)(3)]0x x x ++--=,即(3)(418)0x x ++=,1293,2x x ∴=-=-. 【点睛】本题主要考查了一元二次方程的求解,准确计算是解题的关键.26.4秒、6秒或12秒【分析】先根据三角形面积公式可得S△ABC,根据S=625S△ABC,可求△PCQ的面积,再分两种情况:P在线段AB上;P在线段AB的延长线上;进行讨论即可求得P运动的时间.【详解】解:∵S△ABC=12AB•BC=50cm2,625S△PCQ=12cm2,设当点P运动x秒时,S=625S△ABC,当P在线段AB上,此时CQ=x,PB=10-x,S△PCQ=12x(10-x)=12,化简得 x2-10 x+24=0,解得x=6或4,P在线段AB的延长线上,此时CQ=x,PB=x-10,S△PCQ=12x(x-10)=12,化简得 x2-10 x+24=0,x2-10 x-24=0,解得x=12或-2,负根不符合题意,舍去.所以当点P运动4秒、6秒或12秒时,S=625S△ABC.【点睛】此题主要考查了三角形面积公式和一元二次方程的应用,根据已知分两种情况进行讨论是解题关键.。

九年级上册数学《一元二次方程》单元测试题附答案

九年级上册数学《一元二次方程》单元测试题附答案
2.一元二次方程(x-5)2=x-5的解是()
A. x=5B. x=6C. x=0D. x1=5,x2=6
【答案】D
【解析】
试题解析:方程变形得:(x-5)2-(x-5)=0,
分解因式得:(x-5)(x-5-1)=0,
解得:x1=5,x2=6.
故选D.
3.一元二次方程x2﹣2x+1=0的根的情况为()
A. 有两个相等的实数根B. 有两个不相等的实数根
C. 只有一个实数根D. 没有实数根
4.已知关于x的一元二次方程x2﹣bx+c=0的两根分别为x1=1,x2=﹣2,则b与c的值分别为【】
A. b=﹣1,c=2B. b=1,c=﹣2C. b=1,c=2D. b=﹣1,c=﹣2
5.用配方法解方程 ,配方后可得()
C. 小敏、小聪回答都正确D. 小敏、小聪回答都不正确
【答案】C
【解析】
试题解析:设x1,x2是方程的两根,
∵x1x2=k+1=-4,
∴k=-5,
把k=-5代入原方程可得x2-3x+4=0,
解方程可得x1=-1,x2=4.
即小敏,小聪回答都正确.
故选C.
7.输入一组数据,按下列程序进行计算,输出结果如表:
【答案】18
【解析】
试题解析:设该班有名x学生,则有x(x-1)=306,
解之,得:x1=18,x2=-17(舍去).
故该班有18名学生.
点睛:每位同学向本班的其他同学赠送自己制作的小礼物1件,则x位同学时,每位同学赠送(x-1)件.
15.在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.设金色纸边的宽为x分米,请根据题意列出方程:.

九年级上册数学《一元二次方程》单元测试卷带答案

九年级上册数学《一元二次方程》单元测试卷带答案
5.将方程 化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()
A.﹣8、﹣10B.﹣8、10C.8、﹣10D.8、10
6.实数a,b在数轴上的位置如图所示,则关于x的一元二次方程ax2+bx+1=0()
A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不一定有实数根
人教版数学九年级上学期
《一元二次方程》单元测试
【考试时间:120分钟 分数:120分】
一、选择题(每小题3分,共30分)
1.若关于x的一元二次方程x2+kx+4k2-3=0的两个实数根分别是x1,x2,且满足x1+x2=x1·x2,则k的值是().
A.-1或 B.-1C. D.不存
2.若x=1是方程x2+nx+m=0的根,则m+n的值是()
(1)求AB与BC的长;
(2)当点P运动到边BC上时,试求出使AP长为 时运动时间t 值;
(3)当点P运动到边AC上时,是否存在点P,使△CDP是等腰三角形?若存在,请求出运动时间t的值;若不存在,请说明理由.
答案与解析
一、选择题(每小题3分,共30分)
1.若关于x的一元二次方程x2+kx+4k2-3=0的两个实数根分别是x1,x2,且满足x1+x2=x1·x2,则k的值是().
③∵x2- =0,∴x=±4
④在方程ax2+c=0中,当a>0,c>0时,一定无实根
A. ①②B. ②③C. ③④D. ②④
二、填空题(每小题3分,共24分)
11.把方程2(x﹣2)2=x(x﹣1)化为一元二次方程的一般形式为_____.
12.当m=________时,关于x的方程(m-2)xm2-2+2x-1=0是一元二次方程.

数学九年级上册《一元二次方程》单元测试题(含答案)

数学九年级上册《一元二次方程》单元测试题(含答案)

人教版数学九年级上学期《一元二次方程》单元测试【考试时间:90分钟分数:100分】一.选择题(每题4分,共40分)1.下列方程中,关于x的一元二次方程是( )A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=02.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是( )A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,693.若(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,则( )A.m=±2 B.m=2 C.m=﹣2 D.m≠±24.如图,在长70m,宽40m的矩形花园中,欲修宽度相等的观赏路(阴影部分),要使观赏路面积占总面积的,则路宽xm应满足的方程是( )A.(40﹣x)(70﹣x)=400 B.(40﹣2x)(70﹣3x)=400C.(40﹣x)(70﹣x)=2400 D.(40﹣2x)(70﹣3x)=24005.一元二次方程4x2﹣2x+=0根的情况是( )A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根6.若m是方程x2﹣x﹣1=0的一个根,则m2﹣m+2020的值为( )A.2019 B.2020 C.2021 D.20227.某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为( )A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×308.某水果园2017年水果产量为50吨,2019年水果产量为70吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( ) A.50(1﹣x)2=70 B.50(1+x)2=70C.70(1﹣x)2=50 D.70(1+x)2=509.关于x的一元二次方程(a﹣2)x2+x+a2﹣4=0的一个根是0,则a的值是( ) A.0 B.2 C.﹣2 D.2或﹣210.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为( ) A.B.1 C..4 D.3二.填空题(每题4分,共24分)11.一元二次方程x(x﹣3)=3﹣x的根是.12.若等腰三角形(不是等边三角形)的边长刚好是方程x2﹣9x+18=0的解,则此三角形的周长是.13.若关于x的一元二次方程x2﹣4x﹣m=0有两个不相等的实数根,则实数m的取值范围是.14.若方程x2﹣3x+2=0的两根是α、β,则α+αβ+β=.15.将4个数a、b、c、d排成2行、2列,两边各加一条竖直线记成,这个记号叫做2阶行列式.定义,若,则x=.16.已知关于x方程3x2+2(1﹣a)x﹣a(a+2)=0至少有一实根大于1,则a的取值范围是.三.解答题(每题9分,共36分)17.解方程:(1)x2﹣4=0;(2)(x+3)2=(2x﹣1)(x+3).18.关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实数根.(1)求m的取值范围;(2)当m为正整数时,取一个合适的值代入求出方程的解.19.某公司设计了一款工艺品,每件的成本是40元,为了合理定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?20.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?答案与解析一.选择题1.解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.2.解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.3.解:∵(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,∴|m|=2,且m+2≠0,解得:m=2,故选:B.4.解:由图可得,(40﹣2x)(70﹣3x)=40×70×(1﹣),即(40﹣2x)(70﹣3x)=2400,故选:D.5.解:在方程4x2﹣2x+=0中,∵△=b2﹣4ac=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有两个相等的实数根.故选:C.6.解:∵m是方程x2﹣x﹣1=0的一个根,∴m2﹣m﹣1=0,∴m2﹣m=1,∴m 2﹣m +2020=1+2020=2021. 故选:C .7.解:设花带的宽度为xm ,则可列方程为(30﹣2x )(20﹣x )=×20×30, 故选:B .8.解:2018年的产量为50(1+x ),2019年的产量为50(1+x )(1+x )=50(1+x )2, 即所列的方程为50(1+x )2=70. 故选:B .9.解:∵关于x 的一元二次方程(a ﹣2)x 2+x +a 2﹣4=0的一个根是0, ∴a 2﹣4=0, 解得a =±2, ∵a ﹣2≠0, ∴a ≠2, ∴a =﹣2. 故选:C .10.解:由题意可知:a 、b 是方程x 2﹣4x +1=0的两个不同的实数根, ∴由根与系数的关系可知:ab =1,a +b =4, ∴a 2+1=4a ,b 2+1=4b , ∴原式=+= ==1, 故选:B .二.填空题(共6小题) 11.解:x (x ﹣3)+x ﹣3=0, (x ﹣3)(x +1)=0,x ﹣3=0或x +1=0.所以x 1=3,x 2=﹣1.故答案为x 1=3,x 2=﹣1. 12.解:x 2﹣9x +18=0, (x ﹣3)(x ﹣6)=0,x ﹣3=0或x ﹣6=0, x 1=3,x 2=6,因为3+3=6,所以这个三角形的底边长为3,腰长为6, 所以这个三角形的周长为3+6+6=15. 故答案为:15. 13.解:由已知得:△=b 2﹣4ac =(﹣4)2﹣4×1×(﹣m )=16+4m >0, 解得:m >﹣4. 故答案为:m >﹣4.14.解:∵方程x 2﹣3x +2=0的两根是α、β, ∴α+β=3,αβ=2,∴α+αβ+β=α+β+αβ=3+2=5. 故答案为:5.15.解:由题意,得:(x +1)(x +1)﹣(x ﹣1)(1﹣x )=6, ∴x 2+2x +1+x 2﹣2x +1=6, ∴2x 2+2=6, ∴x =±.16.解:将方程左边因式分解得:(x ﹣a )(3x +a +2)=0, ∴方程的解为:x 1=a ,x 2=﹣,∵方程3x 2+2(1﹣a )x ﹣a (a +2)=0至少有一实根大于1, ∴a >1或﹣>1,解得:a >1或a <﹣5, 故答案为:a >1或a <﹣5. 三.解答题(共4小题) 17.解:(1)∵x 2﹣4=0,∴x 2=4,则x 1=2,x 2=﹣2;(2)∵(x +3)2=(2x ﹣1)(x +3), ∴(x +3)2﹣(2x ﹣1)(x +3)=0, ∴(x +3)(﹣x +4)=0, 则x +3=0或﹣x +4=0, 解得x 1=﹣3,x 2=4.18.解:(1)∵关于x 的一元二次方程(m ﹣2)x 2﹣2x +1=0有实数根, ∴△=(﹣2)2﹣4(m ﹣2)=4﹣4m +8=12﹣4m . ∵12﹣4m ≥0, ∴m ≤3,m ≠2. (2)∵m ≤3且m ≠2, ∴m =1或3,∴当m =1时,原方程为﹣x 2﹣2x +1=0.x 1=﹣1﹣,x 2=﹣1+.当m =3时,原方程为x 2﹣2x +1=0.x 1=x 2=1. 19.解:(1)(60﹣40)×[100﹣(60﹣50)×2]=1600(元). 答:每天的销售利润为1600元.(2)设每件工艺品售价为x 元,则每天的销售量是[100﹣2(x ﹣50)]件, 依题意,得:(x ﹣40)[100﹣2(x ﹣50)]=1350, 整理,得:x 2﹣140x +4675=0,解得:x 1=55,x 2=85(不合题意,舍去). 答:每件工艺品售价应为55元. 20.解:(1)设BC =xm ,则AB =(33﹣3x )m , 依题意,得:x (33﹣3x )=90, 解得:x 1=6,x 2=5.当x =6时,33﹣3x =15,符合题意,当x =5时,33﹣3x =18,18>18,不合题意,舍去. 答:鸡场的长(AB )为15m ,宽(BC )为6m . (2)不能,理由如下: 设BC =ym ,则AB =(33﹣3y )m ,依题意,得:y(33﹣3y)=100,整理,得:3y2﹣33y+100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m2的矩形养鸡场.。

人教版数学九年级上册第21章《一元二次方程》单元检测题含答案解析

人教版数学九年级上册第21章《一元二次方程》单元检测题含答案解析

九年级数学第21章《一元二次方程》单元检测题分值:120分时间:90分钟一、选择题(本大题共12道小题,共36分)1.关于x的方程是一元二次方程的条件是A. B. C. D. a为任意实数2.把一元二次方程化成一般形式,其中a,b,c分别为A. 2,3,B. 2,,C. 2,,1D. 2,3,13.已知是关于x的一元二次方程的一个根,则m的值是A. 1B.C. 0D. 无法确定4.若方程中,a,b,c满足和,则方程的根是A. 1,0B. ,0C. 1,D. 无法确定5.用配方法解一元二次方程,配方正确的是A. B. C. D.6.一元二次方程的根的情况为A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根7.已知,是关于x的一元二次方程的两个实数根,且,,则a,b的值分别是A. ,1B. 3,1C. ,D. ,18.关于x的方程的两个根是和1,则的值为A. B. 8 C. 16 D.9.王叔叔从市场上买了一块长80cm,宽70cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm的正方形后,剩余的部分刚好能围成一个底面积为的无盖长方形工具箱,根据题意列方程为A. B.C. D.11.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2019年起到2021年累计投入4250万元,已知2019年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是A.B.C.D.12.关于x的一元二次方程有两个整数根且乘积为正,关于y的一元二次方程同样也有两个整数根且乘积为正.给出三个结论:这两个方程的根都是负根;;其中正确结论的个数是A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共6小题,共18分)13.已知关于x的方程没有实数根,则m的取值范围是______.14.已知方程的一根为,则方程的另一根为______.15.已知,是一元二次方程的两实数根,则的值是______.16.在中,,,,且关于x的方程有两个相等的实数根,则AC边上的中线长为.17.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元假设该公司2、3月每个月生产成本的下降率都相同,则每个月生产成本的下降率是.18.定义符号的含义为:当时,当时,,如:,,则方程的解是______.三、解答题(本大题共7小题,共66分)19.解下列方程:.20.已知关于x的一元二次方程,求证:无论实数m取得何值,方程总有两个实数根;若方程有一个根的平方等于1,求m的值.21.若要建一个矩形养鸡场,养鸡场的一面靠墙,如图所示,墙长18 m,墙对面有一个2 m宽的门,另三边用竹篱笆围成,篱笆总长33 m,且围成的养鸡场的面积为,则鸡场的长和宽各为多少米.22.已知实数a,b,c满足:,,又,为方程的两个实根,试求的值.23.某生物实验室需培育一群有益菌现有60个活体样本,经过两轮培植后,有益菌总和达24000个,其中每个有益菌每一轮可分裂出若干个相同数目的有益菌.每轮分裂中每个有益菌可分裂出多少个有益菌按照这样的分裂速度,经过三轮培植后共有多少个有益菌24.某菜市场有平方米和4平方米两种摊位,平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,平方米和4平方米两种摊位的商户分别有和参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加,毎个摊位的管理费将会减少;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加,每个摊位的管理费将会减少这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少,求a的值.25.己知的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程的两个实数根,求证:无论k为何值时,方程总有两个不相等的实数根:为何值时,是以BC为斜边的直角三角形;为何值时,是等腰三角形,并求的周长.参考答案一、选择题(本大题共12道小题,共36分)1-5 CBBCA 6-10 BDCCC 11-12 DD二、填空题(本大题共6小题,共18分)13、14、15、616、217、18、或三、解答题(本大题共7小题,共66分)19、解:因式分解,得.或.,;移项,得.提公因式,得.解得,;将看作一个整体,分解因式,得,即.解得.20、证明:,,所以无论实数m取得何值,方程总有两个实数根;解:方程有一个根的平方等于1,此根是,当根是1时,代入得:,即,此时m为任何数;当根是时,,解得:.21、解:设养鸡场的宽为xm,根据题意得:,解得:,,当时,,当时,舍去,答:养鸡场的宽是10m,长为15m.22、解:,即,,2 ab为方程的两根,,由得,或即,由根与系数的关系得:23、设每轮分裂中每个有益菌可分裂出x个有益菌,根据题意,得.解得,不合题意,舍去.答:每轮分裂中每个有益菌可分裂出19个有益菌.个.答:经过三轮培植后共有480000个有益菌.24、解:设该菜市场共有x个4平方米的摊位,则有2x个平方米的摊位,依题意,得:,解得:.答:该菜市场共有25个4平方米的摊位.由可知:5月份参加活动一的平方米摊位的个数为个,5月份参加活动一的4平方米摊位的个数为个.依题意,得:整理,得:,解得:舍去,.答:a的值为50.25、解:因为,所以方程总有两个不相等的实数根.根据根与系数的关系:,,则,即,解得或.根据三角形的边长必须是正数,因而两根的和且两根的积,解得,.若时,5是方程的实数根,根据一元二次方程根与系数的关系可得:,当时,,则周长是;当时,则周长是.。

人教版初中九年级数学上册第二十一章《一元二次方程》经典练习(含答案解析)

人教版初中九年级数学上册第二十一章《一元二次方程》经典练习(含答案解析)

一、选择题1.一面足够长的墙,用总长为30米的木栅栏(图中的虚线)围一个矩形场地ABCD,中间用栅栏隔成同样三块,若要围成的矩形面积为54平方米,设垂直于墙的边长为x米,则x 的值为()A.3 B.4 C.3或5 D.3或4.5D解析:D【分析】设AD长为x米,四边形ABCD是矩形,根据矩形的性质,即可求得AB的长;根据题意可得方程x(30−4x)=54,解此方程即可求得x的值.【详解】解:设与墙头垂直的边AD长为x米,四边形ABCD是矩形,∴BC=MN=PQ=x米,∴AB=30−AD−MN−PQ−BC=30−4x(米),根据题意得:x(30−4x)=54,解得:x=3或x=4.5,AD的长为3或4.5米.故选:D.【点睛】考查了一元二次方程的应用中的围墙问题,正确列出一元二次方程,并注意解要符合实际意义.2.用配方法解方程x2﹣6x﹣3=0,此方程可变形为()A.(x﹣3)2=3 B.(x﹣3)2=6C.(x+3)2=12 D.(x﹣3)2=12D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12,配方得;(x ﹣3)2=12.故选:D .【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.3.一元二次方程2610x x +-=配方后可变形为( )A .()2310x +=B .()238x +=C .()2310x -=D .()238x -=A 解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∴x 2+6x=1,∴x 2+6x+9=10,∴(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.4.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根A 解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.5.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( )A .6人B .7人C .8人D .9人B 解析:B【分析】设参加活动的同学有x 人,从而可得每位同学赠送的贺卡张数为(1)x -张,再根据“共送贺卡42张”建立方程,然后解方程即可得.【详解】设参加活动的同学有x 人,由题意得:(1)42x x -=,解得7x =或6x =-(不符题意,舍去),即参加活动的同学有7人,故选:B .【点睛】本题考查了一元二次方程的实际应用,依据题意,正确建立方程是解题关键.6.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .9D 解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.7.关于x 的一元二次方程(a -1)x²-x +a²-1=0的一个根是0,则a 的值为( ) A .1B .-1C .1或-1D .0B解析:B【分析】把0x =代入,求出a 的值即可.【详解】解:把0x =代入可得210a -=,解得1a =±,∵一元二次方程二次项系数不为0,∴1a ≠,∴1a =-,故选:B .【点睛】本题考查一元二次方程的解,注意二次项系数不为0.8.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-=D解析:D【分析】分别求出每个方程的根的判别式即可得到方程的根的情况.【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误;C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确; 故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.9.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022B .2021C .2020D .2019A解析:A【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=,∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=,故选:A .【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125C .3D .2A解析:A【分析】利用根与系数的关系得到x 1+x 2=4,x 1x 2=m ,AB +12BC =4,m =AB×12BC ,再利用折叠的性质和平行线的性质得到∠EBD =∠EDB ,则EB =ED =3,所以AE =AD−DE =5−2AB ,利用勾股定理得到AB 2+(5−2AB )2=32,解得AB 1025-或AB 1025+(舍去),则BC 2045+,然后计算m 的值. 【详解】 ∵x 1、x 2是关于x 的方程x 2−4x +m =0的两个实根,∴x 1+x 2=4,x 1x 2=m ,即AB +12BC =4,m =AB×12BC , ∵△BCD 沿BD 翻折得到△BC′D ,BC′与边AD 交于点E ,∴∠CBD =∠EBD ,∵AD ∥BC ,∴∠CBD =∠EDB ,∴∠EBD =∠EDB ,∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC−3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB 1025-或AB 1025+(舍去), ∴BC =8−2AB =2055+, ∴m =121025-2045+=165.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a.也考查了矩形的性质和折叠的性质. 二、填空题11.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为:4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k ++=有两个相等的实数根,∴224440b ac k ∆=-=-=,解得:4k =;故答案为:4.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.12.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____.【分析】根据根与系数关系即可得出a+b 和ab 的值再对代数式变形整体代入即可【详解】解:∵ab 是方程的两个实数根∴∴故答案为:【点睛】本题考查根与系数关系熟记根与系数关系的公式是解题关键 解析:22019【分析】根据根与系数关系即可得出a+b 和ab 的值,再对代数式11a b+变形整体代入即可. 【详解】解:∵a ,b 是方程2220190+-=x x 的两个实数根,∴2a b +=-,2019ab =-, ∴112220192019a b a b ab +-+===-. 故答案为:22019.本题考查根与系数关系.熟记根与系数关系的公式是解题关键.13.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为________.-1【分析】根据方程的根的判别式得出m 的取值范围然后根据根与系数的关系可得α+β=-2(m-1)α•β=m2-m 结合α2+β2=12即可得出关于m 的一元二次方程解之即可得出结论【详解】解:∵关于x 的解析:-1【分析】根据方程的根的判别式,得出m 的取值范围,然后根据根与系数的关系可得α+β=-2(m-1),α•β=m 2-m ,结合α2+β2=12即可得出关于m 的一元二次方程,解之即可得出结论.【详解】解:∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根,∴△=[2(m-1)]2-4×1×(m 2-m )=-4m+4≥0,解得:m≤1.∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根α,β,∴α+β=-2(m-1),α•β=m 2-m ,∴α2+β2=(α+β)2-2α•β=[-2(m-1)]2-2(m 2-m )=12,即m 2-3m-4=0,解得:m=-1或m=4(舍去).故答案为:-1.【点睛】本题考查了根与系数的关系、根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系得出关于m 的一元二次方程.14.一元二次方程x 2-10x+25=2(x ﹣5)的解为____________.x1=5x2=7【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0∴(x ﹣5)(x ﹣7)=0则x ﹣5=0或x ﹣7=0解得x1=5x2=7故答解析:x 1=5,x 2=7【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0,∴(x ﹣5)(x ﹣7)=0,则x ﹣5=0或x ﹣7=0,解得x 1=5,x 2=7,故答案为:x 1=5,x 2=7.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.15.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____【分析】把代入已知方程求得然后将其整体代入所求的代数式求值【详解】由题意得:则所以故答案为:【点睛】本题考查了一元二次方程的解的定义解题时注意整体代入数学思想的应用解析:5【分析】把x a =代入已知方程,求得21a a =-,然后将其整体代入所求的代数式求值.【详解】由题意,得:210a a -+=,则21a a =-,所以,()2233231323335a a a a a a -+=--+=-++=. 故答案为:5.【点睛】本题考查了一元二次方程的解的定义.解题时,注意“整体代入”数学思想的应用. 16.如图,将一张矩形纸片ABCD 折叠,使两个顶点A C 、重合,折痕为FG ,若4,8AB BC ==,则线段BF 的长为_________.3【分析】根据折叠性质可得AF=FC 设AF=x则BF=8-x 则根据勾股定理可以得到关于x 的方程解方程得到x 的值后即可得到8-x 即BF 的值【详解】∵将一矩形纸片折叠使两个顶点重合折痕为∴是的垂直平分线解析:3【分析】根据折叠性质可得AF=FC ,设AF=x ,则BF=8-x ,则根据勾股定理可以得到关于x 的方程,解方程得到x 的值后即可得到8-x 即BF 的值 .【详解】∵将一矩形纸片ABCD 折叠,使两个顶点,A C 重合,折痕为FG ,∴FG 是AC 的垂直平分线,∴AF CF =,设AF FC x ==,在Rt ABF ∆中,由勾股定理得:222AB BF AF +=,即()22248x x +-=解得:5x =,即5,853CF BF ==-=,故答案为:3.【点睛】本题考查矩形与折叠的综合运用,综合运用折叠性质、方程思想和勾股定理求解是解题关键.17.若a 是方程210x x ++=的根,则代数式22020a a --的值是________.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.18.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键19.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场)一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜__场11【分析】设中国队在本届世界杯比赛中连胜x 场则共有(x+1)支队伍参加比赛根据一共比赛66场即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】设中国队在本届世界杯比赛中连胜x 场则共有(x解析:11【分析】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,根据一共比赛66场,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,依题意,得:12x(x+1)=66, 整理,得:x 2+x-132=0,解得:x 1=11,x 2=-12(不合题意,舍去).所以,中国队在本届世界杯比赛中连胜11场.故答案为11.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 20.已知a 、b 是方程2320190x x +-=的两根,则24a a b ++的值为________.2016【分析】将x=a 代入可得然后由根与系数之间的关系得到整理即可得到答案【详解】解:由题意可知【点睛】本题考查了一元二次方程的解以及根与系数之间的关系熟练掌握基础知识是解题的关键解析:2016【分析】将x=a 代入2320190x x +-=,可得2320190a a +-=,然后由根与系数之间的关系得到3a b +=-,整理即可得到答案.【详解】解:由题意可知,2320190a a +-=,3a b +=-,232019a a ∴+=,24a a b ∴++23()a a a b =+++20193=-2016=.【点睛】本题考查了一元二次方程的解以及根与系数之间的关系,熟练掌握基础知识是解题的关键.三、解答题21.若a 为方程2(16x =的一个正根,b 为方程22113y y -+=的一个负根,求+a b 的值.解析:a+b= 5【分析】先求出2(16x =的根4x ,由a 为方程2(16x =的一个正根,得4a =+,再求22113y y -+=的根=1y ±b 为方程22113y y -+=的一个负根,得1b =+a b 即可.【详解】2(16x -=,4x -=±,4x ,a 为方程2(16x =的一个正根,4a =+,22113y y -+=,()2113y -=,1y -==1y ±b 为方程22113y y -+=的一个负根,1b =415a b +=+=.【点睛】本题考查一元二次方程的解法,会比较方程根的正负与大小,掌握一元二次方程的解法是解题关键.22.5月10日,重庆正式启动“加快发展直播带货行动计划”,以推动直播带货和“网红经济”发展,已知云阳桃片糕每盒12元,仙女山红茶每盒50元,第一次直播期间,共卖出云阳桃片糕和仙女山红茶共计2000盒.(1)若卖出桃片糕和红茶的总销售额不低于54400元,则至少卖出仙女山红茶多少盒? (2)第一次直播结束,为了回馈顾客,在第二次直播期向,桃片糕每盒降价10%3a ,红茶每盒降价4a %,桃片糕数量在(1)问最多的数量下增加6a %,红茶数量在(1)问最少的数量下增加4a %,最终第二次直播总销售额比第一次直播的最低销售额54400元少80a元,求a 的值.解析:(1)至少卖出仙女山红茶800盒;(2)a 的值为5.【分析】(1)设卖出仙女山红茶x 盒,则卖出桃片糕(2000-x )盒,由题意得关于x 的不等式,求解即可;(2)根据(1)的结果得出桃片糕最多卖出的盒数,根据题意得出关于x 的方程,解方程即可.【详解】解:(1)设卖出仙女山红茶x 盒,则卖出桃片糕(2000-x )盒,由题意得:50x+12(2000-x )≥54400,解得:x≥800,∴x 的最小值是800,∴至少卖出仙女山红茶800盒;(2)∵(1)中最少卖出仙女山红茶800盒,∴桃片糕最多卖出的盒数为:2000-800=1200(盒).由题意得:12×(110%3a -)×1200×(1+6a%)+50(1-4a%)×800×(1+4a%)=54400-80a , 解得:a 1=0(舍去),a 2=5.∴a 的值为5.【点睛】 本题考查了一元一次不等式和一元二次方程在实际问题中的应用,理清题中的数量关系并正确列式是解题的关键.23.某商场销售一批衬衫,每件进价是120元,当每件衬衫售价为160元时,平均每天可售出20件,为了扩大销售,尽快清库,增加盈利,商场经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)当每件衬衫降价5元时,每天可销售多少件衬衫?商场获得的日盈利是多少? (2)若商场平均每天想盈利1200元,则每件衬衫应降价多少元?解析:(1)当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元;(2)每件衬衫应降价20元【分析】(1)利用日销售量202=+⨯每件衬衫降低的价格,即可求出每天可销售衬衫的数量,利用日盈利额=销售每件衬衫的利润×日销售量,即可求出日盈利额;(2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫,根据日盈利额=销售每件衬衫的利润×日销售量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.【详解】(1)根据题意得,降价后,可售出:205230+⨯=(件)∴()1605120301050--⨯=(元)∴当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元; (2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫依题意,得:()()1601202021200x x --+=,∴2302000x x -+=解得:110x =,220x =∵要尽快清库∴20x∴每件衬衫应降价20元.【点睛】本题考查了一元二次方程、有理数混合运算的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.24.解方程:22350x x --= (请用两种方法解方程) 解析:152x =,21x =- 【分析】采用公式法和因式分解法求解即可.【详解】解:方法1:∵a =2,b =-3,c =-5,∴2449b ac ∆=-=,∴x =∴152x =,21x =-; 方法2:()()2510x x -+=∴ 152x =,21x =-. 【点睛】 本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键. 25.解答下列各题.(1)解方程:2(1)90x --=.(2)已知1x =,求225x x -+的值.解析:(1)14x =,22x =-;(2)6.【分析】(1)方程整理后,直接开平方即可求解;(2)代数式225x x -+配方整理成()214x -+后,把x 的值代入计算即可.【详解】(1)由原方程得2(1)9x -=,∴13x -=±,解得:14x =,22x =-;(2)∵2225(1)4x x x -+=-+,将1x =代入得:原式)2114=-+ 24=+6=.【点睛】本题考查了解一元二次方程-直接开平方法以及求代数式的值,熟练掌握完全平方公式是解本题的关键.26.解下列方程:(1)2320x x +-=(2)()220x x x -+-=解析:(1)1x =,2x =2)11x =-,22x =【分析】(1)直接应用公式法即可求解;(2)利用因式分解法即可求解.【详解】解:(1)2320x x +-=1,2x ==∴1x =,2x (2)()220x x x -+-=因式分解可得:()()120x x +-=,即10x +=或20x -=,解得11x =-,22x =.【点睛】本题考查解一元二次方程,根据方程特点选择合适的求解方法是解题的关键.27.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销,销售量持续走高.在售价不变的基础上,三月底的销售量达到400件,设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顺客,经调查发现,销售单价与月平均销售的关系如下表:解析:(1)25%;(2)35元【分析】(1)由题意可得,1月份的销售量为:256件;设2月份到3月份销售额的月平均增长率,则二月份的销售量为:256(1+x );三月份的销售量为:256(1+x )(1+x ),又知三月份的销售量为:400元,由此等量关系列出方程求出x 的值,即求出平均增长率; (2)利用销量×每件商品的利润=4250求出即可.【详解】解:(1)设二、三这两个月的月平均增长率为x ,根据题意可得:256(1+x )2=400,解得:x 1=14=25%,x 2=94(不合题意舍去). 答:二、三这两个月的月平均增长率为25%; (2)由表可知:该商品每降价1元,销售量增加5件,设当商品降价m 元时,商品获利4250元,根据题意可得:(40-25-m )(400+5m )=4250,解得:m 1=5,m 2=-70(不合题意舍去),40-5=35元.答:销售单价应定为35元,商品获利4250元.【点睛】 此题主要考查了一元二次方程的应用,本题的关键在于理解题意,找到等量关系准确的列出方程是解决问题的关键.28.解方程.(1)230x x +-=. (2)4(21)12x x x -=-.解析:(1)12x x ==.(2)1211,24x x ==-. 【分析】(1)用配方法解即可;(2)先移项然后提取公因式,即可求解.【详解】(1)23+=x x ,∴211344x x ++=+,∴211324x ⎛⎫+= ⎪⎝⎭,∴122x +=±.1211,22x x ∴==-. (2)移项,得4(21)(21)0x x x -+-=, 提取公因式,得(21)(41)0x x -+=, 210x ∴-=或410x +=,1211,24x x ∴==-. 【点睛】本题考查了一元二次方程的解法,掌握基本解法并熟练进行解题是关键.。

数学九年级上册《一元二次方程》单元测试含答案

数学九年级上册《一元二次方程》单元测试含答案

人教版数学九年级上学期《一元二次方程》单元测试时间:100分钟 满分:100分一.选择题(每题3分,共30分)1.关于x 的方程(m ﹣3)x﹣mx +6=0是一元二次方程,则它的一次项系数是( ) A .﹣1 B .1 C .3 D .3或﹣12.方程x (x ﹣5)=x ﹣5的根是( )A .x =5B .x =0C .x 1=5,x 2=0D .x 1=5,x 2=13.已知一元二次方程ax 2+bx +c =0(a ≠0)中.下列说法:①若a +b +c =0,则b 2﹣4ac ≥0;②若方程两根为﹣1和2,则2a +c =0;③若方程ax 2+c =0有两个不相等的实根,则方程ax 2+bx +c =0必有两个不相等的实根;④若b =2a +3c ,则方程有两个不相等的实根.其中结论正确的有( )个.A .1个B .2个C .3个D .4个4.已知x 1,x 2是关于x 的一元二次方程x 2﹣(5m ﹣6)x +m 2=0的两个不相等的实根,且满足x 1+x 2=m 2,则m 的值是( )A .2B .3C .2或3D .﹣2或﹣35.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上一个月增长的百分数相同,则每月的平均增长率为( )A .10%B .15%C .20%D .25%6.已知m 、n 是一元二次方程x 2﹣3x ﹣1=0的两个实数根,则=( )A .3B .﹣3C .D .﹣ 7.某中学有一块长30cm ,宽20cm 的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .(30﹣x )(20﹣x )=×20×30B .(30﹣2x )(20﹣x )=×20×30C .30x +2×20x =×20×30D .(30﹣2x )(20﹣x )=×20×308.某商场在销售一种糖果时发现,如果以20元/kg 的单价销售,则每天可售出100kg ,如果销售单价每增加0.5元,则每天销售量会减少2kg .该商场为使每天的销售额达到1800元,销售单价应为多少?设销售单价应为x 元/kg ,依题意可列方程为( )A .(20+x )(100﹣2x )=1800B .C .D .x [100﹣2(x ﹣20)]=18009.已知关于x 的一元二次方程mx 2﹣nx =p (m ≠0)的两个根为x 1=3,x 2=5,则方程m (2x +5)2﹣n (2x +5)﹣p =0的根为( )A .x 1=3,x 2=5B .x 1=﹣1,x 2=0C .x 1=﹣2,x 2=0D .x 1=11,x 2=15 10.定义新运算:a *b =a (m ﹣b ).若方程x 2﹣mx +4=0有两个相等正实数根,且b *b =a *a (其中a ≠b ),则a +b 的值为( )A .﹣4B .4C .﹣2D .2二.填空题(每题4分,共20分)11.方程x 2﹣3=0的解是 .12.已知一元二次方程x 2+2x ﹣8=0的两根为x 1、x 2,则+2x 1x 2+= . 13.已知实数a ,b 满足等式a 2﹣2a ﹣1=0,b 2﹣2b ﹣1=0,则的值是 .14.如果两个数的差为3,并且它们的积为88,那么其中较大的一个数为 .15.已知t 是实数,若a ,b 是关于x 的一元二次方程x 2﹣2x +t ﹣1=0的两个非负实根,则(a 2﹣1)(b 2﹣1)的最小值是 .三.解答题(每题10分,共50分)16.解方程:(1)x2﹣4=0;(2)(x+3)2=(2x﹣1)(x+3).17.阅读下面的材料:我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式a2﹣2a+5的最小值.方法如下:∵a2﹣2a+5=a2﹣2a+1+4=(a﹣1)2+4,由(a﹣1)2≥0,得(a﹣1)2+4≥4;∴代数式a2﹣2a+5的最小值是4.(1)仿照上述方法求代数式x2+10x+7的最小值;(2)代数式﹣a2﹣8a+16有最大值还是最小值?请用配方法求出这个最值.18.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?19.为促进新旧功能转换,提高经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为25万元,经过市场调研发现,该设备的月销售量y(台)和销售单价x (万元)满足如图所示的一次函数关系.(1)求月销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于35万元,如果该公司想获得130万元的月利润,那么该设备的销售单价应是多少万元?20.某汽车销售公司4月份销售某厂家的汽车,在一定范围内每部汽车的进价与销售量有如下关系;若当月仅售出1辆汽车,则该部汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.6万元;销售量在10辆以上,每辆返利1.2万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为万元;(2)若该公司当月售出5辆汽车,且每辆汽车售价为m元,则该销售公司该月盈利万元(用含m的代数式表示).(3)如果汽车的售价为25.6万元/辆,该公司计划当月盈利16.8万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)参考答案一.选择题1.解:由题意得:m 2﹣2m ﹣1=2,m ﹣3≠0,解得m =﹣1或m =3.m =3不符合题意,舍去,所以它的一次项系数﹣m =1.故选:B .2.解:∵x (x ﹣5)﹣(x ﹣5)=0,∴(x ﹣5)(x ﹣1)=0,则x ﹣5=0或x ﹣1=0,解得x =5或x =1,故选:D .3.解:①若a +b +c =0,方程ax 2+bx +c =0有一根为1,又a ≠0,则b 2﹣4ac ≥0,正确; ②由两根关系可知,﹣1×2=,整理得:2a +c =0,正确;③若方程ax 2+c =0有两个不相等的实根,则﹣ac >0,可知b 2﹣4ac >0,故方程ax 2+bx +c =0必有两个不相等的实根,正确;④由b =2a +3c ,b 2﹣4ac =(2a +3c )2﹣4ac =4(a +c )2+5c 2>0,所以④正确. 故选:D .4.解:∵x 1,x 2是关于x 的一元二次方程x 2﹣(5m ﹣6)x +m 2=0的两个不相等的实根, ∴x 1+x 2=5m ﹣6,△=[﹣(5m ﹣6)]2﹣4m 2>0,解得m <或m >2,∵x 1+x 2=m 2,∴5m ﹣6=m 2,解得m =2(舍)或m =3,故选:B .5.解:设这两个月的营业额增长的百分率是x .200×(1+x )2=288,解得:x 1=﹣2.2(不合题意舍去),x 2=0.2,答:每月的平均增长率为20%.故选:C .6.解:根据题意得m +n =3,mn =﹣1, 所以=.故选:B .7.解:设花带的宽度为xm ,则可列方程为(30﹣2x )(20﹣x )=×20×30, 故选:B .8.解:由题意可得,x (100﹣)=1800,故选:C . 9.解:∵关于x 的一元二次方程mx 2﹣nx =p (m ≠0)的两个根为x 1=3,x 2=5, ∴方程m (2x +5)2﹣n (2x +5)﹣p =0中2x +5=3或2x +5=5,解得:x =﹣1或x =0,即x 1=﹣1,x 2=0,故选:B .10.解:∵方程x 2﹣mx +4=0有两个相等实数根,∴△=(﹣m )2﹣4×4=0,解得m 1=4,m 2=﹣4,当m =﹣4时方程有两个相等的负实数解,∴m =4,∴a *b =a (4﹣b ),∵b *b =a *a ,∴b (4﹣b )=a (4﹣a )整理得a 2﹣b 2﹣4a +4b =0,(a ﹣b )(a +b ﹣4)=0,而a ≠b ,∴a +b ﹣4=0,即a +b =4.故选:B .二.填空题(共5小题)11.解:方程x2﹣3=0,移项得:x2=3,解得:x=±.故答案为:±.12.解:∵一元二次方程x2+2x﹣8=0的两根为x1、x2,∴x1+x2=﹣2,x1•x2=﹣8,∴+2x1x 2 +=2x1x 2 +=2×(﹣8)+=﹣16+=﹣,故答案为:﹣.13.解:因为实数a,b满足等式a2﹣2a﹣1=0,b2﹣2b﹣1=0,(1)当a=b=1+或1﹣时,原式==2﹣2或﹣2﹣2;(2)当a≠b时,可以把a,b看作是方程x2﹣2x﹣1=0的两个根.由根与系数的关系,得a+b=2,ab=﹣1.则原式=﹣2.故填空答案:﹣2或2﹣2或﹣2﹣2.14.解:设较小的数为x,则较大的数为x+3,根据题意得:x(x+3)=88,即x2+3x﹣88=0,分解因式得:(x﹣8)(x+11)=0,解得:x=8或x=﹣11,∴x+3=11或﹣8,则较大的数为11或﹣8,故答案为:11或﹣815.解:∵a ,b 是关于x 的一元二次方程x 2﹣2x +t ﹣1=0的两个非负实根,∴可得a +b =2,ab =t ﹣1≥0,∴t ≥1,又△=4﹣4(t ﹣1)≥0,可得t ≤2,∴2≥t ≥1,又(a 2﹣1)(b 2﹣1)=(ab )2﹣(a 2+b 2)+1=(ab )2﹣(a +b )2+2ab +1,∴(a 2﹣1)(b 2﹣1),=(t ﹣1)2﹣4+2(t ﹣1)+1,=t 2﹣4,又∵2≥t ≥1,∴0≥t 2﹣4≥﹣3,故答案为:﹣3.三.解答题(共5小题)16.解:(1)∵x 2﹣4=0,∴x 2=4,则x 1=2,x 2=﹣2;(2)∵(x +3)2=(2x ﹣1)(x +3),∴(x +3)2﹣(2x ﹣1)(x +3)=0,∴(x +3)(﹣x +4)=0,则x +3=0或﹣x +4=0,解得x 1=﹣3,x 2=4.17.解:(1)∵x 2+10x +7=x 2+10x +25﹣18=(x +5)2﹣18,由(x +5)2≥0,得(x +5)2﹣18≥﹣18;∴代数式x 2+10x +7的最小值是﹣18;(2)﹣a 2﹣8a +16=﹣a 2﹣8a ﹣16+32=﹣(a +4)2+32,∵﹣(a +4)2≤0,∴﹣(a +4)2+32≤32,∴代数式﹣a 2﹣8a +16有最大值,最大值为32.18.解:(1)设BC =xm ,则AB =(33﹣3x )m ,依题意,得:x (33﹣3x )=90,解得:x 1=6,x 2=5.当x =6时,33﹣3x =15,符合题意,当x =5时,33﹣3x =18,18>18,不合题意,舍去.答:鸡场的长(AB )为15m ,宽(BC )为6m .(2)不能,理由如下:设BC =ym ,则AB =(33﹣3y )m ,依题意,得:y (33﹣3y )=100,整理,得:3y 2﹣33y +100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m 2的矩形养鸡场.19.解:(1)设y 与x 的函数关系式为y =kx +b , 依题意,得解得所以y 与x 的函数关系式为y =﹣5x +200.(2)依题知(x ﹣25)(﹣5x +200)=130.整理方程,得x 2﹣65x +1026=0.解得x 1=27,x 2=38.∵此设备的销售单价不得高于35万元,∴x 2=38(舍),所以x =27.答:该设备的销售单价应是27 万元.20.解:(1)∵当月仅售出1辆汽车,则该辆汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,∴该公司当月售出3辆汽车,则每辆汽车的进价为25﹣2×0.2=24.6万元;故答案为:24.6;(2)∵当月售出5辆汽车,∴每辆汽车的进价为25﹣4×0.2=24.2万元,∴该月盈利为5(m ﹣24.2)+5×0.6=5m ﹣118,故答案为:(5m ﹣118);(3)设需要售出x 辆汽车,由题意可知,每辆汽车的销售利润为:25.6﹣[25﹣0.2(x﹣1)]=(0.2x+0.4)(万元),当0≤x≤10,根据题意,得x•(0.2x+0.4)+0.6x=16.8,整理,得x2+5x﹣84=0,解这个方程,得x1=﹣12(不合题意,舍去),x2=7,当x>10时,根据题意,得x•(0.2x+0.4)+1.2x=16.8,整理,得x2+8x﹣84=0,解这个方程,得x1=﹣14(不合题意,舍去),x2=6,因为6<10,所以x2=6舍去.答:需要售出7辆汽车.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十一章一元二次方程检测题时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列方程:①x2-5=0;②ax2+bx+c=0;③(x-2)(x+3)=x2+1;④x2-4x+4=0;⑤x2+1x=412中,一元二次方程的个数是()A.1 B.2 C.3 D.42.一元二次方程x2-6x-6=0配方后化为()A.(x-3)2=15 B.(x-3)2=3 C.(x+3)2=15 D.(x+3)2=33.(2018·上海)下列对一元二次方程x2+x-3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根4.(2018·铜仁)关于x的一元二次方程x2-4x+3=0的解为()A.x1=-1,x2=3 B.x1=1,x2=-3 C.x1=1,x2=3 D.x1=-1,x2=-35.关于x的一元二次方程x2-3x-a=0有一个实数根为-1,则a的值()A.2 B.-2 C.4 D.-46.等腰三角形的两边长为方程x2-7x+10=0的两根,则它的周长为()A.12 B.12或9 C.9 D.77.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()8.(2018·咸宁)已知一元二次方程2x2+2x-1=0的两个根为x1,x2,且x1<x2,下列结论正确的是()A .x 1+x 2=1B .x 1·x 2=-1C .|x 1|<|x 2|D .x 12+x 1=129.(2018·舟山)欧几里得的《原本》记载,形如x 2+ax =b 2的方程的图解法是:画Rt △ABC ,使∠ACB =90°,BC =a 2,AC =b ,再在斜边AB 上截取BD =a2.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长10.(2018·乌鲁木齐)宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( )A .(180+x -20)(50-x10)=10890 B .(x -20)(50-x -18010)=10890 C .x(50-x -18010)-50×20=10890 D .(x +180)(50-x10)-50×20=10890二、填空题(每小题3分,共24分)11.把方程(x +1)(3x -2)=10化成一般形式为3x 2+x -12=0,一次项系数为1,常数项为 .12.(2018·苏州)若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n = . 13.(2018·威海)关于x 的一元二次方程(m -5)x 2+2x +2=0有实根,则m 的最大整数解是 .14.(2018·十堰)对于实数a ,b ,定义运算“※”如下:a※b =a 2-ab ,例如,5※3=52-5×3=10.若(x +1)※(x -2)=6,则x 的值为 .15.若两个不等实数m ,n 满足条件:m 2-2m -1=0,n 2-2n -1=0,则m 2+n 2的值是 . 16.等腰△ABC 中,BC =8,AB ,AC 的长是关于x 的方程x 2-10x +m =0的两根,则m 的值是 .17.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .18.一个两位数,十位上的数字比个位上的数字的平方少9.如果把十位上的数字与个位上的数字对调,得到的两位数比原来的两位数小27,则原来的两位数是 .三、解答题(共66分)19.(6分)解方程:(1)x2-5x+2=0; (2)x2-1=2(x+1).20.(6分)方程(m-2)xm2-2+(3-m)x-2=0是一元二次方程,试求代数式m2+2m-4的值.21.(6分)(2018·甘孜州)已知关于x的方程x2-2x+m=0有两个不相等的实数根,求实数m的取值范围.22.(7分)某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过30%.(1)根据物价局规定,此商品每件售价最高可定为多少元?(2)若每件商品售价定为x元,则每天可卖出(170-5x)件,商店预期每天要盈利280元,那么每件商品的售价应定为多少元?23.(9分)(2018·随州)已知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若1x1+1x2=-1,求k的值.24.(10分)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2016年该市投入基础教育经费5000万元,2018年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2019年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影仪需2000元,则最多可购买电脑多少台?25.(10分)如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A沿AB边向点B以1 cm/s的速度移动,点Q从点B沿BC边向点C以2 cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8 cm2?(2)出发几秒后,线段PQ的长为4 2 cm?(3)△PBQ的面积能否为10 cm2?若能,求出时间;若不能,请说明理由.26.(12分)(2018·常州)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x =0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程2x+3=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8 m,宽AB=3 m,小华把一根长为10 m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD,DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.第二十一章检测题答案解析时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.下列方程:①x 2-5=0;②ax 2+bx +c =0;③(x -2)(x +3)=x 2+1;④x 2-4x +4=0;⑤x 2+1x =412中,一元二次方程的个数是(B )A .1B .2C .3D .42.一元二次方程x 2-6x -6=0配方后化为(A )A .(x -3)2=15B .(x -3)2=3C .(x +3)2=15D .(x +3)2=33.(2018·上海)下列对一元二次方程x 2+x -3=0根的情况的判断,正确的是(A ) A .有两个不相等实数根 B .有两个相等实数根 C .有且只有一个实数根 D .没有实数根4.(2018·铜仁)关于x 的一元二次方程x 2-4x +3=0的解为(C )A .x 1=-1,x 2=3B .x 1=1,x 2=-3C .x 1=1,x 2=3D .x 1=-1,x 2=-3 5.关于x 的一元二次方程x 2-3x -a =0有一个实数根为-1,则a 的值(C ) A .2 B .-2 C .4 D .-46.等腰三角形的两边长为方程x 2-7x +10=0的两根,则它的周长为(A ) A .12 B .12或9 C .9 D .77.若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是(B )8.(2018·咸宁)已知一元二次方程2x 2+2x -1=0的两个根为x 1,x 2,且x 1<x 2,下列结论正确的是(D ) A .x 1+x 2=1 B .x 1·x 2=-1 C .|x 1|<|x 2| D .x 12+x 1=129.(2018·舟山)欧几里得的《原本》记载,形如x 2+ax =b 2的方程的图解法是:画Rt △ABC ,使∠ACB =90°,BC =a 2,AC =b ,再在斜边AB 上截取BD =a2.则该方程的一个正根是(B )A .AC 的长B .AD 的长C .BC 的长D .CD 的长10.(2018·乌鲁木齐)宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有(B )A .(180+x -20)(50-x10)=10890 B .(x -20)(50-x -18010)=10890C .x(50-x -18010)-50×20=10890D .(x +180)(50-x10)-50×20=10890二、填空题(每小题3分,共24分)11.把方程(x +1)(3x -2)=10化成一般形式为3x 2+x -12=0,一次项系数为1,常数项为-12. 12.(2018·苏州)若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n =-2.13.(2018·威海)关于x 的一元二次方程(m -5)x 2+2x +2=0有实根,则m 的最大整数解是4.14.(2018·十堰)对于实数a ,b ,定义运算“※”如下:a※b =a 2-ab ,例如,5※3=52-5×3=10.若(x +1)※(x -2)=6,则x 的值为1.15.若两个不等实数m ,n 满足条件:m 2-2m -1=0,n 2-2n -1=0,则m 2+n 2的值是6.16.等腰△ABC 中,BC =8,AB ,AC 的长是关于x 的方程x 2-10x +m =0的两根,则m 的值是25或16. 17.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是10%. 18.一个两位数,十位上的数字比个位上的数字的平方少9.如果把十位上的数字与个位上的数字对调,得到的两位数比原来的两位数小27,则原来的两位数是74.三、解答题(共66分) 19.(6分)解方程:(1)x 2-5x +2=0; (2)x 2-1=2(x +1).(1)x 1=5+172,x 2=5-172解:(2)x 1=-1,x 2=320.(6分)方程(m -2)xm 2-2+(3-m)x -2=0是一元二次方程,试求代数式m 2+2m -4的值.根据题意,得m 2-2=2且m -2≠0,解得m =±2且m ≠2,∴m =-2,∴m 2+2m -4=(-2)2+2×(-2)-4=4-4-4=-421.(6分)(2018·甘孜州)已知关于x 的方程x 2-2x +m =0有两个不相等的实数根,求实数m 的取值范围. ∵方程x 2-2x +m =0有两个不相等的实数根,∴Δ=(-2)2-4×1×m =4-4m >0,解得m <122.(7分)某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过30%. (1)根据物价局规定,此商品每件售价最高可定为多少元?(2)若每件商品售价定为x 元,则每天可卖出(170-5x)件,商店预期每天要盈利280元,那么每件商品的售价应定为多少元?(1)16(1+30%)=20.8,即此商品每件售价最高可定为20.8元 (2)由题意得(x -16)·(170-5x)=280,解得x 1=20,x 2=30,因为售价最高不得高于20.8元,所以x 2=30不合题意,应舍去.故每件商品的售价应定为20元23.(9分)(2018·随州)已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2. (1)求k 的取值范围;(2)若1x 1+1x 2=-1,求k 的值.(1)∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根,∴Δ=(2k +3)2-4k 2>0,解得k >-34 (2)∵x 1,x 2是方程x 2+(2k +3)x +k 2=0的实数根,∴x 1+x 2=-2k -3,x 1x 2=k 2,∴1x 1+1x 2=x 1+x 2x 1x 2=-(2k +3)k 2=-1,解得k 1=3,k 2=-1,经检验,k 1=3,k 2=-1都是原分式方程的根.又∵k >-34,∴k =324.(10分)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2016年该市投入基础教育经费5000万元,2018年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2019年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影仪需2000元,则最多可购买电脑多少台?(1)设该市这两年投入基础教育经费的年平均增长率为x ,根据题意,得5000(1+x)2=7200,解得x 1=0.2=20%,x 2=-2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20% (2)2019年投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m 台,则购买实物投影仪(1500-m)台,根据题意,得3500m +2000(1500-m)≤86400000×5%,解得m ≤880.答:2019年最多可购买电脑880台25.(10分)如图,在△ABC 中,∠B =90°,AB =6 cm ,BC =8 cm ,若点P 从点A 沿AB 边向点B 以1 cm /s 的速度移动,点Q 从点B 沿BC 边向点C 以2 cm /s 的速度移动,两点同时出发.(1)问几秒后,△PBQ 的面积为8 cm 2?(2)出发几秒后,线段PQ 的长为4 2 cm?(3)△PBQ 的面积能否为10 cm 2?若能,求出时间;若不能,请说明理由.(1)设经过t 秒时,△PBQ 的面积为8 cm 2,则PB =6-t ,BQ =2t ,∵∠B =90°,∴12(6-t)×2t =8,解得t 1=2,t 2=4,经过2秒或4秒时,△PBQ 的面积为8 cm 2 (2)设x 秒后,PQ =4 2 cm ,由题意,得(6-x)2+(2x)2=(42)2,解得x 1=25,x 2=2,故经过25秒或2秒时,线段PQ 的长为4 2 cm(3)△PBQ 的面积不能为10 cm 2.理由如下:设经过y 秒,△PBQ 的面积等于10 cm 2,则12×(6-y)×2y =10,即y 2-6y +10=0,∵Δ=b 2-4ac =36-4×10=-4<0,∴△PBQ 的面积不会等于10 cm 226.(12分)(2018·常州)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x =a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x =0,可以通过因式分解把它转化为x(x 2+x -2)=0,解方程x =0和x 2+x -2=0,可得方程x 3+x 2-2x =0的解.(1)问题:方程x 3+x 2-2x =0的解是x 1=0,x 2= ,x 3= ; (2)拓展:用“转化”思想求方程2x +3=x 的解;(3)应用:如图,已知矩形草坪ABCD 的长AD =8 m ,宽AB =3 m ,小华把一根长为10 m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD ,DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP 的长.(1)-2 1 (2)2x +3=x ,方程的两边平方,得2x +3=x 2,即x 2-2x -3=0,(x -3)(x +1)=0,∴x -3=0或x +1=0,∴x 1=3,x 2=-1,当x =-1时,2x +3=1=1≠-1,∴-1不是原方程的解.∴方程2x +3=x 的解是x =3 (3)∵四边形ABCD 是矩形,∴∠A =∠D =90°,AB =CD =3 m ,设AP =x m ,则PD =(8-x)m ,∵BP +CP =10,BP =AP 2+AB 2,CP =CD 2+PD 2,∴9+x 2+(8-x )2+9=10,∴(8-x )2+9=10-9+x 2,两边平方,得(8-x)2+9=100-209+x 2+9+x 2,整理,得5x 2+9=4x +9,两边平方并整理,得x 2-8x +16=0,即(x -4)2=0,所以x =4.经检验,x =4是方程的解.答:AP 的长为4 m。

相关文档
最新文档