2021年六年级奥数:牛吃草问题(附答案解析)

合集下载

六年级奥数题牛吃草问题

六年级奥数题牛吃草问题

【试题】有三块草地,面积分别是5,15,24亩。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃8 0天【解析】这是一道牛吃草问题,是比较复杂的牛吃草问题。

把每头牛每天吃的草看作1份。

因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份所以45-30=15天,每亩面积长84-60=24份所以,每亩面积每天长24÷15=1.6份所以,每亩原有草量60-30×1.6=12份第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛所以,一共需要38.4+3.6=42头牛来吃。

两种解法:解法一:设每头牛每天的吃草量为1,则每亩30天的总草量为:10* 30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30 =12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有33 60/80=42(头)。

解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*4 5-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=4 2头。

小学六年级奥数竞赛题:牛吃草问题

小学六年级奥数竞赛题:牛吃草问题

小学六年级奥数竞赛题:牛吃草问题牛吃草问题又叫牛顿问题“牛吃草问题”主要有两种类型:1、求时间2、求头数除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力。

①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。

②已知天数求知数时,同样需要先求出“每天新生长的草量”和“原有草量”。

③根据“(原有草量”+若干天里新生草量)÷天数”,求出只数。

在小学这类问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

例题解析小学六年级奥数竞赛题例1:一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。

如果有牛21头,几天能把草吃尽?摘录条件:27头6天原有草+6天生长草23头9天原有草+9天生长草21头?天原有草+?天生长草解答这类问题关键是要抓住牧场青草总量的变化。

设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。

为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。

小学奥数牛吃草问题

小学奥数牛吃草问题

小学奥数牛吃草问题小学奥数牛吃草问题奥数相对比较深,数学奥林匹克活动的蓬勃发展,极大地激发了广大少年儿童学习数学的兴趣,成为引导少年积极向上,主动探索,健康成长的一项有益活动。

有许多涉及到实际应用的问题,如计数、图论、逻辑、抽屉原理等。

解决这类问题,一般都需要对实际问题的数学意义进行分析、归纳,把实际问题抽象成为数学问题,然后用相应的数学知识和方法去解决。

下面是店铺整理的小学奥数牛吃草问题的内容,一起来看看吧。

小学奥数牛吃草问题1有一个蓄水池装有9根水管,其中一根为进水管,其余8根为相同的出水管.进水管以均匀的速度不停地向这个蓄水池注水.后来有人想打开出水管,使池内的水全部排光(这时池内已注入了一些水).如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光.问要想在4.5小时内把池内的水全部排光,需同时打开几个出水管?考点:牛吃草问题.分析:假设打开一根出水管每小时可排水“1份”,那么8根出水管开3小时共排出水8×3=24(份);5根出水管开6小时共排出水5×6=30(份);两种情况比较,可知3小时内进水管放进的水是30-24=6(份);进水管每小时放进的水是6÷3=2(份);在4.5小时内,池内原有的水加上进水管放进的水,共有8×3+(4.5-3)×2=27(份).由此解答即可.解:设打开一根出水管每小时可排出水“1份”,8根出水管开3小时共排出水8×3=24(份);5根出水管开6小时共排出水5×6=30(份).30-24=6(份),这6份是“6-3=3”小时内进水管放进的水.(30-24)÷(6-3)=6÷3=2(份),这“2份”就是进水管每小时进的水.[8×3+(4.5-3)×2]÷4.5=[24+1.5×2]÷4.5=27÷4.5=6(根)答:需同时打开6根出水管.点评:此题属于牛吃草问题,解答关键是把打开一根出水管每小时可排水“1份”,进一步分析推理求解.小学奥数牛吃草问题2【第一篇】有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。

小学奥数---牛吃草问题02(含答案解析)

小学奥数---牛吃草问题02(含答案解析)

小学奥数—牛吃草问题牛吃草问题(奥数知识点总结):基本公式:草生长速度=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);原草量=较长时间×(较长时间牛头数-×生长速度);或原草量=较短时间×(较短时间牛头数-×生长速度)问牛吃能吃几天数时=原草量÷(牛头数《问题的牛头数》-草生长速度)问可供多少头牛吃时=原草量÷吃的天数+草生长速度1、牧场上一片青草,每天牧草都匀速生长。

这片牧草可供20头牛吃10天,或者可供23头牛吃8天。

问:可供16头牛吃几天?2、有一片牧草每天匀速生长,可供10头牛吃12天,可供8头牛吃20天,那么最多可以养多少头牛,使得这片草永远吃不完?3、一个大型的污水池存有一定量的污水,并有污水不断流入,若安排4台污水处理设备,36天可将池中的污水处理完;若安排5台污水处理设备,27天可将池中污水处理完;若安排7台污水处理设备,多少天可将池中污水处理完.4、一水库原存有一定量的水,且水库源头有河水均匀入库,用5台抽水机连续20天可以把水库抽干,用6台同样的抽水机连续15天也可以把水库的水抽干.因工程需要,要求6天抽干水库的水,需要同样的抽水机多少台?5、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?6 、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。

问:该扶梯共有多少级?7、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。

从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。

如果同时打开7个检票口,那么需多少分钟?8、有一片草场,10头牛8天可以吃完草场上的草;15头牛,如果从第二天开始每天少一头,可以5天吃完.那么草场上每天长出来的草够多少头牛吃一天.小学奥数-牛吃草、基本公式:草生长速度=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);原草量=较长时间×(较长时间牛头数-草生长速度);或原草量=较短时间×(较短时间牛头数-草生长速度)问牛吃能吃几天数时=原草量÷(牛头数《问题的牛头数》-草生长速度)问可供多少头牛吃时=原草量÷吃的天数+草生长速度1、牧场上一片青草,每天牧草都匀速生长。

小学六年级奥数 第九章 牛吃草问题

小学六年级奥数 第九章 牛吃草问题

第九章牛吃草问题知识要点英国大科学家牛顿著的《普通算术》-书有这样一道题:12头牛4周吃草313格尔,同样的牧草,21头牛9周吃10格尔。

问24格尔牧草,多少头牛18周吃完(格尔——牧场面积单位)?以后人们称这类问题为牛顿的“牛吃草问题”。

牛吃草问题经常给出不同头数的牛吃同一片地的草,这块地既有原有的草,又有每天新长的草。

由于吃草的天数不同,求若干头牛吃这片地的草可以吃多少天。

解题的关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题中所求的问题。

这类问题的基本数量关系:1.(牛的头数×吃草较多的天数=牛的头数×吃草较少的天数)÷(吃得较多的天数=吃得较少的天数)=草地每天新长草的量。

2.牛的头数×吃草天数=每天新长草量×吃草天数=草地原有的草。

典例巧解例1 (第五届“希望杯”邀请赛试题)2006年夏天我国某地区遭遇了严重干旱,政府为了解决村民饮水问题,在山下的一眼泉水旁修了一个蓄水池,每小时有40立方米泉水注入池中。

第一周开动5台抽水机,2.5小时就把一池水抽完;接着第二周开动8台抽水机,1.5小时就把一池水抽完。

后来由于旱情严重,开动13台抽水机同时供水,请问这时几小时可以把这池水抽完?点拨由5台抽水机2.5小时抽完可知:5×2.5=12.5(台·时)是池中原有的水和2.5小时新进的水;8×1.5=12(台·时)是池中原有的水和1.5小时新进的水,又每小时有40立方米泉水注入池中,可求出一台抽水机一小时的抽水量为:40×(2.5-1.5)÷(5×2.5-8×1.5)=80(立方米),原池水的量为:80×8×1.5-40×1.5=900(立方米),而13台抽水机抽完这池水需要900÷(80×13-40)=0.9(小时)。

六年级奥数-牛吃草问题-教师讲义

六年级奥数-牛吃草问题-教师讲义

第八讲牛吃草问题牛吃草问题概念及公式牛吃草问题又称为消长问题或牛顿牧场,牛吃草问题的历史起源是17世纪英国伟大的科学家牛顿1642—1727)提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

解决牛吃草问题常用到四个基本公式,分别是︰五大基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=草量差÷时间差;3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

这五个公式是解决牛吃草问题的基础。

首先一般假设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

牛吃草问题是经典的奥数题型之一,这里我先介绍一些比较浅显的牛吃草问题,后面给大家开拓一下思维,首先,先介绍一下这类问题的背景,大家看知识要点求天数例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份=原草量+20天的生长量原草量:200-20×5=100份或15×10=150份=原草量+10天的生长量原草量:150-10×5=100份100÷(25-5)=5天答:这片牧草可供25头牛吃5天?练习1(求时间)1.1.一块牧场长满了草,每天均匀生长。

这块牧场的草可供10头牛吃40天,供15头牛吃20天。

六年级下册奥数第39讲 “牛吃草”问题

六年级下册奥数第39讲  “牛吃草”问题

第36讲“牛吃草”问题讲义知识要点“牛吃草”间题是牛顿问题,因牛顿提出而得名的。

“一堆草可供10头牛吃3天,供6头牛吃几天?”这题很简单,用3×10÷6=5(天)。

如果把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了。

因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是“牛吃草”问题。

解答这类题的关键是要想办法从变化中找到不变的量。

牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以每天新长出的草是不变的。

正确计算草地上原有的草及每天长出的新草,问题就容易解决了。

例1、一片青草地,每天都匀速长出青草,这片青草可供27头牛吃6周或28头牛吃9周。

那么这片草地可供21头牛吃几周?练习:1、一片草地,每天都匀速长出青草。

如果可供24头牛吃6天,或可供20头牛吃10天。

那么,可供19头牛吃多少天?2、牧场上一片草地,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或可供15头牛吃10天。

问可供25头牛吃几天?3、牧场上的青草每天都在匀速生长。

这片牧草可供27头牛吃6周或可供23头牛吃9周。

那么,可供21头牛吃几周?例2、由于天气逐渐冷起来,牧场上的草不仅长不大,反而以固定的速度在减少。

已知某块草地上的草可供20头牛吃5天或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?练习:1、由于天气逐渐变冷,牧场上的草每天以均匀的速度在减经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。

那么,可供11头牛吃几天?2、因天气渐冷,牧场上的草以固定的速度在减少。

已知牧场上的草可供33头牛吃5天,或可供24头牛吃6天。

照此计算,这个牧场可供多少头牛吃10天?3、经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年。

假设地球新生成的资源增长速度是一样的,那么,为满足人类不断发展的需要,地球最多能养活多少亿人?例3、自动扶梯以均匀的速度由下往上行驶着,两个性急的孩子要从扶梯上楼。

奥数-20牛吃草问题+答案

奥数-20牛吃草问题+答案

牛吃草问题牛吃草问题是经典的奥数题型之一,牛吃草问题又称为消长问题。

牛吃草问题是科学家牛顿提出来的,所以也称牛顿牧场。

典型的牛吃草问题的条件是假设不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

想办法从变化中找到不变的量,草的生长速度固定不变,牧场上原有的草量也是不变的。

为了便于计算,先设定一头牛一天吃草量为“1”。

解决牛吃草问题常用的四个基本公式︰1.草每天的生长量=草量差÷时间差;2.原有草量=牛头数×吃的天数-草的生长速度×吃的天数;3.吃的天数=原有草量÷(牛头数-草的生长速度);4.牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

解决牛吃草问题关键是正确计算草地上原有的草量及每天新长出的草量。

我们假设让一部分牛吃新长草,其余的牛(牛头数-草的生长速度)吃原有的草,从而求出原有的草够这部分牛吃几天。

【例 1】牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解析:假设1头牛1天吃的草的数量是1份。

草每天的生长量:(10×20-15×10)÷(20-10)=5(份)原有草量:(10-5)×20=100(份)或原有草量:(15-5)×10=100(份)100÷(25-5)=5(天)练习一1.一块牧场长满了草,草每天均匀生长。

这块牧场的草可供10头牛吃40天,供15头牛吃20天。

可供45头牛吃几天?2.牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?3.一个牧场长满青草,牛在吃草而草又在不断生长。

已知27头牛6天把草吃尽,同样一片牧场,23头牛9天把草吃尽。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年六年级奥数:牛吃草问题牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

牛吃草问题是经典的奥数题型之一,这里我只介绍一些比较浅显的牛吃草问题,给大家开拓一下思维,首先,先介绍一下这类问题的背景,大家看知识要点特点:在“牛吃草”问题中,因为草每天都在生长,草的数量在不断变化,也就是说这类问题的工作总量是不固定的,一直在均匀变化。

典例评析例1、有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天,那么它可供几头牛吃20天?例2、由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少,如果某块草地上的草可供25头年吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?例3、一片匀速生长的草地,可以供18投牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草两相当于3只羊每天的吃草量。

请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完?牧场上长满牧草,每天都匀速生长。

这片牧场可供27头牛吃6天或23头牛吃9天。

问可供21头牛吃几天?【分析】这片牧场上的牧草的数量每天在变化。

解题的关键应找到不变量——即原来的牧草数量。

因为总草量可以分成两部分:原有的草与新长出的草。

新长出的草虽然在变,但应注意到它是匀速生长的,因而这片牧场每天新长出飞草的数量也是不变的。

从这道题我们看到,草每天在长,牛每天在吃,都是在变化的,但是也有不变的,都是什么不变啊?草是以匀速生长的,也就是说每天长的草是不变的;,同样,每天牛吃草的量也是不变的,对吧?这就是我们解题的关键。

这里因为未知数很多,我教大家一种巧妙的设未知数的方法,叫做设“1”法。

我们设牛每天吃草的数量为1份,具体1份是多少我们不知道,也不用管它,【思考1】一片草地,每天都匀速长出青草,如果可供24头牛吃6天,或20头牛吃10天,那么可供18头牛吃几天?设1头牛1天吃的草为1份。

则每天新生的草量是(20×10-24×6)÷(10-6)=14份,原来的草量是(24-14)×6=60份。

可供18头牛吃60÷(18-14)=15天例2 因天气寒冷,牧场上的草不仅不生长,反而每天以均匀的速度在减少。

已知牧场上的草可供33头牛吃5天,可供24头牛吃6天,照此计算,这个牧场可供多少头牛吃10天?【分析】与例1不同的是,不但没有新长出的草,而且原有的草还在匀速减少,但是,我们同样可以用类似的方法求出每天减少的草量和原来的草的总量【思考2】由于天气逐渐变冷,牧场上的草每天以固定的速度在减少,经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。

那么,可供11头牛吃几天?8天,设一头牛一天吃的草量为一份。

牧场每天减少的草量:(20×5-16×6)÷(6-5)=4份,原来的草量:(20 +4)× 5=120份,可供11头牛吃120÷(11+4)=8天。

总结:想办法从变化中找到不变的量。

牧场上原有的草是不变的,新长出的草虽然在变化,但是因为是匀速生长,所以每天新长出的草量也是不变的。

正确计算草地上原有的草及每天新长出的草,问题就会迎刃而解。

知识衍变牛吃草基本问题就先介绍到这,希望大家掌握这种方法,以后出现样吃草问题,驴吃草问题也知道怎么做,甚至,以下这些问题都可以应用牛吃草问题解决方法例3 自动扶梯以均匀速度由下往上行驶,小明和小丽从扶梯上楼,已知小明每分钟走25级台阶,小丽每分钟走2 0级台阶,结果小明用了5分钟,小丽用了6分钟分别到达楼上。

该扶梯共有多少级台阶?【分析】在这道题中,“总的草量”变成了“扶梯的台阶总级数”,“草”变成了“台阶”,“牛”变成了“速度”,所以也可以看成是“牛吃草”问题来解答。

【思考3】两只蜗牛同时从一口井的井顶爬向井底。

白天往下爬,两只蜗牛的爬行速度是不同的,一只每天爬行2 0分米,另一只每天爬行15分米。

黑夜往下滑,两只蜗牛滑行的速度却是相同的,结果一只蜗牛恰好用了5个昼夜到达井底,另一只恰好用了6个昼夜到达井底。

那么,井深多少米?大家说这里什么是牛?什么是草?都什么是不变的?15米。

蜗牛每夜下降:(20×5-15×6)÷(6-5)=10分米所以井深:(20+10)×5=150分米=15米例4 一条船有一个漏洞,水以均匀的速度漏进船内,待发现时船舱内已进了一些水。

如果用12人舀水,3小时舀完。

如果只有5个人舀水,要10小时才能舀完。

现在要想在2小时舀完,需要多少人?【分析】典型的“牛吃草”问题,找出“牛”和“草”是解题的关键【思考4】一个水池,池底有泉水不断涌出,用10部抽水机20小时可以把水抽干,用15部相同的抽水机10小时可把水抽干。

那么用25部这样的抽水机多少小时可以把水抽干?5小时。

设一台抽水机一小时抽水一份。

则每小时涌出的水量是:(20×10-15×10)÷(20-10)=5份,池内原有的水是:(10-5)×20=100份.所以,用25部抽水机需要:100÷(25-5)=5小时思维拓展例5 有一牧场长满牧草,牧草每天匀速生长,这个牧场可供17头牛吃30天,可供19头牛吃24天,现在有若干头牛在吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完,问原来有牛多少头?【分析】“牛吃草”问题的特点是随时间的增长,所研究的量也等量地增加。

解答时,要抓住这个关键问题,也就是要求出原来的量和每天增加的量各是多少。

【思考5】一个牧场上的青草每天都匀速生长。

这片青草可供27头牛吃6天,或供23头牛吃9天,现有一群牛吃了4天后卖掉2头,余下的牛又吃了4天将草吃完。

这群牛原来有多少头?25头。

设每头牛每天的吃草量为1份。

每天新生的草量为:(23×9-27×6)÷(20-10)=15份,原有的草量为(2 7-15)×6=72份。

如两头牛不卖掉,这群牛在4+4=8天内吃草量72+15×8+2×4=200份。

所以这群牛原来有200÷8 =25头例6 有三块草地,面积分别为5公顷,6公顷和8公顷。

每块地每公顷的草量相同而且长的一样快,第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。

第三块草地可供19头牛吃多少天?【分析】由题目可知,这是三块面积不同的草地,为了解决这个问题,首先要将这三块草地的面积统一起来。

例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。

如果有牛21头,几天能把草吃尽?摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变化。

设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。

为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。

由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。

那么可以列方程:x+6y=27×6x+9y=23×9解得x=72,y=15若放21头牛,设n天可以吃完,则:72+15n=21nn=12例2一水库原有存水量一定,河水每天入库。

5台抽水机连续20天抽干,6台同样的抽水机连续15天可抽干,若要6天抽干,要多少台同样的抽水机?摘录条件:5台 20天原有水+20天入库量6台 15天原有水+15天入库量?台 6天原有水+6天入库量小学解答:设1台1天抽水量为"1",第一次总量为5×20=100,第二次总量为6×15=90每天入库量(100-90)÷(20-15)=220天入库2×20=40,原有水100-40=6060+2×6=7272÷6=12(台)初中解答:假设原来有的水为x份,每天流进来的水为y份,每台机器抽出的水是1个单位。

那么可以列方程:x+20y=20×5x+15y=6×15解得x=60,y=2若要6天抽完,设n台机器可以抽完,则:60+6×2=6 nn=12巩固练习1.一块牧场长满了草,每天均匀生长。

这块牧场的草可供10头牛吃40天,供15头牛吃20天。

可供25头牛吃__天。

()A. 10B. 5C. 20A 假设1头牛1天吃草的量为1份。

每天新生的草量为:(10×40-15×20)÷(40-20)=5(份)。

那么愿草量为:10×40-40×5=200(份),安排5头牛专门吃每天新长出来的草,这块牧场可供25头牛吃:200÷(25-5)=10(天)。

2.一块草地上的草以均匀的速度生长,如果20只羊5天可以将草地上的草和新长出的草全部吃光,而14只羊则要10天吃光。

那么想用4天的时间,把这块草地的草吃光,需要__只羊。

()A. 22B. 23C. 24B假设1只羊1天吃草的量为1份。

每天新生草量是:(14×10-20×5)÷(10-5)=8(份)原草量是:20×5-8×5=60(份)安排8只羊专门吃每天新长出来的草,4天时间吃光这块草地共需羊:60÷4+8=23(只)3.画展9时开门,但早有人来排队等候入场。

相关文档
最新文档