全球定位系统的工作原理
全球定位系统(GPS)使用 教学PPT课件

内容
1、 2、 3、
GPS简介 GPS定位原理 GPS测量的特点
全球定位系统(Global Positioning System, 简称GPS)是美国从20世纪70年代开始研制 的用于军事部门的新一代卫星导航与定位系统, 历时20年,耗资200多亿美元,分三阶段研制, 陆续投入使用,并于1994年全面建成。GPS 是以卫星为基础的无线电卫星导航定位系统, 它具有全能性、全球性、全天候、连续性和实 时性的精密三维导航与定位功能,而接收机、数据处理 软件及其终端设备(如计算机)等组成。GPS 接收机可捕获到按一定卫星高度截止角所选择 的待测卫星的信号,跟踪卫星的运行,并对信 号进行交换、放大和处理,再通过计算机和相 应软件,经基线解算、网平差,求出GPS接收 机中心(测站点)的三维坐标。
2、 GPS定位原理
GPS定位是根据测量中的距离交会定点原理实 现的。如图15所示,在待 测点Q设置GPS接 收机,在某一时刻tk同时接收到3颗(或3颗以 上)卫星S1、S2、S3所发出的信号。通过数 据处理和计算,可求得该时刻接收机天线中心 (测站点)至卫星的距离ρ1、ρ2、ρ3。根据 卫星星历可查到该时刻3颗卫星的三维坐标 (Xj,Yj,Zj),j=1,2,3,从而由公式解 算出Q点的三维坐标(X,Y,Z):
图15 GPS定位原理
3、 GPS测量的特点
①测量精度高。 ②测站间无需通视。 ③观测时间短。 ④仪器操作简便。 ⑤全天候作业。 ⑥提供三维坐标。 ⑦功能多、应用广
1、 GPS简介
GPS主要由空间卫星星座、地面监控站及用 户设备三部分构成。
(1)GPS空间卫星星座由21颗工作卫星和3颗 在轨备用卫星组成。卫星用L波段的两个无线 电载波向广大用户连续不断地发送导航定位信 号,导航定位信号中含有卫星的位置信息,使 卫星成为一个动态的已知点。
定位器的工作原理

定位器的工作原理
定位器是一种设备,用于确定或追踪一个物体或个体在空间中的位置。
它通过使用不同的技术和方法来实现定位,并根据不同应用的要求可能会有不同的工作原理。
以下是几种常用的定位器工作原理:
1. 全球定位系统(GPS):GPS定位器使用通过卫星发射的无线电信号来确定一个物体或个体的位置。
该信号由至少三颗以上的GPS卫星接收,并根据信号的延迟和接收时间差来计算位置。
2. 基站定位:基站定位器使用基站信号的接收强度和到达时间差来确定物体或个体的位置。
通过测量来自不同基站的信号强度和时间差,定位器可以计算出目标在基站之间的位置。
3. 超声波定位:超声波定位器使用超声波信号的发送和接收来计算物体或个体的位置。
定位器发射超声波信号,然后测量信号的回波时间来确定距离,同时使用多个超声波传感器来计算目标的三维位置。
4. 无线定位:无线定位器使用无线信号的发送和接收来确定物体或个体的位置。
该技术可通过测量信号的到达时间、信号强度和多径效应等来计算目标的位置。
这些是仅举几例的定位器工作原理,不同的定位器可能会应用不同的技术和方法来实现。
但总体而言,定位器的工作原理都
是通过测量和计算与目标物体(或个体)之间的信号传播特性来确定其位置。
gps实验报告

gps实验报告GPS实验报告。
一、实验目的。
本实验旨在通过GPS定位技术,对GPS接收机进行测试,验证其定位精度和稳定性,以及对GPS信号的接收情况进行分析。
二、实验原理。
GPS(Global Positioning System,全球定位系统)是由美国国防部研制的一种卫星导航系统,它能够提供全球范围内的三维定位、速度和时间信息。
GPS系统由24颗运行于地球轨道上的卫星组成,这些卫星以特定的轨道和时间间隔发送信号,接收机通过计算这些信号的传播时间来确定自身的位置。
三、实验步骤。
1. 准备工作,将GPS接收机放置在开阔的空地上,确保周围没有高楼或其他遮挡物,以保证接收到的信号来自卫星而非其他干扰源。
2. 启动GPS接收机,打开GPS接收机的电源,等待其自动搜索卫星信号并进行定位。
3. 数据采集,在接收机显示屏上记录下当前的经度、纬度、海拔高度等信息,并记录下时间。
4. 移动测试,在不同的位置重复步骤2和3,以验证GPS定位的准确性和稳定性。
四、实验结果分析。
通过对实验数据的分析,我们发现在开阔的空地上,GPS接收机能够快速、准确地定位到当前位置的经纬度和海拔高度信息。
在移动测试中,随着移动位置的变化,GPS接收机能够实时更新定位信息,且定位精度较高。
五、实验总结。
本次实验验证了GPS接收机的定位精度和稳定性,证明了GPS定位技术在开阔空地上的可靠性。
然而,在城市高楼林立或密林深处等遮挡物较多的地方,GPS 信号的接收可能会受到影响,导致定位精度下降。
因此,在实际应用中,需要根据具体情况选择合适的定位方式。
六、参考文献。
1. 徐明,李华. GPS原理与应用[M]. 北京,科学出版社,2009.2. 王强,刘明. GPS技术应用实例分析[J]. 测绘通报,2015,(6),78-82.七、致谢。
感谢实验室的各位老师和同学们在本次实验中的支持与帮助,让我们能够顺利完成实验并取得了丰富的实践经验。
以上即为本次GPS实验的报告内容,希望能对相关领域的学习和研究有所帮助。
定位器的工作原理

定位器的工作原理
定位器的工作原理是通过利用不同的技术手段来确定物体或人在空间中的准确位置。
一个常见的定位器是全球定位系统(GPS),它是利用地球上
的多颗卫星和接收器之间的通信来确定位置的。
GPS接收器
接收由卫星发射的信号,通过测量信号的传播时间以及卫星的位置信息,计算出接收器与卫星之间的距离。
通过至少三颗卫星的信号,GPS系统可以利用三角定位原理计算出接收器的
准确位置。
另一个常见的定位器是基站定位。
在移动通信网络中,移动电话通过与多个基站的通信来实现定位。
基站会向手机发送信号,并测量信号的传播时间。
根据信号传播时间的差异,可以计算出手机与各个基站之间的距离。
对于三个或更多的基站,可以利用三角定位原理计算出手机的准确位置。
除了GPS和基站定位,还有其他定位技术,如无线传感器网络、惯性导航系统、超宽带定位等。
这些技术利用不同的物理原理来实现定位,如信号强度、时间差测量、加速度测量等。
总的来说,定位器的工作原理是通过测量和计算物体或人与参考源之间的距离、角度或其他相关参数,从而确定其准确位置的。
不同的定位技术具有不同的适用场景和精度要求,可以根据具体需求选择合适的定位器。
gps的原理是什么

gps的原理是什么
GPS的原理是基于卫星定位系统工作的。
GPS系统由地面的
控制站和在轨道上绕地球运行的一组24颗卫星组成。
这些卫
星被称为全球定位系统,它们以恒定的速度绕地球周围运行。
每颗卫星每天绕地球转两次,通过固定的轨道,确保整个地球上的任何地点都可以收到至少四颗卫星的信号。
GPS设备接收卫星发出的信号,并通过计算信号发送和接收
的时间来确定位置。
每颗卫星都具有一个精确的原子钟,其时间同步在地面控制站进行监控和修正。
当GPS接收器接收到
至少四颗卫星的信号时,它能够计算出接收器与每颗卫星之间的距离。
然后,通过三角测量原理,GPS设备可以确定接收
器所在的地理坐标。
在进行位置计算时,GPS接收器会考虑到卫星的位置和距离,以及信号的传输速度。
由于信号在空间中传播的速度是已知的,接收器可以计算出信号从卫星到接收器的距离,并以此为基础来确定位置。
这些计算需要高度精确的时间测量,因此GPS
接收器需要使用非常精确的原子钟。
总结来说,GPS的原理是通过接收卫星发送的信号,并计算
信号的时间和距离来确定接收器的位置。
GPS系统的准确性
取决于卫星的数量和位置,以及接收器的精确度和计算能力。
GPS导航定位原理以及定位解算算法

G P S导航定位原理以及定位解算算法TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-GPS导航定位原理以及定位解算算法全球定位系统(GPS)是英文Global Positioning System的字头缩写词的简称。
它的含义是利用导航卫星进行测时和测距,以构成全球定位系统。
它是由美国国防部主导开发的一套具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航定位系统。
GPS用户部分的核心是GPS接收机。
其主要由基带信号处理和导航解算两部分组成。
其中基带信号处理部分主要包括对GPS卫星信号的二维搜索、捕获、跟踪、伪距计算、导航数据解码等工作。
导航解算部分主要包括根据导航数据中的星历参数实时进行各可视卫星位置计算;根据导航数据中各误差参数进行星钟误差、相对论效应误差、地球自转影响、信号传输误差(主要包括电离层实时传输误差及对流层实时传输误差)等各种实时误差的计算,并将其从伪距中消除;根据上述结果进行接收机PVT(位置、速度、时间)的解算;对各精度因子(DOP)进行实时计算和监测以确定定位解的精度。
本文中重点讨论GPS接收机的导航解算部分,基带信号处理部分可参看有关资料。
本文讨论的假设前提是GPS接收机已经对GPS卫星信号进行了有效捕获和跟踪,对伪距进行了计算,并对导航数据进行了解码工作。
1 地球坐标系简述要描述一个物体的位置必须要有相关联的坐标系,地球表面的GPS接收机的位置是相对于地球而言的。
因此,要描述GPS接收机的位置,需要采用固联于地球上随同地球转动的坐标系、即地球坐标系作为参照系。
地球坐标系有两种几何表达形式,即地球直角坐标系和地球大地坐标系。
地球直角坐标系的定义是:原点O与地球质心重合,Z轴指向地球北极,X轴指向地球赤道面与格林威治子午圈的交点(即0经度方向),Y轴在赤道平面里与XOZ 构成右手坐标系(即指向东经90度方向)。
手机的gps工作原理

手机的gps工作原理
手机的GPS(全球定位系统)工作原理是基于卫星导航系统,主要分为三个步骤:接收、计算和定位。
1. 接收:手机通过内置的GPS芯片接收来自卫星的无线电信号。
GPS系统由24颗绕地球轨道运行的卫星组成,这些卫星
以不同的轨道高度和角度分布在全球范围内,确保至少可见4
颗卫星。
手机接收到的信号中包含有关卫星的位置、速度和时间信息。
2. 计算:手机通过计算接收到信号的时间差来确定当前手机和卫星之间的距离。
每颗卫星都会发送信号,并且包含其位置和发送的时间。
手机接收到多颗卫星的信号后,将计算每颗卫星与手机之间的距离,并使用三角定位算法来确定手机所在的位置。
为了提高定位精度,手机需要收集尽可能多的卫星信号。
3. 定位:通过计算得到的卫星距离和位置信息,手机可以利用三角定位算法确定自身的位置。
三角定位算法使用三个或更多卫星信号交叉定位,使用卫星之间的距离差异来计算手机与卫星之间的相对位置。
一旦手机与足够多的卫星建立了通信,并根据其相对位置计算了自身的经纬度,就能够确定手机的准确位置。
需要注意的是,GPS系统的精度和可用性受到许多因素的影响,例如卫星的位置、地形、气候条件以及可能存在的信号干扰等。
此外,使用手机的GPS功能还需要手机具备开启位置
服务的权限,并且能够与移动网络或Wi-Fi网络进行通信,以获取卫星信号和进行定位计算。
简述gps的工作原理及应用

简述GPS的工作原理及应用工作原理GPS(全球定位系统)是一种通过使用地球上的卫星系统来确定地理位置的系统。
GPS系统主要由三部分组成:卫星,控制台和用户设备(如GPS接收器)。
GPS接收器是用于接收和解码卫星信号以确定位置的设备。
GPS的工作原理基于“三角测量”原理。
GPS接收器通过接收来自多颗卫星的信号,并测量信号从卫星传输到接收器的时间。
接收器从不同的卫星获取时间和位置信息后,利用三角形几何学原理计算出接收器的精确位置。
具体而言,GPS接收器通过接收来自至少四颗卫星的信号来进行位置测量。
每颗卫星发送包含卫星的精确位置和时间信息的信号。
接收器接收到这些信号后,计算每个信号的传播时间,并从中推算出接收器到卫星的距离。
通过收集并处理多个卫星的距离信息,接收器能够准确计算出自身的位置。
应用1. 导航与定位GPS最常见的应用是导航和定位。
凭借其高精度、全球覆盖的特点,GPS能够提供实时的位置信息,帮助人们准确地确定自己的位置,并提供导航指引。
人们可以使用GPS设备或智能手机上的GPS功能来导航驾车、步行或进行户外活动。
2. 航空和航海在航空和航海领域,GPS发挥着重要的作用。
飞机和船只可以利用GPS系统来准确确定自己的位置,确保航行的安全和准确性。
GPS系统还提供了导航和航线规划的功能,帮助飞行员和船员更好地控制航行路径。
3. 交通管理GPS在交通管理中也发挥着重要的作用。
交通管理部门可以使用GPS系统来监控车辆的位置和速度,实时了解交通流量,并做出相应的调整。
通过GPS系统,交通管理者能够更好地规划交通路线,减少拥堵,提高交通效率。
4. 物流和运输GPS系统在物流和运输领域也有广泛的应用。
物流公司可以使用GPS来跟踪货物的位置,实时了解货物的运输情况,并提供给客户准确的配送时间。
GPS系统还能帮助物流公司规划最优的配送路线,提高运输效率。
5. 农业农业领域也是GPS应用的一个重要领域。
农民可以使用GPS设备来优化土地利用,规划农田,精确测量施肥和灌溉量,提高作物的生产效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全球定位系统的工作原理
全球定位系统(GPS)是由一组卫星和地面站组成的系统,用于确定任何地点的精确位置。
GPS 可以被用来导航、测量、地图制图和其他应用。
GPS 的工作原理基于三角定位原理。
GPS 接收机通过接收卫星发射的信号,并测量信号传输的时间来计算接收机和卫星之间的距离。
接收机需要同时接收至少三颗卫星的信号来确定其三维位置。
如果接收到更多的卫星信号,那么计算结果会更加准确。
GPS 接收机通过将卫星信号的时间差转化为距离,然后将这些距离与卫星的位置信息相结合,计算出设备的三维位置。
这些计算都是由 GPS 接收机内部的计算机程序完成的。
GPS 接收机还可以使用地面站广播的较精确的时间信号来纠正
时钟偏差和测量误差。
这些时间信号可以提高 GPS 接收机的定位精度。
总之,GPS 通过测量卫星信号的时间延迟来计算设备和卫星之间的距离,从而确定设备的精确位置。
它是一项非常重要的技术,广泛用于军事、民用和商业应用中。
- 1 -。