宝马可变气门升程技术
最新可变气门升程技术系统的发展

最新可变气门升程技能系统的生长摘要日产汽车公司已经研发了一种紧凑、简朴的新式可变气门执行器系统即可变气门升程,它能够在较大范畴内改变进气门升程和睦门行动,并把它用在最新的3.7L,V6发动机上。
这个系统和可变气门正时机构(或一个凸轮)结合可以充实地提高发动机的性能属性,即燃油经济性,废气排放和发动机输出功率,因为这个系统可以自由地控制所有进气气门升程,进气气门与排气气门间的气门行动连续角度和相位。
本文将描述可变气门升程技能系统的大抵轮廓,系统操纵的原理和它对发动机性能的影响。
引言因为近几年全球的目光全会合到了情况问题上,所以减轻情况压力好比低落燃油消耗和废气排放,已经成为所有汽车厂商的重要挑战。
另一方面,增强驱动性能可以提高汽车的吸引力,驱动性能仍然是许多消费者的一个强烈要求。
能够同时淘汰情况污染和提高驱动性能的技能是可变气门系统,它能够控制进气和排气的正时与升程。
在1986年,日产汽车是第一个接纳液压可变气门正时控制系统的日本车。
从那以后,日产还接纳了凸轮转换可变气门升程与正时系统,电磁式可变正时控制来提高气门控制技能。
在本文中,新式可变气门执行器系统称作可变气门升程技能,它的机器装置可以不停地在大范畴内控制进气气门的气门升程和行动。
日产把这个机器装置和可变正时控制结合,可以实现气门正时和升程的优化,气门正时和升程可以控制气门行动角度、气门相位,因此极大地提高了发动机性能属性。
本文表述了可变气门升程技能系统的大抵轮廓,系统操纵的原理和这个系统对发动机性能属性的影响。
可变气门升程技能系统的结构和运作原理系统结构可变气门升程技能系统安装在传统的凸轮轴上。
图1和图2给出了可变气门升程技能系统连接部门的根本组件的根本结构和外形。
图1 可变气门升程技能系统的根本结构图2 可变气门升程技能系统连接部门的外形这个机构包罗两个子系统:机器气门装置系统--治理气门打开和睦门封闭;气门执行器系统--可以凭据控制要求,通过控制气门结构的多连杆式机构来改变气门升程和睦门行动角度。
浅析汽车发动机的可变气门技术

浅析汽车发动机的可变气门技术作者:熊力来源:《时代汽车》 2018年第7期熊力黄冈职业技术学院湖北省黄冈市438000摘要:伴随着经济的发展和进步,我国汽车行业呈现出全面优化的态势,发动机气门作为保障燃油系统常规化运转的基础零部件,具有重要的应用价值和意义。
为了有效提高其应用水平,技术部门要对技术结构予以关注。
本文简要分析了汽车发动机可变气门技术分类和作用,并且对其发展进程展开了讨论,仅供参考。
关键词:汽车发动机;可变气门技术;分类;作用;发展进程在汽车发动机实际运转的过程中,启动的气门数量较多,这就会使得对应的发动机转速增加,但是,转速若是出现不足或者是较高的情况,都会对汽车燃油消耗造成影响,此时需要借助汽车发动机可变气门技术对燃油系统予以升级,提高发动机的基础效率,也为后续管理工作的全面优化奠定基础。
1 汽车发动机可变气门技术分类在对汽车发动机可变气门技术进行全面分析时,主要研究的是气门正时技术和气门升程技术两类。
第一,汽车发动机可变气门正时技术。
就是在发动机常规化运转的过程中,气门的开放时间。
汽车发动机可变气门正时技术主要是作用在汽车发动机活塞运动过程中,能有效控制汽车气门的开启和关闭时间。
当汽车发动机进气门活塞要进行自下而上运动的时,气门会在排排气时保持开放状态。
若是活塞到达气门的上终止点,就能完整完成一个排气运动周期,然后保持气门关闭。
需要注意的是,在整个周期运动的过程中,因为会受到空气惯性的影响,需要用反应时间进行合理性管控。
值得一提的是,为了有效保障排气环节中进入气缸以及的气体符合要求,就要在打开活塞后对具体情况进行系统化处理,确保一直运动到下止点后整个气门关闭。
在运动的过程中,汽车发动机的排气门和进气门能保持同时开启的状态,这就是所谓的气门叠加,能有效处理汽车临时性动作,这种情况下,汽车内部的曲轴自然就会形成一定的角度,确保气门叠加角符合预期。
除此之外,发动机转速若是不一致,气门叠加角就会出现异常,尤其是转速较低的情况下,这种叠加角的角度较小,在高速运转后,转速增大叠加角也会随之提升。
宝马发动机VANOS(双可变凸轮轴控制系统)详解

宝马Double-VANOS/Valvetronic1992年,宝马推出了气门无级调节管理——Double-V ANOS双凸轮轴可变气门正时系统,是应用在BMW M3上的世界首创技术。
V ANOS系统是一个由车辆发动机管理系统操纵的液压和机械相结合的凸轮轴控制设备。
此控制系统的优点是可以根据发动机运行状态,通过凸轮轴精确的角度控制对进气门和排气门的气门正时进行无级调节,并且不受油门踏板位置和发动机转速的影响。
V ANOS系统基于一个能够调整进气凸轮轴与曲轴相对位置的调整机构。
在实际驾驶中,这意味着在发动机转速较低时可以提供充足的扭矩,而在高转速范围内则可达到最佳的功率。
此外,Double-V ANOS增加了对进排气凸轮轴的调整机构,双凸轮轴可变气门正时系统可极大地减少未燃烧的残余气体,从而改进了发动机的怠速性能。
V ANOS系统根据发动机转速和加速踏板位置来操作进气凸轮轴。
Valvetronic电子气门是具有可变进气门升程控制功能的气门驱动系统,发动机的进气完全由无级可变进气门升程控制,不再需要以往对于内燃式汽油发动机来讲必不可少的节气门。
在发动机转速达到最低时,进气门将随后开启以改善怠速质量及平稳度。
发动机处于中等转速时,进气门提前开启以增大扭矩并允许废气在燃烧室中进行再循环从而减少耗油量和废气的排放。
最后,当发动机转速很高时,进气门开启将再次延迟,从而发挥出最大功率。
电子气门技术的另一重要优点,是踩踏油门时发动机产生反应的时间加快。
传统发动机以油门控制节气阀的方式,油门踩下节气阀打开,还要等待空气流入填满进气歧管之后,才会大量进入发动机气缸,产生所需要的动力。
而电子气门发动机油门踩下时可直接控制加大进气阀门开启深度,大量空气立刻流入发动机气缸,产生所需要的动力。
电子气门发动机进气阀门开启深度最浅0.25mm,最深可以到9.7mm,相差近40倍,然而从最浅变化到最深,电子气门整体机构所需要的反应时间大约只要0.3s。
可变气门原理

可变气门原理可变气门技术是现代内燃机领域的一个重要突破,它通过调节气门的开启时间和开启程度,实现了发动机在不同工况下的最佳性能表现。
可变气门技术的出现,对于提高发动机的燃烧效率、降低排放、增强动力性能等方面都具有重要意义。
一、可变气门技术的发展历程。
可变气门技术最早出现在汽车发动机上,最早的形式是采用可变气门正时系统,通过调整气门的正时来实现不同工况下的最佳性能。
随着技术的不断发展,出现了可变气门升程系统和可变气门开启时间系统,这些系统都是为了更精确地控制气门的开启时间和开启程度,以适应不同工况下的发动机要求。
二、可变气门技术的工作原理。
可变气门技术的核心在于调节气门的开启时间和开启程度,以实现最佳的进气量和排气量。
这需要通过控制气门正时系统、气门升程系统或气门开启时间系统来实现。
在不同工况下,发动机需要不同的进气量和排气量,通过调节气门的开启时间和开启程度,可以实现最佳的燃烧效率和动力输出。
三、可变气门技术的优势。
可变气门技术的出现,为发动机的性能提升带来了重要的机遇。
它可以提高发动机的燃烧效率,降低排放,增强动力输出,提高燃油经济性等方面都具有重要意义。
同时,可变气门技术还可以提高发动机的响应速度和稳定性,使得驾驶体验更加舒适和安全。
四、可变气门技术的应用前景。
随着汽车工业的不断发展,可变气门技术将会得到更广泛的应用。
未来,随着新能源汽车的兴起,可变气门技术也将在混合动力和电动汽车领域发挥重要作用。
同时,可变气门技术还将在航空、船舶等领域得到应用,为发动机的性能提升和能效提高带来新的机遇。
五、总结。
可变气门技术是现代发动机技术的重要突破,它通过调节气门的开启时间和开启程度,实现了发动机在不同工况下的最佳性能表现。
可变气门技术的出现,对于提高发动机的燃烧效率、降低排放、增强动力性能等方面都具有重要意义。
未来,可变气门技术将会得到更广泛的应用,并在新能源汽车、航空、船舶等领域发挥重要作用。
发动机可变气门技术研究与探讨

发动机可变气门技术研究与探讨作者:金艳秋来源:《山东工业技术》2017年第03期摘要:现在汽车发动机普遍应用可变气门技术,本文首先阐述了发动机可变气门技术的作用,然后对现在主流车型上的发动机可变气门正时技术和发动机可变气门升程技术进行了总结分析,最后对发动机可变气门技术提出了展望。
关键词:发动机;可变气门正时;可变气门升程DOI:10.16640/ki.37-1222/t.2017.03.2520 引言发动机可变气门技术能在一定范围内调整凸轮轴的转角和升程,即可变气门正时技术和可变气门升程技术。
1 发动机可变气门正时技术的作用固定不变的气门正时很难同时满足发动机高转速、低转速等多种工况的需求。
可变气门正时技术的功能是改变发动机气门开启时间、闭合时间和气门开启持续时间,以满足发动机不同工况下的需求。
多数发动机可变气门正时系统可以实现进气门可变正时,即单可变气门正时技术;而少数发动机还在排气门配备了可变气门正时系统,即双可变气门正时技术。
2 发动机可变气门升程技术的作用发动机的动力性大小取决于喷油量的多少,而喷油量的多少与单位时间内进入气缸内的空气量多少有关。
发动机可变气门正时技术只能改变气门开启、闭合时间和气门开启持续时间,却不能显著改变单位时间内的进气量,而可变气门升程技术就能满足这个需求。
可变气门升程技术的功能主要是改变发动机气门开启的深度即气门升程,以达到根据发动机转速的需求提供空气量,从而使燃烧更充分效率更高。
3 发动机可变气门正时系统不同类型发动机的可变气门正时系统在名称上略有不同,但是其基本工作原理是非常类似的。
下面以丰田汽车可变气门正时系统为例阐述其工作原理,该系统ECU采集发动机各传感器(如发动机转速传感器、节气门位置传感器、水温传感器、车速信号、档位信号等)信号,根据其内部存储的正时参数进行控制凸轮轴正时控制阀,从而将油压施加给凸轮轴正时带轮以提前或推迟配气正时。
4 发动机可变气门升程技术系统(1)本田汽车可变气门升程系统。
关于汽车发动机的VVT、CVVT、 DVVT、 VVTI、VVL类型

关于汽车发动机的VVT、CVVT、DVVT、
VVTI、VVL技术类型
这些技术都是让电脑控制发动机进排气门在不同工况下正确的开启时间,发动机在增大功率的同时也降低了油耗,现在许多品牌的汽车都使用了这种技术;只是名字取得不同而已,因为厂家都已经注册了各自的这个技术,不能使用一样的名字!
CVVT是英文Continue Variable Valve Timing的缩写,翻译成中文就是连续可变气门正时机构,它是近些年来被逐渐应用于现代轿车上的众多可变气门正时技术中的一种。
例如:宝马公司叫做Vanos,丰田叫做VVTI,本田叫做VTEC,但不管叫做什么,他们的目的都是给不同的发动机工作状况下匹配最佳的气门重叠角(气门正时),只不过所实现的方法是不同的。
VVT:是可变气门正时;
CVVT :连续可变气门正时;
DVVT:双可变气门正时;
VVTI:智能可变气门正时系统;
VTEC:可变气门相位及升程控制系统;
VVL:为可变气门升程系统。
传统的汽油发动机的气门升程是固定不可变的,VVL的采用使发动机在高速区和低速区都能得到满足需求的气门升程。
从而改善发动机高速功率和低速扭矩。
如果非要说哪个好,本田的I-VTEC表现最好,其次是丰田的VVT-I,现代的CVVT就不怎么样了!其实这个技术奔驰、宝马、大众早就有了!只是他们不象丰田本田那样贴个标在车尾大肆宣传!他们的做法很低调,不信你可以看一下奔驰和宝马的发动机!。
可变气门正时与升程控制系统

(4)共轨压力传感器
• 实时测定共轨管中的实际压力信号并反馈给ECU,由ECU对燃油调压 阀实施反馈控制,通过对供油量的增减来调节油压稳定在目标值
• 膜片上装有半导体型敏感元件,当高压燃油经压力室的小孔流向膜片 时,膜片形状发生改变,膜片涂层的电阻发生变化;
• 由系统压力引起膜片形状变化,促使电阻值改变,并产生电压变化, 向ECU发送电信号;
• 因此两个进气门均由 主摇臂驱动,即由低 速凸轮驱动,
• 升程都是7mm,以确 保中转速时转矩与功 率值。
3.第三段(高速):
• 上、下油路都送入油压,上 油路之油压仍使主、副摇臂 结合为一体;下油略送人之 油压,使活塞B与活塞C移 动,
• 故中间摇臂与主摇臂及副摇 臂结合为一体,两支进气门 均由中间摇臂驱动,即由凸 轮高度最高的高速凸轮驱动, 两支进气门的举升都是 10mm,以确保高功率之输 出。
1.多气门分别投入工作
• 1)通过凸轮或摇臂控制气门在设定的工况下开或关; 2)在进气道上设置旋转阀门,根据设定工况打开或关闭 该气门的进气通道,这种结构比用凸轮、摇臂控制简单。
• 进气效果:提高低速、中速、 高速时的转矩。
• 低、中速:空气经过较细的 进气岐管,由于进气流速快, 且进气脉动惯性增压的结果, 使较多的混合气进入气缸, 提高转矩输出;
3) 电控油压
4) 低速工作
• 主、副摇臂与中间摇臂分离,分别由主、副凸轮A、B以 不同的时间与升程驱动。
• 主进气门开度约9mm,副进气门则微开。
5)高速工作
• 因油压进入,正时活塞向右移,主、副与中间摇臂被同步 活塞A与B连接成一体动作;
• 3个摇臂均由中间凸轮C以高升程驱动。此时主副进气门开 度约为12mm。
目前汽车厂商的可变气门技术名称有吉利CVVT

目前汽车厂商的可变气门技术名称有吉利CVVT;本田i-VTEC;奥迪AVS;宝马Valvetronic等。
这些技术的初始思路是根据发动机的运行情况,调整进气量和气门开闭时间、角度,使进入的空气量达到最佳,提高燃烧效率,同时提高燃油经济性。
这就类似于我们人体的呼吸,在可变正时气门技术之前,发动机在高转速时呼吸困难,应有的功率发挥不出来。
为了兼顾高速和低速的进气需求,可变正时气门技术VVT(Variable Valve Timing)应运而生。
但是你知道国内外厂家在此项技术上有什么不同么?我们中国的技术和外国的技术又有没有差距?在本文为您带来详细解析。
更多精彩导购内容请进入导购首页 >>>国内外可变气门技术可变气门技术的作用是根据汽车行驶的需要而自动调节气缸的进气量和排气量。
目前汽车厂商的可变气门技术名称有吉利CVVT;本田i-VTEC;奥迪AVS;宝马Valvetronic等。
这些技术的初始思路是根据发动机的运行情况,调整进气量,使进入的空气量达到最佳,提高燃烧效率。
这就类似于我们人体的呼吸,在静坐的时候,我们通过鼻子呼吸,可以满足身体氧气的需求。
当跑步或剧烈运动时,身体需要更多的氧气,我们如果依旧用鼻子呼吸就觉得呼吸困难,必须大口大口呼吸来满足身体需求。
点击查看相关阅读一、可变气门正时技术发动机在低转速时需氧量小,高转速时需氧量大。
而在可变正时气门技术之前,发动机在高转速时呼吸困难,应有的功率发挥不出来。
但是如果工程师把气门开启设计为满足高转速需求,低转速时也会出现进气不足的现象。
这是由于气缸进气的基本原理是“负压”,就是利用气缸内外的压力差,向气缸内抽气。
当发动机转速很低时,气门的开启程度如果很大,会造成气缸内外压力均衡,负压很小,抽不进来混合器。
为了兼顾高速和低速的进气需求,可变正时气门技术VVT(Variable Valve Timing)应运而生。
吉利汽车JL4G18 CVVT发动机上图是吉利汽车JL4G18 CVVT发动机,它是一个具有典型的可变气门正时控制机构的发动机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宝马可变气门升程技术(总21页) --本页仅作为文档封面,使用时请直接删除即可-- --内页可以根据需求调整合适字体及大小-- 我们想大家解析了关于汽车发动机可变气门正时技术,简单来说它是通过电脑控制发动机气门的开启时间,利用进气门与排气门不同的开启时间来控制汽车发动机的效率与经济性,但这种技术对于汽车发动机性能方面的提升却不大。随着汽车行业的发展,发动机的性能如何已经成为一款车能否取得成功的关键,这也就促使各大汽车厂家的工程师们对发动机技术进行了进一步研究。通过研究后,他们发现了可以弥补发动机可变气门正时技术不足的方法,而这也就是我们今天这节技术大讲堂要说的发动机可变气门升程技术。
众所周知,发动机的动力表现主要取决于单位时间内汽缸的进气量,上一节技术大讲堂我们说过,气门正时代表了气门开启的时间,而气门升程则代表的是气门开启的大小,从原理上看,可变气门正时技术也是通过改变进气量来改善动力表现的,但实际上气门正时则只能增加或者缩小气门开启时间,并不能有效改善汽缸内单位时间的进气量,从数学角度上看,气门正时是将分母和分子同时等比例放大,而这对于数字的扩大或缩小则没有任何改善,也正式因此对于可变气门正时技术队于发动机动力性的帮助并不大。3
而当气门开启大小也可以实现可变调节的话,那么就可以针对不同的转速使用合适的气门开启大小,从而提升发动机在各个转速内的动力性能,这就是和可变气门正时技术相辅相承的可变气门升程技术。4 5 正如我们在用皮管接水时,当我们将皮管口的面积变小后,从皮管中喷出的水压力将
变大,水流出的力道也将不同,发动机可变气门升程技术利用的就是这种原理,让混合气的雾化更加的充分,燃烧也更完全。 目前市场上使用具有可变气门升程技术发动机的厂家共有三个,分别是本田(Vtec/i-Vtec)、日产(VVEL)和宝马(Valvetronic)。 本田可变气门升程技术:Vtec/i-Vtec 本田是最早将可变气门升程技术应用到车载发动机上的厂商,而且不同于其它厂商先使用可变气门正时,后追加可变气门升程技术的做法,本田的工程师在研发项目之初就将这两种技术同步进行。结构简单、设计巧妙是本田可变气门升程机构的特点。6
不过虽然本田是最早使用这种技术的汽车厂家,但直到现在并没有太大的进步,依然停留在只有两段和三段可调的程度,而像宝马、日产和丰田的厂家虽然使用这套技术的时间要晚一些,但是现在他们已经开始使用连续可变气门升程技术。 目前,本田及讴歌目前在国内发售的车型共有SOHC及DOHC两种结构的发动机,它们虽然都配有VTEC或i-VTEC系统。飞度、锋范以及思域搭载的都是本田的R系列发动机,采用的是SOHC单顶置凸轮轴结构,两个进气气门和两个排气气门均由一根凸轮轴驱动。首先要说明的是目前大部分可变气门升程技术都被应用在进气气门端,本田的R系列也不例外。 上图中可以看到,两个进气气门摇臂中间还有一个特殊的摇臂,它对应的是凸轮轴上的一个高角度凸轮,而在发动机低转速时两个进气摇臂和这个特殊摇臂是分离的、互无关系,进气摇臂只由低角度凸轮驱动,因此进气气门打开的升程较小,这有助于提高低转速时的燃油经济性。但当发动机达到一定转速时,由电子液压控制的连杆会将两个进气摇臂和那个特殊摇臂连接为一体,此时三个摇臂就会同时被高角度凸轮驱动,而气门升程也会随之加大,单位时间内的进气量更大,从而发动机动力更强。
除了R系列发动机外,国内本田的思铂睿、雅阁和CR-V的车型均搭载的是DOHC双顶置凸轮轴结构的K系列发动机,同样都装备了可变气门升程技术。此外本田的VTEC系统可在DOHC双顶置凸轮轴发动机的进排气端均进行气门升程的调节,不过这功能并非所有本田DOHC发动机均有,只限定某些车型。 工作原理和R系列发动机的进气端完全相同,都是通过三根摇臂的链接与分离实现的,不过既然排气气门升程也可得到提升,就表示高转速下排气效果将更高,可以更默契的和提高效率的进气气门协作来增强发动机的动力输出。 日产可变气门升程技术:VVEL 如果说本田是可变气门升程技术的先驱者的话,那么日产绝对可以说是这项技术的后来者,直至2007年末第四代G37的上市,日产才开始使用自己的可变气门升程技术VVEL。它被首先应用到了日产的VQ系列发动机上,而之后VK系列发动机则成为了日产奇侠第二款使用可变气门升程技术的发动机。不过可惜的是,目前为止日产在自己的低端车型发动机上还没有使用VVEL技术。
本田的VETC是利用不同的凸轮来实现不同转速下气门升程的改变,而日产则是在驱动气门运动的摇臂上做文章。为了实现连续可变这个功能就必须研发出一种可无级改变工作状况的机构,日产的VVEL系统利用一个简单的螺杆和螺套达到了这个目的。8 9
螺杆我们可以理解为日常生活中常见的螺栓,而螺套就是拧在螺栓上的螺母,螺母随着转动就可沿着螺栓上的螺纹上下运动,换个角度来看这就是一种无级调节方式。日产的工程师就是将一组螺杆(螺栓)和螺套(螺母)加到了发动机的气门摇臂上来使气门升程连续(无级)可变的。
日产的这套VVEL连续可变气门升程系统在一定范围内(这个范围的大小由螺杆的长度和输出凸轮的角度来决定)可实现无级连续调节,针对不同的发动机转速都有相应的气门升程,这种形式无疑更加灵活自主,不过目前VVEL系统只应用在进气端,因此还存在进化的余地。 宝马可变气门升程技术:Valvetronic 与日产的VVEL可变气门升程技术相比,宝马的Valvetronic可变气门升程技术就要让我们熟悉的多,这个宝马在2001年发布的可变气门升程技术现在被广泛的应用到宝马旗下车型上。和日产的VVEL一样,宝马的Valvetronic也是目前少数可以实现连续可变的气门升程技术之一。
宝马的Valvetronic系统同样是依靠改变摇臂结构来控制气门升程。传统的发动机大多都是利用凸轮轴上的凸轮挤压摇臂带动气门挺杆来使气门上下运动,而宝马的工程师在凸轮轴与传统摇臂间加装了一根偏心凸轮轴,利用偏心凸轮轴上的凸轮位置的改变来实现气门升程的改变。 汽修资料日产的VVEL的作用范围取决于螺杆长度,而宝马的Valvetronic的气门升程范围则由偏心凸轮的角度及高度而定,据官方介绍,这套系统可以将气门升程最大增加10mm,这对高转速下增大进气量是很有帮助的。 不过宝马的Valvetronic和VVEL一样,目前也只应用在发动机的进气端,因此研发出更强大、更轻巧、可以用于发动机排气端的新型Valvetronic系统也许正是宝马现在在做的事情。 总结: 通过介绍我们已经详细的了解了发动机可变气门正时/升程的基本原理,可变气门正时的高效性和可变气门升程的动力性都是它们典型的特点。随着汽车技术的发展,目前可变气门正时/升程技术已经不再是一个新鲜的技术了,它们除了被应用在进气端外,甚至在部分品牌车型的排气端上也已经开始使用这两种技术。而像菲亚特、奥迪、保时捷、丰田、三菱以及斯巴鲁等厂家也开始在自己的车辆上使用可变气门正时/升程技术,但我更希望看到的是随着中国汽车市场的扩大,自主品牌技术的逐渐提升,这两项已经不算新的发动机技术可以早日应用到自主品牌发动机上。12
大家发表的互动观点(3人发表) 我们想大家解析了关于汽车发动机可变气门正时技术,简单来说它是通过电脑控制发动机气门的开启时间,利用进气门与排气门不同的开启时间来控制汽车发动机的效率与经济性,但这种技术对于汽车发动机性能方面的提升却不大。随着汽车行业的发展,发动机的性能如何已经成为一款车能否取得成功的关键,这也就促使各大汽车厂家的工程师们对发动机技术进行了进一步研究。通过研究后,他们发现了可以弥补发动机可变气门正时技术不足的方法,而这也就是我们今天这节技术大讲堂要说的发动机可变气门升程技术。13 众所周知,发动机的动力表现主要取决于单位时间内汽缸的进气量,上一节技术大讲堂我们说过,气门正时代表了气门开启的时间,而气门升程则代表的是气门开启的大小,从原理上看,可变气门正时技术也是通过改变进气量来改善动力表现的,但实际上气门正时则只能增加或者缩小气门开启时间,并不能有效改善汽缸内单位时间的进气量,从数学角度上看,气门正时是将分母和分子同时等比例放大,而这对于数字的扩大或缩小则没有任何改善,也正式因此对于可变气门正时技术队于发动机动力性的帮助并不大。14 而当气门开启大小也可以实现可变调节的话,那么就可以针对不同的转速使用合适的气门开启大小,从而提升发动机在各个转速内的动力性能,这就是和可变气门正时技术相辅相承的可变气门升程技术。15 16 正如我们在用皮管接水时,当我们将皮管口的面积变小后,从皮管中喷出的水压力将变
大,水流出的力道也将不同,发动机可变气门升程技术利用的就是这种原理,让混合气的雾化更加的充分,燃烧也更完全。 目前市场上使用具有可变气门升程技术发动机的厂家共有三个,分别是本田(Vtec/i-Vtec)、日产(VVEL)和宝马(Valvetronic)。 本田可变气门升程技术:Vtec/i-Vtec 本田是最早将可变气门升程技术应用到车载发动机上的厂商,而且不同于其它厂商先使用可变气门正时,后追加可变气门升程技术的做法,本田的工程师在研发项目之初就将这两种技术同步进行。结构简单、设计巧妙是本田可变气门升程机构的特点。17
不过虽然本田是最早使用这种技术的汽车厂家,但直到现在并没有太大的进步,依然停留在只有两段和三段可调的程度,而像宝马、日产和丰田的厂家虽然使用这套技术的时间要晚一些,但是现在他们已经开始使用连续可变气门升程技术。 目前,本田及讴歌目前在国内发售的车型共有SOHC及DOHC两种结构的发动机,它们虽然都配有VTEC或i-VTEC系统。飞度、锋范以及思域搭载的都是本田的R系列发动机,采用的是SOHC单顶置凸轮轴结构,两个进气气门和两个排气气门均由一根凸轮轴驱动。首先要说明的是目前大部分可变气门升程技术都被应用在进气气门端,本田的R系列也不例外。