力的分解

合集下载

3.5《力的分解》ppt.

3.5《力的分解》ppt.

2.(2008年上海物理卷 )有一个直角支架 AOB, AO 水 平 放 置 , 表 面 粗 糙 , OB 竖 直 向 下 , 表 面 光 滑, AO上套有小环 P, OB上套有小环 Q,两环质量 均为 m ,两环间由一根质量可忽略、不可伸长的细 绳相连,并在某一位置平衡,如图4-2所示.现将P 环向左移一小段距离,两环再次达到平衡,那么将 移动后的平衡状态和原来的平衡状态比较,AO杆对 P环的支持力N和细绳上的拉力T的变化情况是( ) A.N不变,T变大 B.N不变,T变小 C.N变大,T变大 D.N变大,T变小
α
F、凿、刨等切削工具的刃部叫做劈,劈的纵截面 是一个三角形,如图所示。使用劈的时候,在劈背上加 力F,这个力产生两个效果,使劈的侧面挤压物体,把 物体劈开。设劈的纵截面是一个等腰三角形,劈背的宽 度是d,劈的侧面长度是L。试证明劈的两个侧面对物体 的压力F1、F2满足:F1=F2=F(L/d)


Gy
G
★★.如图所示,所受重力大小为G的木块和倾 角为θ的斜面体间的接触面光滑,对木块施加一 水平推力F,木块相对斜面体静止,斜面体固定 在水平面上,则木块对斜面体的压力大小为
A F 2 G2 B G cos F C cos D G cos F sin
例6.三段不可伸长细绳OA、OB、OC共同悬挂一质 量为m的重物.其中OB是水平的,OA绳与竖直方向 TA=mg/cos 的夹角为. TB=mg tan (1)求OA,OB两绳的拉力. (2)若三绳承受的最大拉力相同,逐渐增加C端所挂物 体的质量则最先断的绳是 OA.
面粗糙.现将 B 球向左移动一小段距离,两球再次达到平
衡,那么将移动后的平衡状态和原来的平衡状态比较,地面 对B球的支持力F1和摩擦力F2的大小变化情况是( )

高中物理必修一-力的分解

高中物理必修一-力的分解

力的分解知识集结知识元力的分解知识讲解力的分解一、力的分解1.力的分解:求一个已知力的分力叫做力的分解.2.分解规律:力的分解是力的合成的逆运算,同样遵守平行四边形定则,即把已知力作为平形四边形的对角线,那么,与已知力共面的平行四边形的两条邻边就表示已知力的两个分力.3.力的分解方法:根据力F产生的作用效果,先确定两个分力的方向,再根据平行四边形定则用作图法作出两个分力F1和F2的示意图,最后根据相关数学知识计算出两个分力的大小二、力的分解的解的问题1.已知两分力方向(1)两分力方向在一条直线上时当两力与合力同向时,无论是同向还是反向,均有无数组解.(2)两分力不在一条直线上时要使问题有解,合力必夹在两分力之间,仅有一组解.2.已知一个分力的大小和方向合力与一个确定的分力已经确定了三角形的三个顶点(三力在一条直线上的情况可看成是压扁的三角形),由三角形定则知,解是唯一的.3.已知两个分力的大小要使问题有解,两个分力的代数和不能小于合力的大小;差的绝对值不能大于合力的大小.在这个前提下讨论,可以做图得到结果.(1)当时在平面内有两解,在空间中有无数解.(如图所示)(2)当时,有唯一解(3)当时,有唯一解4.已知其中一分力F1的方向和另一分力F2的大小时(1)已知方向的分力与合力成锐角时(2)已知方向的分力与合力成直角或钝角时当时,无解.当时,有唯一解.按力的效果进行分解一、按效果分在实际问题中一个力究竟该分解成怎样的两个力,要看力的实际作用效果二、分解方法:1.根据力的实际作用效果确定两个分力的方向2.根据两个分力的方向做平行四边形3.根据平行四边形和相关的数学知识,求出两个分力的大小和方向.正交分解法正交分解法是把力沿着两个经选定的互相垂直的方向作分解,其目的是便于运用普通代数运算公式来解决矢量的运算,它是处理力的合成和分解的复杂问题的一种简便方法,其步骤如下:1.正确选定直角坐标系.通常选共点力的作用点为坐标原点,坐标轴方向的选择则应根据实际问题来确定,原则是使坐标轴与尽可能多的力重合,即:使向两坐标轴投影分解的力尽可能少.在处理静力学问题时,通常是选用水平方向和竖直方向上的直角坐标,当然在其他方向较为简便时也可选用.2.分别将各个力投影到坐标轴上,分别求出x轴和y轴上各力的投影的合力F x和F y:F x=F1x+F2x+F3x+……;F y=F1y+F2y+F3y+……(式中的F1x和F1y是F1在x轴和y轴上的两个分量,其余类推.)这样,共点力的合力大小为:F=.3.设合力的方向与x轴正方向之间的夹角为α,因为tanα=,所以,通过查数学用表,可得α数值,即得出合力F的方向.特别的:若F=0,则可推得F x=0,F y=0.这是处理多个力作用下物体平衡问题的常用的好办法.例题精讲力的分解例1.关于力的分解,下列说法中不正确的是()A.一个力可以分解成两个比它大的分力B.一个力可分解成两个大小跟它相等的力C.如果一个力和它的一个分力的大小方向确定,那么另一个分力就是唯一的D.如果一个力以及它的一个分力大小和另一个分力的方向确定,这两个分力就完全确定了例2.如图所示,将力F分解为F1和F2两个分力,已知F1的大小和F2与F之间的夹角α,且α为锐角,则()A.当F1>F sinα时,一定有两解B.当F1=F sinα时,有唯一解C.当F1<F sinα时,无解D.当F sinα<F1<F时,一定有两解例3.如图所示,一物块在水平拉力F的作用下沿水平桌面做匀速直线运动.若保持F的大小不变,而方向与水平面成53°角时,物块也恰好做匀速直线运动.则物块与桌面间的动摩擦因数为(不计空气阻力,sin53°=0.8,cos53°=0.6)()A.B.C.D.当堂练习单选题练习1.在日常生活中,力的分解有着广泛的应用,如甲图用斧子把木桩劈开的图,已知两个侧面之间的夹角为2θ,斧子对木桩施加一个向下的力F时,产生了大小相等的两个侧向分力F1、F2,由乙图可得下列关系正确的是()A.B.C.D.练习2.如图所示,质量均为M的A、B两滑块放在粗糙水平面上,两轻杆等长,杆与滑块、杆与杆间均用光滑铰链连接,在两杆铰合处悬挂一质量为m的重物C,整个装置处于静止状态,设杆与水平面间的夹角为θ.下列说法正确的是()A.当m一定时,θ越大,轻杆受力越小B.当m一定时,θ越小,滑块对地面的压力越大C.当θ一定时,M越大,滑块与地面间的摩擦力越大D.当θ一定时,M越小,可悬挂重物C的质量m越大练习3.将一个有确定方向的力F=10N分解成两个分力,已知一个分力有确定的方向,与F成30°夹角,另一个分力的大小为6N,则在分解时()A.有无数组解B.有两组解C.有唯一解D.无解练习4.为了行车的方便与安全,上山的公路都是很长的“之”字形盘山公路,这样做的主要目的是()A.减小上山车辆受到的摩擦力B.减小上山车辆的重力C.减小上山车辆对路面的压力D.减小上山车辆的重力平行于路面向下的分力练习5.关于力的分解,下列说法中不正确的是()A.一个力可以分解成两个比它大的分力B.一个力可分解成两个大小跟它相等的力C.如果一个力和它的一个分力的大小方向确定,那么另一个分力就是唯一的D.如果一个力以及它的一个分力大小和另一个分力的方向确定,这两个分力就完全确定了练习6.已知两个共点力F的合力为2N,分力F1的方向与合力F的方向成30°角,分力F2的大小为N.则()A.F2的方向是唯一的B.F2有无数个可能的方向C.F1的大小是唯一的D.F1的大小可取N练习7.如图中按力的作用效果分解正确的是()B.C.D.A.练习8.如图所示,被轻绳系住静止在光滑斜面上的小球.若按力的实际作用效果来分解小球受到的重力G,则G的两个分力的方向分别是图中的()A.1和4 B.3和4 C.2和4 D.3和2练习9.如图,研究物体沿斜面下滑时,常把物体所受的重力分解为()A.斜面支持力和下滑力B.沿斜面向下的下滑力和垂直在斜面上的压力C.平行于斜面向下的分力和垂直于斜面向下的分力D.下滑力和垂直于斜面向下的分力练习10.如图所示,倾角为θ的斜面上固定有一竖直挡板,重为G的光滑小球静止时对斜面的压力为N,小球的重力按照产生的作用效果可分解为()A.垂直于斜面的分力和水平方向的分力,且B.垂直于斜面的分力和水平方向的分力,且N=G cosθC.垂直于斜面的分力和平行于斜面的分力,且D.垂直于斜面的分力和平行于斜面的分力,且N=G cosθ练习11.如图所示,倾角为15°的斜面上放着一个木箱,现有一个与水平方向成45°角的拉力F斜向上拉着木箱.分别以平行于斜面和垂直于斜面的方向为x轴和y轴建立坐标系,把F分解为沿着两个坐标轴的分力.则分力F x和F y的大小分别为()A.F cos15°、F sin15°B.F cos30°、F sin30°C.F cos45°、F sin45°D.F cos60°、F sin60°练习12.如图所示,在高度不同的两水平台阶上放有质量分别为m1、m2的两物体,物体间用轻弹簧相连,弹簧与竖直方向夹角为θ.在m1左端施加水平拉力F,使m1、m2均处于静止状态,已知m1下表面光滑,重力加速度为g,则下列说法正确的是()A.弹簧可能处于压缩状态B.弹簧弹力的大小为C.地面对m2的支持力可能为零D.地面对m2的摩擦力大小为F练习13.如图所示,一物块在水平拉力F的作用下沿水平桌面做匀速直线运动.若保持F的大小不变,而方向与水平面成53°角时,物块也恰好做匀速直线运动.则物块与桌面间的动摩擦因数为(不计空气阻力,sin53°=0.8,cos53°=0.6)()A.B.C.D.多选题练习1.如图所示是骨折病人的牵引装置示意图,绳的一端固定,绕过定滑轮和动滑轮后挂着一个重物,与动滑轮相连的帆布带拉着病人的脚,整个装置在同一竖直平面内.为了使脚所受的拉力减小,可采取的方法是()A.只增加绳的长度B.只减小重物的质量C.只将病人的脚向左移动D.只将两定滑轮的间距增大练习2.将一个力F分解为两个分力F1和F2,则下列说法中正确的是()A.F1和F2的代数和等于FB.F1和F2两个分力在效果上可以取代力FC.F是F1和F2的合力D.物体受到F1、F2和F三个力的作用练习3.图1为斧子劈开树桩的实例,树桩容易被劈开是因为形的斧锋在砍进木桩时,斧刃两侧会对木桩产生很大的侧向压力,将此过程简化成图2的模型,已知斧子是竖直向下且对木桩施加一个竖直向下的力F,斧子形的夹角为θ,则()A.斧子对木桩的侧向压力大小为B.斧子对木桩的侧向压力大小为C.斧锋夹角越大,斧子对木桩的侧向压力越大D.斧锋夹角越小,斧子对木桩的侧向压力越大练习4.如图所示,将力F分解为F1和F2两个分力,已知F1的大小和F2与F之间的夹角α,且α为锐角,则()A.当F1>F sinα时,一定有两解B.当F1=F sinα时,有唯一解C.当F1<F sinα时,无解D.当F sinα<F1<F时,一定有两解练习5.将力F分解为两个共点力,已知其中一个分力F1的方向与F的夹角为θ,则()A.若已知另一个分力的方向,就可得到确定的两个分力B.若已知F1的大小,就可以得到确定的两个分力C.若已知另一个分力的大小,一定可以得到确定的两个分力D.另一个分力的最小值为F sinθ练习6.已知两个共点力的合力为60N,分力F1的方向与合力F的方向成30°角,分力F2的大小为35N,下列说法中正确的有()A.F1的大小是唯一的B.F1的大小有两个可能的值C.F2有两个可能的方向D.可能任意方向填空题练习1.如图所示,重10N的物体静止在倾斜的长木板上,按照重力的实际作用效果将重力分解为:沿_____________方向的分力和沿____________方向的分力.请准确画出两个分力的图示(要求保留作图痕迹),由图示可读得:F1=______N,F2=______N.(精确到0.1N)按照重力作用的实际效果,可以将重力沿垂直木板方向和平行木板方向进行分解.木板上物体的重力,按效果分解的力图如图.解答题练习1.'已知共点力F1=10N,F2=10N,F3=5(1+)N,方向如图所示.求:(1)F1、F2的合力F合的大小和方向(先在图甲中作图,后求解);(2)F1、F2、F3的合力F合的大小和方向(先在图乙中作图,后求解).'练习2.'如图一大人拉着装有货物的木箱匀速前进,用的拉力为200N,车和货物的总重为500N.F与水平线的夹角为37°,(sin37°=0.6、cos37°=0.8)求:(1)F沿水平方向的分力和竖直方向的分力是多少?(2)地面对木箱的摩擦力是多少?方向向哪?(3)地面对木箱的支持力是多少?(4)画出木箱受力图.'练习3.'如图所示,一物块置于水平地面上.当用与水平方向成60°角的力F1拉物块时,物块做匀速直线运动;当改用与水平方向成60°角的力F2推该物块时,物块仍做匀速直线运动.已知物块与地面间的动摩擦因数为,求F1与F2的大小之比.'练习4.'如图1用水平拉力F刚好能使质量为m的物块在静止水平木板上做匀速直线运动,已知重力加速度为g,求:(1)物块与木板间的动摩擦因数μ是多少?(2)若将水平拉力F改为与水平方向斜向上成θ角度的拉力F1拉物块如图2,仍使物块沿该水平木板做匀速直线运动,则拉力F1为多大?(3)如图3若将木板一端固定,另一端抬高,使木板与水平面成α角度,形成一斜面,现用平行于斜面向上的力F2沿斜面向上拉物块,仍能使物块做匀速直线运动,则拉力F2又是多大?'。

力的分解(课件)

力的分解(课件)

1、两个分力的方向 、
o F2
F1 F
2、一个分力的大 、 小和方向
F1
O
F
F2
三、力的分解实例
《力的分解》 力的分解》
实例1 放在水平面上的物体,受到与水平方向成α 实例1:放在水平面上的物体,受到与水平方向成α 角的拉力F的作用, 角的拉力F的作用,请按力所产生的实际作用效果 分解拉力F 分解拉力F。
N 解:球受到重力G、 球受到重力 、 挡板弹力F、 挡板弹力 、 斜面支持 力N,共三个力作用。 ,共三个力作用。 把重力分解为水平方 向的分力G , 向的分力 1,和垂直 于斜面方向的分力G2。 于斜面方向的分力 。 F=G1 =G tgα α G1
α
F
α
G
G2
N=G2 =G/cosα α
《力的分解》 力的分解》
F2 α
F F1
F产生两个效果:水平向前拉物体,同时竖直向上提物体。 产生两个效果:水平向前拉物体, 时竖直向上提物体。 产生两个效果 因而力F可以分解为沿水平方向的分力 因而力 可以分解为沿水平方向的分力F1 , 沿竖直方向的分力 2 。 可以分解为沿水平方向的分力 沿竖直方向的分力F
F1=F⋅ cosα ⋅
F2=F⋅ sinα ⋅
《力的分解》 力的分解》
移动小车时,是向上拉小车省力还是向下推省力? 移动小车时,是向上拉小车省力还是向下推省力?
三、力的分解实例
《力的分解》 力的分解》
实例2: 倾角为θ的斜面上放有一个物体 如图所示。 的斜面上放有一个物体, 实例 : 倾角为 的斜面上放有一个物体,如图所示。 该物体受到的重力G能对物体产生哪些效果 能对物体产生哪些效果? 该物体受到的重力 能对物体产生哪些效果?应当 怎样分解重力?分力的大小各是多大? 怎样分解重力?分力的大小各是多大?

《力的分解》PPT课件

《力的分解》PPT课件
地貌。
水流冲刷
河流中的水流通过冲刷和搬运作用 ,将力量分解到河岸两侧,导致河 岸的侵蚀和地形的改变。
地震波传播
地震波在地壳中传播时,会将力量 分解到不同方向上,导致地面的震 动和建筑物的破坏。
05
力的分解实验设计与 操作
实验目的与器材准备
实验目的
通过实验操作,探究力的分解规律,理解分力与合力的关系,加深对力的分解原 理的认识。
器材准备
弹簧测力计、细绳、滑轮、重物、支架、坐标纸、铅笔等。
实验步骤及注意事项
1. 组装实验装置
将滑轮固定在支架上,细绳一端绕过 滑轮并悬挂重物,另一端连接弹簧测 力计。
2. 调整实验装置
确保滑轮水平且细绳与滑轮切线方向 一致,调整弹簧测力计至零位。
实验步骤及注意事项
3. 进行实验测量
逐渐改变重物质量,记录弹簧测力计示数及细绳与水平方向的夹角。
三角形法则
把两个矢量首尾相接,从第一个矢量的始端点到第二个矢量的末端点的矢量就 是这两个矢量的和。当两个矢量不共线时,三角形法则与平行四边形法则实质 是一样的。
03
力的分解实例分析
斜面上的物体受力分析
斜面倾角对物体受力的影响
01
随着斜面倾角的增大,物体所受重力沿斜面向下的分力增大,
而垂直于斜面的分力减小。
4. 数据处理与分析
根据实验数据绘制图表,分析分力与合力的关系。
实验步骤及注意事项
注意事项 1. 保持滑轮水平,避免摩擦力对实验结果的影响。
2. 细绳与滑轮切线方向应一致,确保测量准确性。
实验步骤及注意事项
01
3. 逐渐增加重物质量,避免一次 性增加过多导致实验失败。
02
4. 记录数据时,注意保持测量精 度和准确性。

人教版高一物理必修一:3.5力的分解——正交分解法

人教版高一物理必修一:3.5力的分解——正交分解法
上运动,则物
体受到的推力的大小是(

若物体沿墙面匀速向下运动, 则物体受到的推力的大小是(
F )
θ
建立坐标轴的方法:原则上是任意的;
通常让尽可能多的力落在这个方向上,
这样就可以尽可能少分解力
例一
y
F2=20N
F2y
α=60°
F1x F1=10N
x
例二
求三个力的协力 F1=100N
α=37° F3=80N┕
F2=60N
例三 已知: F1=3.6N 、F2=6N 、F3=3N ,F2与虚线 方向夹角α=37°,求三个力的协力
x轴为正向:Fx=F1x+F3x-F2x
F3x F1x x F3
若物体匀速运动,协力为零,则:Fx=0;Fy=0
F1y
④最后求Fx和Fy的协力F F2 Fy
大小: F Fx2 Fy2 F2X O
y F1
F2y
FF3xx F1x x
F3y
F3
方向: tan Fx
Fy
(与Y轴的夹角)
正交分解法求协力
G
FN G F2 G F sin 30
( 500 200 0.5 ) N 400 N
补充问题:物体与地面间的动摩擦因数多大?
例六: 木箱重500 N,放在水平地面上, 一个人用大小为200 N与水平方向成30°向 下的力推木箱,木箱沿地平面匀速运动,求 木箱与地面的动摩擦因数。
30°
F3
F1
α
F2
正交分解法解决平衡问题
• 物体静止和匀速运动都是平衡态 • 平衡态物体所受力的协力为零 • 正交分解时,两个轴上的分力的协力必为零。
即 ∑Fx=0 ∑Fy=0.

《力的分解》 讲义

《力的分解》 讲义

《力的分解》讲义一、什么是力的分解在物理学中,力是一个非常重要的概念。

当一个力作用于一个物体时,有时为了更方便地研究这个力对物体产生的效果,我们需要把这个力分解成几个不同方向的分力,这就是力的分解。

力的分解是力的合成的逆运算。

如果已知几个分力的大小和方向,求合力的大小和方向,这就是力的合成;反过来,如果已知一个力的大小和方向,求它的几个分力的大小和方向,这就是力的分解。

二、力的分解遵循的原则力的分解遵循平行四边形定则。

以这个力为对角线作平行四边形,那么相邻两边就表示两个分力的大小和方向。

需要注意的是,力的分解结果不是唯一的。

因为给定一个力,可以作出无数个平行四边形,从而得到无数组分力。

但在实际问题中,我们通常按照力的实际作用效果来分解力。

三、力的分解的方法1、按实际效果分解(1)放在斜面上的物体,受到的重力可以分解为沿斜面下滑的力和使物体压紧斜面的力。

(2)水平向前拉物体在粗糙水平面上运动,拉力可以分解为向前的拉力和使物体压紧水平面的力。

(3)用绳子悬挂物体,绳子对物体的拉力可以分解为竖直向上的力和水平方向的力。

2、正交分解当物体受到多个力的作用时,为了方便研究,可以将这些力分解到互相垂直的两个方向上,即 x 轴和 y 轴方向。

首先建立直角坐标系,然后将各个力分别投影到 x 轴和 y 轴上。

投影的正负根据力与坐标轴正方向的夹角来确定,夹角小于 90 度为正,大于 90 度为负。

最后分别求出 x 轴和 y 轴上的合力。

四、力的分解的应用1、求解物体的平衡问题在很多平衡问题中,通过力的分解可以将复杂的受力情况简化,从而方便求解。

例如,一个静止在斜面上的物体,受到重力、斜面的支持力和摩擦力。

将重力按斜面方向和垂直斜面方向分解,然后根据平衡条件列出方程,就可以求出支持力和摩擦力的大小。

2、解释生活中的现象(1)为什么拉车比推车省力?推车时,力的方向与水平方向夹角较大,分解到水平方向的分力较小;拉车时,力的方向与水平方向夹角较小,分解到水平方向的分力较大。

(完整版)《力的分解》教学设计完美版

(完整版)《力的分解》教学设计完美版

《力的分解》教学设计【设计理念】本节课内容与实际生活联系紧密,我们的理念是从生产生活中提炼出模型,再走向生产生活。

坚持以学生体验为中心,创设大量丰富的实验和情境:拉车,平面,斜面,三角支架等,让学生充分体验和认识具体问题中力产生的实际效果,轻松突破重难点。

【关键词】实验教学;模型;导学案;探究体验,合作讨论。

【教学目标重难点】1、教学目标根据素质教育的要求,课堂教学目标应多元化。

结合新课程理念,三维教学目标如下:知识与技能(1)理解分力的概念,知道分解是合成的逆运算。

(2) 会用平行四边形定则进行作图并计算。

(3) 掌握根据力的效果进行分解的方法,初步了解正交分解法。

(4) 能用力的分解分析生产生活中的问题。

过程与方法(1) 强化“等效替代"的思想。

(2)培养学生观察及设计实验的能力。

(3)培养学生运用数学工具解决物理问题的能力。

情感态度与价值观(1)培养学生参与课堂活动的热情,培养研究周围事物的习惯。

(2)培养学生将所学知识应用于生产实践的意识和勇气.2、教学重点、难点既是重点又是难点的是:在具体情况中如何根据实际效果,利用平行四边形定则进行力的分解。

【教学过程】引入:创设情境:将课堂延伸到户外,户外实验“单手拉双车"。

我们的学生缺乏这样的生活体验,他们认为车很难拉动,“拉动双车”更是难以想象,通过亲身参与或观看其他同学的实验,可以使课堂教学立即吸引学生的注意力,激发探求新知识的愿望,调动内在学习的动力.同时从这个具体问题很自然地提炼出“等效”思想和“分力”的概念,轻松地解决“为什么要进行力的分解",一气呵成地引入课题《力的分解》。

新课教学:概念形成和问题提出:力的分解的概念,怎样进行力的分解,为什么可以用平行四边形定则进行,具体做法怎样?用平行四边形定则进行力的合成,学生较易完成,而对于逆运算——力的分解用平行四边形来完成,我们认为:不能只说,而要让学生做起来,在“做”当中做好准备并且在“做”后发现问题—-力的分解有无数种可能。

力的分解教案(精选7篇)

力的分解教案(精选7篇)

力的分解教案(精选7篇)力的分解教案第1篇一、课标要求通过观察与体验认识力的作用效果,学会根据力的作用效果对力进行分解,会用力的分解分析解决生活中的实际问题。

二、教学分析在教材中的地位和作用在学此节内容之前学生已经学习了力的概念、力的表示及分类、力学中的三种力、力的合成。

力的分解是等效思想的具体应用,等效思想是物理学重要的思想方法之一,学习力的合成时学生已有所了解,本节教学要注意让学生进一步了解和运用等效思想。

矢量是完全不同于标量的一类物理量,它的运算遵循平行四边形定则。

通过力的合成与分解掌握力的平行四边形定则,为位移、速度、加速度、电场强度、磁感应强度等矢量的学习、为牛顿定律乃至整个高中物理的学习奠定了基础。

应用数学知识解决物理问题的能力是高中物理要求的五种基本能力之一,本节内容要求学生要会运用平行四边形、直角三角形、菱形等数学知识计算分力的大小,因此教学中要有意识的培养学生的知识迁移能力。

综上所述,本节内容是本章的重点也是难点,也是整个高中物理的基础之一。

学生情况分析学生通过前几节的学习已经对力的基本概念和表示方法、力学中常见的三种力、合力与分力的等效替代关系有了一定的认识,形成了一定的认知结构,并通过力的合成方法认识了力的平行四边形定则,初步学会了应用几何知识解决力学问题,为本节课的学习奠定了基础。

三、设计思想课时安排考虑到学生的认知基础及本节内容的重要性和认知难度,笔者将本节内容分两课时处理,把“根据力的作用效果分解力”作为该节的第一课时内容。

两类知识及教学策略按照现代认知派关于知识的分类,笔者将本课时的新授知识和需要用到的原有知识分类如下:陈述性知识:力的作用效果──改变物体的运动状态,使物体发生形变。

力的平行四边形定则。

力的分解的概念──已知合力求分力。

其中力的分解的概念是新授课的陈述性知识。

对于陈述性知识,笔者采用的教学策略主要是:根据维果茨基的最邻近发展区理论,学生原有知识越多就可能学得越多,新学知识与原有知识之间的差异就是学生的最近发展区,为了让学生高效地掌握新授知识必须在新授知识与原有知识之间架设好桥梁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理
5 力的分解
一、力的分解
1.定义:求叫作力的分解。

2.力的分解原则:力的分解是力的合成的,同样遵
3.三角形定则:把两个矢量,从第一个矢量的指向第二个矢量的的有向线段就表示合矢量的大小和方向。

三角形定则与平行四边形定则实际上是。

(如图)
名师精讲
一、对力的分解的讨论?
力分解时有解或无解,关键看代表合力的对角线与给定
的代表分力的有向线段是否能构成平行四边形(或三角形),若能,即有解;若不能,则无解。

具体情况有以下几种:
二、力的效果分解
A.F1和F2是物体实际受到的力
B.F1和F2两个分力在效果上可以取代力F
C.F1、F2和F都是物体受到的力
D.F是F1和F2的合力
2.(2016·凉山州高一诊断)在日常生活中,力的分解有着广泛的应用,如图为用斧子把树桩劈开的图示,斧子对木桩施加一个向下的力F 时,产生了大小相等的两个侧向分力F 1、F 2,下列关系正确的是
( )
A .F =2F 1sin θ2
B .F =2F 1sin θ
C .A 受到的摩擦力减小
D .A 受到的摩擦力增大
5.(选做题) 如图所示,已知电灯的重力为G =10 N ,AO 绳与天花板的夹角为θ=45°,BO 绳水平.
(1)请按力的实际作用效果将OC绳对O点的拉力加以分解,并作出示意图.
(2)AO绳所受的拉力F1和BO绳所受的拉力F2的大小分别为多少?6.将物体所受重力按力的效果进行分解,下图中错误的是() 7.如图9所示,水平地面上的物体重G=100 N,受到与水平方向成
9.如图所示,大小分别为F1、F2、F3的三个力恰好围成封闭的直角三角形(顶角为直角).下列4个图中,这三个力的合力最大的是()。

相关文档
最新文档