数列极限存在的判定准则

合集下载

高数课件-极限的存在准则

高数课件-极限的存在准则

注意:上面极限中的 e 在当时只是极限值的记号,而现在
已经成为重要的数值。
以 e 为底的对数称为自然对数.记作 ln x ,即 ln x loge x . 函数 y ln x 与函数 y ex 互为反函数.
e 为无理数,其值为 e=2.718281828459045…。
在第
13
章中将有
e
n0
证 ①由 xn1 xn
2 xn
2 xn1
xn xn1

2 xn 2 xn1
知 xn1 xn 与 xn xn1 同号,以此类推, xn1 xn 与
x2 x1 2 2 2 0 同号, {xn} 单调增加。
22-22
续证 ② x1 2 2, x2 2 x1 2 2 2, , 一般地, xn 2 xn1 2 2 2 ,
由第一重要极限的推广形式得 lim x0
2 1 x
2
1 cos
故 lim x0
x2
x
1 2
(lim x0
sin x 2 )2
x
1 2
12
1. 2
2
22-12
例 2.5.5

lim
x x0
sin
x x
sin x0
x0
.

lim sin x sin
x0
lim
2 sin
x x0 2
cos
x x0 2
1 n!
1
1 1!
1 2!
1 3!
1 n!
.
22-24
证明思路:
⑴先利用均值不等式证明数列{(1 1)n} 单增且有上界;然 n
后由单调有界准则知数列{(1 1)n} 收敛,即极限lim(1 1)n

极限存在准则 两个重要极限

极限存在准则 两个重要极限

y 2.594 2.705 2.7169 2.71815 2.71827 …
x -10 -100 -1000 -10000
y 2.88 2.732 2.720
2.7183
y


1

1 x
x
的值无限接近于一个常数
-100000 … 2.71828 …
e 2.718281828459045
xn

a xn

a
xn1 xn
1(1 2
a xn2
)

1 2
(1
a) a
1
∴数列单调递减有下界,
故极限存在,

lim
n
xn

A
则由递推公式有 A 1 ( A a ) 2A
A a
x1 0,
xn 0, 故
lim
n
xn

a
三、 两个重要极限
证: 当
x(0,

a 2a
lim
n
xn

lim
n
2 xn1
a2 2 a
a2 a 2 0
a2
备用题
1.设
xn1

1 2 ( xn

a xn
)(
n

1
,
2
,
) , 且 x1 0 ,
a0, 求
lim
n
xn
.
利用极限存在准则
解:
1
a
xn1 2 ( xn xn )
令z=1/x, 则x→∞时, z→0,
由此可得:
1
1
lim(1 z)z lim(1 x)x = e

1-7存在准则两个重要极限

1-7存在准则两个重要极限

例1 求 lim( 1 1 1 ).
n n2 1 n2 2
n2 n
解 n 1 1 n ,
n2 n n2 1
n2 n n2 1
又 lim n
n lim n2 n n
1 1 1 1,
n
lim n lim 1 1, 由夹逼定理得
n n2 1
n
1
1 n2
lim( 1 1 1 ) 1.
x [x]
x [x]
x [x]
lim (1 1 )[ x] x [x] 1
lim (1 1 )[ x]1 lim (1 1 )1 e,
x [x] 1
x [x] 1
lim (1 1 )x e.
x
x
令 t x,
lim (1 1 )x lim (1 1)t lim (1 1 )t
7、 lim(1 x )2x _________. x x
8、 lim(1 1 ) x _________.
x
x
二、求下列各极限:
1、 lim 1 cos 2x x0 x sin x
2、 lim(tan x)tan 2x x 4
3、 lim( x a ) x x x a
4、 lim( n2 1)n n n 1
sin x x tan x, 即 cos x sin x 1, x
上式对于 x 0也成立. 当 0 x 时,
2
2
0 cos x 1 1 cos x 2sin 2 x 2( x)2 x2 , 22 2
lim x2 0, lim(1 cos x) 0,
x0 2
2、 lim sin 2x __________. x0 sin 3x
3、 lim arc cot x __________.

数列极限存在的充分必要条件

数列极限存在的充分必要条件

数列极限存在的充分必要条件数列极限存在是数学分析中一个重要的概念,它描述了数列在无限项的情况下的趋势和稳定性。

在数学中,我们常常关注数列的极限是否存在,因为它对于理解数列的性质和应用具有重要意义。

本文将探讨数列极限存在的充分必要条件。

一、数列的定义我们需要明确数列的定义。

数列是按照一定规律排列的一系列数的集合。

通常用{an}表示,其中n为自然数,an表示数列中的第n个数。

例如,{1, 2, 3, 4, ...}就是一个数列,其中an=n。

二、数列极限的定义数列极限的定义是数列理论的基础。

对于数列{an},如果存在一个实数a,对于任意给定的正数ε,都存在正整数N,使得当n>N时,|an-a|<ε成立,那么我们称实数a为数列{an}的极限,记作lim(n→∞)an=a。

三、数列极限存在的充分必要条件数列极限存在的充分必要条件是数学分析中的一个重要结论。

下面我们将介绍数列极限存在的充分必要条件。

充分条件:1. 单调有界性:如果数列{an}单调递增且有上界(或单调递减且有下界),则数列{an}的极限存在。

这是因为单调有界数列必定收敛于某个实数。

2. Cauchy收敛准则:如果数列{an}满足Cauchy收敛准则,即对于任意给定的正数ε,存在正整数N,使得当m,n>N时,|am-an|<ε成立,那么数列{an}的极限存在。

这是因为Cauchy收敛准则保证了数列的逼近性,使得数列趋于某个实数。

必要条件:1. 有界性:如果数列{an}的极限存在,那么数列{an}必定有界。

这是因为极限存在意味着数列在某个实数附近趋于稳定,因此数列的项必定在某个范围内。

2. 单调性:如果数列{an}的极限存在,那么数列{an}必定是单调的。

这是因为极限存在意味着数列在某个实数附近趋于稳定,因此数列的项必定具有一定的顺序性。

数列极限存在的充分必要条件是单调有界性和Cauchy收敛准则。

这两个条件保证了数列的趋势和稳定性,使得数列能够收敛于某个实数。

极限存在准则两个重要极限

极限存在准则两个重要极限

一、 极限存在准则
定理20
(单调有界准则)单调有界数 列必有极限.
设数列{xn}单调增加,且 xn≤M.从图2-9可以看出,因为数 列单调增加又不能大于M,故该 数列某项以后的所有项必然集中 在某数a(a≤M)的附近,即对ε>0, 必然存在正整数N与数a,使当 n>N时,恒有xn-a<ε,从而数 列{xn}的极限存在.
N=max{N1,N2},则当n>N
yn-a<ε,zn-a<ε,
a-ε<yn<a+ε,a-ε<zn<a+ε, 从而,当n>N a-ε<yn≤xn≤zn<a+ε, 即xn-a<ε,所以limn→∞ xn=a.
一、 极限存在准则

利用定理18求极限,关键是构造出极限相同且易求 的两个数列yn与zn.
【例29】
二、 两个重要极限
数学中常常会对一些重要且有典型 意义的问题进行研究并加以总结,以期 通过对该问题的解决带动一类相关问题 的解决,下面介绍的重要极限就体现了 这样的一种思路,利用它们并通过函数 的恒等变形与极限的运算法则就可以使 得两类常用极限的计算问题得到解决.
二、 两个重要极限
1.
证在图2-10所示的单位圆中,设 ∠AOB=x,先假设0<x< ,点A处的 切线与OB的延长线相交于点D,又 BC⊥OA
谢谢聆听
【例35】
三、 柯西极限存在准则
定理21
(柯西极限存在准则)数列{xn}收敛的充分必要条件是:对于任意 给定的正数ε,存在正整数N,使得当m>N,n>N
xm-xn<ε. 证必要性.设limn→∞ xn=a,则对于ε>0,由数列极限的定义,v 正整数N,当n>N

极限存在准则 两个重要极限

极限存在准则 两个重要极限

∴ {xn } 是单调递增的 ;
1 1 1 1 xn < 1 + 1 + + L + < 1 + 1 + + L + n −1 2! n! 2 2 1 = 3 − n − 1 < 3, ∴ {xn } 是有界的 ; 2 1n ) ∴ lim x n 存在. 记为lim(1 + ) = e (e = 2.71828L n→∞ n→∞ n
x → +∞
)
= lim (9
x → +∞
x
1 x x
)
1 x + 1 3
0
1 x
3 1 = 9 ⋅ lim 1 + x x → +∞ 3

1 3x ⋅x
= 9⋅e = 9
∴ lim cos x = 1,
x→0
∴ lim(1 − cos x ) = 0,
x→0
又 Q lim 1 = 1,
x→0
sin x ∴lim = 1. x→0 x
例3
1 − cosx . 求 lim 2 x→0 x
x 2sin2 2 lim 2 x→0
解: 原式 =
x
1 sin = lim x 2 x→0 2
1 令t= , x
x→0
1t lim(1 + x) = lim(1 + ) = e. x→0 t →∞ t
1 x
1 x
lim(1 + x) = e
例.
解: 令 t = −x, 则
t →∞
lim(1+ 1)−t t
1
= lim

2.5 极限存在准则

2.5 极限存在准则

§2.5 极限存在准则 两个重要极限连续复利·夹逼准则·单调有界收敛准则 ·连续复利 一、夹逼准则准则Ⅰ 如果数列n n y x ,及n z 满足下列条件:,lim ,lim )2()3,2,1()1(a z a y n z x y n n n n nn n ===≤≤∞→∞→那末数列n x 的极限存在, 且a x n n =∞→lim .证明:因 a z a y n n →→,,据数列极限定义,有 εε<->>∃>∀ay N n N n 有时当,,0,011;对于上述ε, 02>∃N ,,,2ε<->a z N n n 有时当故可取},max{21N N N =则当 N n > 时,有 ε<-a y n ,ε<-a z n 同时成立,亦即:εεεε+<<-+<<-a z a a y a n n ,从而有 εε+<≤≤<-a z x y a n n n 亦即ε<-a x n 成立这就是说, a x n n =∞→lim . 准则I '如果函数f (x )、g (x )及h (x )满足下列条件: (1) )()()(x h x f x g ≤≤ ;(2) A x h A x g ==)(lim ,)(lim (;那么)(lim x f 存在, 且A x f =)(lim .注 如果上述极限过程是x →x 0, 要求函数在x 0的某一去心邻域内有定义, 上述极限过程是x →∞, 要求函数当|x |>M 时有定义,准则I 及准则I ' 称为夹逼准则. 例1:求 )12111(lim 222n n n n n ++++++∞→解:,11112222+<++++<+n nn n n n n n n n n n n n 111limlim2+=+∞→∞→又 ,1=22111lim1limn n n n n +=+∞→∞→由夹逼定理得.1)12111(lim 222=++++++∞→nn n n n下面根据准则I '证明第一个重要极限:1sin lim 0=→xx x .证明 首先注意到, 函数xxsin 对于一切x ≠0都有定义. 参看附图: 图中的圆为单位圆, CD ⊥OB , AB ⊥OB . 圆心角∠AOB =x (0<x <2π). 显然 x CD sin =弦,x BC =弧x AB tan =弦.因为 S ∆AOB <S 扇形AOB <S ∆AOD , 所以 x x x tan 2121sin 21<< ,即 x x x tan sin <<. 不等号各边都除以sin x , 就有xx x cos 1sin 1<<,或 1sin cos <<xxx . 注意此不等式当2π<x <0时也成立. 而1cos lim 0=→x x ,根据准则I ',1sin lim 0=→xxx . 应注意的问题:在极限)()(sin lim x x αα中, 只要)(x α是无穷小, 就有1)()(s i n l i m =x x αα.这是因为, 令)(x u α= , 则0→u , 于是 )()(sin limx x αα1sin lim 0==→u u u . 1sin lim 0=→x x x , 1)()(sin lim =x x αα (0)(→x α) 例2. 求 xx x tan lim 0→.解: x xx tan lim0→x x x x cos 1sin lim 0⋅=→1cos 1lim sin lim 00=⋅=→→x x x x x . 例3. 求 20cos 1lim xxx -→. 解: 20cos 1limx x x -→220220)2(2sin lim 212sin 2lim x x x x x x →→== 2112122sin lim 21220=⋅=⎪⎪⎪⎪⎭⎫ ⎝⎛=→x x x . 二、单调有界准则满足条件如果数列n x,121 ≤≤≤≤+n n x x x x 单调增加 ,121 ≥≥≥≥+n n x x x x 单调减少准则Ⅱ 单调有界数列必有极限.单调数列准则Ⅱ的几何解释:单调增加数列的点只可能向右一个方向移动, 或者无限向右移动, 或者无限趋近于某一定点A , 而对有界数列只可能后者情况发生.例4:.)(333的极限存在重根式证明数列n x n +++= 证:,1n n x x >+显然 {};是单调递增的n x ∴331<=x 又, ,3<k x 假定331<+=+k k x x ,{};是有界的n x ∴ .lim 存在n n x ∞→∴ ,31n n x x +=+ ,321n n x x +=+ ),3(lim lim 21nn n n x x +=∞→+∞→ ,32A A += 2131,2131-=+=A A 解得 (舍去) .2131lim +=∴∞→n n x 根据准则Ⅱ, 可以证明极限 nn n)11(lim +∞→ 存在. 设n n nx )11(+= 现证明数列{n x }是单调有界的.按牛顿二项公式, 有123x 1+n n A Mnn n nn n n n n nn n n n n n n n n x 1!)1()1(1!3)2)(1(1!2)1(1!11)11(32⋅+-⋅⋅⋅-+⋅⋅⋅+⋅--+⋅-+⋅+=+=)11()21)(11(!1)21)(11(!31)11(!2111nn n n n n n n --⋅⋅⋅--+⋅⋅⋅+--+-++= )111()121)(111(!1)121)(111(!31)111(!21111+--⋅⋅⋅+-+-+⋅⋅⋅++-+-++-++=+n n n n n n n n x n)11()121)(111()!1(1+-⋅⋅⋅+-+-++n nn n n .比较n x , 1+n x 的展开式, 可以看出除前两项外, n x 的每一项都小于1+n x 的对应项, 并且1+n x 还多了最后一项, 其值大于0, 因此 n x <1+n x ,这就是说数列{n x }是单调有界的.这个数列同时还是有界的. 因为n x 的展开式中各项括号内的数用较大的数1代替, 得3213211211121212111!1!31!2111112<-=--+=+⋅⋅⋅++++<⋅⋅⋅++++<--n nn n n x . 根据准则II , 数列{n x }必有极限. 这个极限我们用e 来表示. 即e nnn =+∞→)11(lim . 我们还可以证明e xxx =+∞→)11(lim . e 是个无理数, 它的值是e =2. 718281828459045⋅ ⋅ ⋅.指数函数x e y =以及对数函数x y ln = 中的底e 就是这个常数.因此的极限都存在且等于时,函数或取实数而趋向可以证明,当,)11(e xx x+∞-∞+.)11(lim e xxx =+∴∞→ 在极限)(1)](1lim[x x αα+中, 只要)(x α是无穷小, 就有e x x =+)(1)](1lim[αα.ez z x xz zz =+→∞→=→10)1(lim ,01于是有时,,则当利用代换例5. 求xx x)11(lim -∞→.解: 令t =-x , 则x →∞时, t →∞. 于是x x x )11(lim -∞→tt t-∞→+=)11(lim e tt t 1)11(1lim=+=∞→. 或)1()11(lim )11(lim --∞→∞→-+=-x x x x x x 11])11(lim [---∞→=-+=e x x x . 例6..)23(lim 2xx xx ++∞→求 解:422)211(])211[(lim -+∞→++++=x x x x 原式 .2e = 例7..)1ln(lim0xx x +→求 解:.1ln )1(lim ln )1ln(lim )1ln(lim 10100==⎪⎪⎭⎫ ⎝⎛+=+=+→→→e x x x x xx x x x 例8..1lim0xe x x -→求 解:,1u e x =-令 ),1ln(u x +=即 ,0,0→→u x 有时则当)1ln(lim1lim 00u ux e u x x +=-→→ uu u )1ln(1lim 0+=→ .1= 三、连续复利则,年利率为称为本金设一笔贷款,)(0r A)1(01r A A +=一年后本利和2012)1()1(r A r A A +=+=两年后本利和k k r A A k )1(0+=年后本利和,则,年利率仍为期计息如果一年分r n,于是一年后的本利和每期利率为nrnnr A A )1(01+=nkk nr A A k )1(0+=年后本利和年后的本利和,则称为连续复利复利,即每时每刻计算如果计息期数k n )(∞→rkrkrn n nkn k e A r n A nr A A 00011lim )1(lim =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫⎝⎛+=+=∞→∞→。

1-4极限存在准则与两个重要的极限

1-4极限存在准则与两个重要的极限
x 1 , 不等式两边都除以 sin x , 得 1 sin x cos x
sin x 即 cos x 1, x
上式对于 x 0也成立. 2
x 0
x 0
当 0 x 时, 2

lim cos x 1, 又 lim1 1,
sin x 由夹逼准则即得: lim 1. x0 x
1 1 n 1 2 1 3, 1 3 2 n 1 1 2
数列xn有上界.
由单调有界收敛准则,知极限 lim xn 存在.
n
以数e表示, 即
1 n lim(1 ) e ( e 2.71828) n n
1 x 下面证明, 当 x ,x 时, 函数 (1 ) 的极 x
n
n
n
证 yn a,
zn a ,
0, N1 0, N 2 0, 使得
当 n N 1时恒有 yn a , 当 n N 2时恒有 z n a ,
取 N max{ N 1 , N 2 }, 即 a y n a ,
第四节 极限存在准则 与两个重要极限
一.夹逼准则
1.夹逼准则
准则Ⅰ 如果数列 x n , y n 及 z n 满足下列条件:
(1) yn xn zn ( n 1, 2, 3) ( 2) lim yn lim zn a,
则数列 x n 的极限存在, 且 lim x n a .
n
lim n a 1
n
例 解
设 xn (1 2n 3 ) ,求 lim xn .
n
1 n n
因为
n 3 3 3 3 1 2 3 3 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列极限存在的判定准则
数列极限存在是数学中一个重要的概念,它揭示了数列在无穷项时的趋势和稳定性。

在数学分析中,数列极限存在的判定准则有以下几种:
1. Cauchy准则
Cauchy准则是数列极限存在的一个重要准则。

根据Cauchy准则,对于任意给定的正数ε,存在正整数N,当n>N时,对于任意正整数k,满足|an - ak| < ε。

这个准则意味着当数列中的项足够靠后时,这些项之间的差异足够小。

当且仅当数列满足Cauchy准则时,数列的极限才存在。

2. 单调有界准则
对于递增(或递减)且有上(或下)界的数列,它的极限存在。

更加具体地,如果数列满足以下条件之一: - 若存在正整数N,当n>N时,有an≤an+1; - 若存在正整数N,当n>N时,有an≥an+1; - 数列有上(或下)界。

以上条件满足之一时,数列的极限存在。

3. 夹逼准则
夹逼准则也是数列极限存在的判定准则之一。

如果存在两个数列{an}和{cn},且满足an≤bn≤cn,并且当n趋近于无穷大时,an和cn都趋近于同一个极限L,那么数列{bn}的极限也收敛于L。

4. 有界性与单调性的整体准则
一个数列,如果它是有界的,并且通过去除它的有限项后,剩余的数列具有单调性,那么原始数列的极限存在。

更准确地说,如果数列满足以下条件: - 存在正实数M,使得当n为任意正整数时,有|an|≤M; - 存在正整数N,当n>N时,
an+1≥an或an+1≤an;
则数列的极限存在。

5. 收敛数列算术运算性质
如果两个数列{an}和{bn}收敛于a和b,那么它们的和、差、乘积和商也会收敛,并且有以下性质: - 和的极限为a + b; - 差的极限为a - b; - 乘积的极限为a * b; - 商的极限为a / b(其中b不等于0)。

这个准则告诉我们,如果知道一个数列收敛,并且知道另一个数列与之相关(通过加减乘除操作),我们可以利用这些关系判断极限的存在与值。

综上所述,数列极限的存在性可以通过Cauchy准则、单调有界准则、夹逼准则、有界性与单调性的整体准则以及收敛数列的算术运算性质等准则来判定。

这些准则给出了判断数列极限存在与否的不同角度和方法。

根据实际情况选用合适的准则进行判定,能够帮助我们更好地理解数列极限的概念并应用到实际问题中。

相关文档
最新文档