梁的振动实验报告

梁的振动实验报告
梁的振动实验报告

梁的振动实验报告

实验目的

改变梁的边界条件,对比分析不同边界条件,梁的振动特性(频率、振型等)。对比理论计算结果与实际测量结果。正确理解边界条件对振动特性的影响。

实验内容

对悬臂梁、简支梁进行振动特性对比,利用锤击法测量系统模态及阻尼比等。

实验原理

1、固有频率的测定

悬臂梁作为连续体的固有振动,其固有频率为:

其一、二、三、四阶时,

简支梁的固有频率为:

其一、二、三、四阶时,

其中E为材料的弹性模量,I为梁截面的最小惯性矩,ρ为材料密度,A为梁截面积,l为梁的长度。

试件梁的结构尺寸:长L=610mm, 宽b=49mm, 厚度h=8.84mm.

材料参数: 45#钢,弹性模量E=210 (GPa), 密度=7800 (Kg/m3)

横截面积:A=4.33*10-4 (m2),

截面惯性矩:J==2.82*10-9(m4)

则梁的各阶固有频率即可计算出。

2、实验简图

图1 悬臂梁实验简图

图2简支梁实验简图

实验仪器

本次实验主要采用力锤、加速度传感器、YE6251数据采集仪、计算机等。图3和图4分别为悬臂梁和简支梁的实验装置图。图5为YE6251数据采集仪。

图3 悬臂梁实验装置图

图4 简支梁实验简图

图5 YE6251数据采集分析系统

实验步骤

1:"在教学装置选择"中,选择结构类型为"悬臂梁",如果选择等份数为17,将需要测量17个测点。

2:本试验可采用多点激励,单点响应的方式,如果是划分为17等份,请将拾振点放在第5点。

3:请将力锤的锤头换成尼龙头,并将力通道的低通滤波器设置为1KHz,将拾振的加速度通道的低通滤波器设置为2KHz。

4:用力锤对第1点激振,对应的激励为f1,响应为1,平均3次,对应的数据为第1批数据,以此类推,测量完全部测点。

5:选择"教学装置模态分析和振型动画显示",调入测量数据进行分

析。

6:"在教学装置选择"中,选择结构类型为"简支梁",如果选择等份数为17,将需要测量17个测点。重复2—5的步骤,得到简支梁的试验数据和结果。

实验数据记录和整理

图6 悬臂梁的传递函数幅值和相位

图7 悬臂梁的固有振型、频率和阻尼比

图8 简支梁的传递函数幅值和相位

图9 简支梁的固有振型、频率和阻尼比

弦振动实验报告

弦振动的研究 '、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密p、弦长L和弦的张力T的关系,并进行测 量。 、、实验仪器 弦线,电子天平,滑轮及支架,砝码,电振音叉,米尺 、实验原理 为了研究问题的方便,认为波动是从A 点发出的,沿弦线朝E端方向传播,称为入射波,再由E端反射沿弦线朝A端传播,称为反射 波。入射波与反射波在同一条弦线上沿相反方向传 播时将相互干涉,移动劈尖E 到适合位置?弦线上 的波就形成驻波。这时, 弦线上的波被分成几段形 成波节和波腹。驻波形成如图(2)所示。 设图中的两列波是沿X轴相向方向传 播的振幅相等、频率相同振动方向一致的简谐波。向右传播的用细实线表示,向 图(2)左传播的用细虚线 表示,它们的合成驻波用粗 实线表示。由图可见,两个 波腹间的距离都是等于半 个波长,这可从波动方程推

导出来。 下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点 “0”,且在X二0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y i = Acos2 (ft —x/ ) Y2 = Acos[2 (ft + x/ "+ ] 式中A为简谐波的振幅,f为频率,为波长,X为弦线上质点的坐标位置。两波 叠加后的合成波为驻波,其方程为: Y i + 丫2 = 2Acos[2 (x/ ) + /2]Acos2 ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动, 它们的振幅为丨2A cos[2 (x/ )+ /2] | ,与时间无关t,只与质点的位置 x有关。 由于波节处振幅为零,即:丨cos[2 (x/ ) + /2] | =0 2 (x/ ) + /2 = (2k+1) / 2 (k=0. 2. 3. …) 可得波节的位置为: x = k /2 ②而相邻两波节之间的距离为: X k+1 —X k = (k + 1) 12—k / 2 = / 2③又因为波腹处的质点振幅为最大,即I cos[2 (x/ ) + /2] | =1

大学物理振动练习题有答案

一.选择题、填空题 1.一质点作简谐振动,振动方程为x =Acos(ωt +?) ,当时间t =T / 2(T 为周期) 时,质点的速度为B A. -A ωsin ? . B. A ωsin ? . C. -A ωcos ? . D. A ωcos ?. 2.两个质点各自作简谐振动,它们的振幅相同、周期相同, 第一个质点的振动方程为x 1=A cos(ω t +α). 当第一个质点从相对平衡位置的正位移处回到平衡位置时, 第二个质点正在最大位移处, 则第二个质点的振动方程为B (A) x 2=A cos(ω t +α +π/2) . (B) x 2=A cos(ω t +α -π/2) . (C) x 2=A cos(ω t +α -3 π/2) . (D) x 2=A cos(ω t +α + π) . 3.一个质点作简谐振动,振辐为A ,在起始时刻质点的位移为A/2,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为图16.1中哪一图?B 4.一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点. 已知周期为T ,振幅为A . (1)若t =0时质点过x =0处且朝x 轴正方向运动,则振动方程为x = . (2)若t =0时质点处于x =A /2处且朝x 轴负方向运动,则振动方程为x = . 5.用余弦函数描述一简谐振动,已知振幅为A ,周期为T ,初位相?=-π/3,则振动曲线为图17.2中哪一图?A 6.一质点作谐振动,振动方程为x=A cos(ωt +?),在求质点振动动能时,得出下面5个表达式:C (1) (1/2) m ω 2A 2sin 2 (ωt+?); (2) (1/2) m ω2A 2cos 2 (ωt+?); (A) 图16.1 (A) (C) (B) (D) 图17.2

弦振动实验报告

实验13 弦振动的研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动是产生波动的根源,波动是振动的传播。均匀弦振动的传播,实际上是两个振幅相同的相干波在同一直线上沿相反方向传播的叠加,在一定条件下可形成驻波。本实验验证了弦线上横波的传播规律:横波的波长与弦线中的张力的平方根成正比,而与其线密度(单位长度的质量)的平方根成反比。 一. 实验目的 1. 观察弦振动所形成的驻波。 2. 研究弦振动的驻波波长与张力的关系。 3. 掌握用驻波法测定音叉频率的方法。 二. 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三. 实验原理 1. 两列波的振幅、振动方向和频率都相同,且有恒 定的位相差,当它们在媒质内沿一条直线相向传播时,

将产生一种特殊的干涉现象——形成驻波。如图3-13-1所示。在音叉一臂的末端系一根水平弦线,弦线的另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A端振动,由A端振动引起的波沿弦线向右传播,称为入射波。同时波在C点被反射并沿弦线向左传播,称为反射波。这样,一列持续的入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉。当C点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波的波节;而有些点振动最强,称为驻波的波腹。 2. 图3-13-2所示为驻波形成的波形示意图。在图中画出了两列波在T=0,T/4,T/2时刻的波形,细实线表示向右传播的波,虚线表示向左传播的波,粗实线表示合成波。如取入射波和反射波的振动相位始终相同的点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们的波动方程分别为: (3-13-1) (3-13-2)式中为波的振幅,为频率,λ为波长,为弦线上质点的坐标位置。 两波叠加后的合成波为驻波,其方程为: (3-13-3)由上式可知,入射波与反射波合成后,弦线上各点都在以同一频率作 简谐振动,它们的振幅为,即驻波的振幅与时间无关,而与质

大学物理A第九章 简谐振动

第九章 简谐振动 填空题(每空3分) 质点作简谐振动,当位移等于振幅一半时,动能与势能的比值为 ,位移等于 时,动能与势能相等。(3:1,2A ) 9-2两个谐振动方程为()120.03cos (),0.04cos 2()x t m x t m ωωπ==+则它们的合振幅为 。(0.05m ) 9-3两个同方向同频率的简谐振动的表达式分别为X 1=×10-2cos(T π2t+4 π ) (SI) , X 2=×10-2cos(T π2t -43π) (SI) ,则其合振动的表达式为______(SI).( X=×10-2cos(T π2t+4 π ) (SI)) 9-4一质点作周期为T 、振幅为A 的简谐振动,质点由平衡位置运动到2 A 处所需要的最短时间为_________。( 12 T ) 9-5 有两个同方向同频率的简谐振动,其表达式分别为 )4 cos(1π ω+ =t A x m 、 )4 3 cos(32πω+=t A x m ,则合振动的振幅为 。(2 A) 9-6 已知一质点作周期为T 、振幅为A 的简谐振动,质点由正向最大位移处运动到2 A 处所需要的最短时间为_________。 ( 6 T ) 9-7有两个同方向同频率的简谐振动,其表达式分别为 )75.010cos(03.01π+=t x m 、)25.010cos(04.02π-=t x m ,则合振动的振幅为 。 (0.01m ) 质量0.10m kg =的物体,以振幅21.010m -?作简谐振动,其最大加速度为2 4.0m s -?,通过平衡 位置时的动能为 ;振动周期是 。(-3 2.010,10s J π?) 9-9一物体作简谐振动,当它处于正向位移一半处,且向平衡位置运动,则在该位置时的相位为 ;在该位置,势能和动能的比值为 。(3π) 9-10质量为0.1kg 的物体,以振幅21.010m -?作谐振动,其最大加速度为14.0m s -?,则通过最大位移处的势能为 。(3210J -?) 9-11一质点做谐振动,其振动方程为6cos(4)x t ππ=+(SI ),则其周期为 。

弦振动实验报告

弦 振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L 和弦的张力Τ的关系,并进行测量。 三、波。示。轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点 “O ”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y 1=Acos2(ft -x/ ) Y 2=Acos[2 (ft +x/λ)+ ]式中A 为简谐波的振幅,f 为频率,为波长,X 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y 1 +Y 2=2Acos[2(x/ )+/2]Acos2ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2(x/ )+/2] |,与时间无关t ,只与质点的位置x 有关。 由于波节处振幅为零,即:|cos[2(x/ )+/2] |=0

2(x/ )+/2=(2k+1) / 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=k /2 ②而相邻两波节之间的距离为: x k+1-x k =(k+1)/2-k / 2= / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2(x/ )+/2] | =1 2(x/ )+/2 =k ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=n / 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: =2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=f,将⑤式代入可得弦线上横波的传播速度: V=2Lf/n ⑥ 另一方面,根据波动理论,弦线上横波的传播速度为: V=(T/ρ)1/2 ⑦ 式中T为弦线中的张力,ρ为弦线单位长度的质量,即线密度。 再由⑥⑦式可得 f =(T/ρ)1/2(n/2L) 得 T=ρ / (n/2Lf )2 即ρ=T (n/2Lf )2 ( n=1. 2. 3. … ) ⑧ 由⑧式可知,当给定T、ρ、L,频率f只有满足以上公式关系,且积储相应能量时才能在弦线上有驻波形成。 四、实验内容 1、测定弦线的线密度:用米尺测量弦线长度,用电子天平测量弦线质量,记录数据 2、测定11个砝码的质量,记录数据

大学物理《弦振动》实验报告文档

2020 大学物理《弦振动》实验报告文 档 Contract Template

大学物理《弦振动》实验报告文档 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 (报告内容:目的、仪器装置、简单原理、数据记录及结果分析等) 一.实验目的 1.观察弦上形成的驻波 2.学习用双踪示波器观察弦振动的波形 3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系 二.实验仪器 XY弦音计、双踪示波器、水平尺 三实验原理 当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有

惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。理论和实验证明,波在弦上传播的速度可由下式表示: = ρ 1 -------------------------------------------------------① 另外一方面,波的传播速度v和波长λ及频率γ之间的关系是: v=λγ--------------------------------------------------------② 将②代入①中得γ =λ1 -------------------------------------------------------③ρ1 又有L=nλ/2或λ=2L/n代入③得γ n=2L ------------------------------------------------------④ρ1 四实验内容和步骤

15机械振动习题解答

第十五章 机械振动 一 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的?( ) A. 物体在运动正方向的端点时,速度和加速度都达到最大值; B. 物体位于平衡位置且向负方向运动时,速度和加速度都为零; C. 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; D. 物体处负方向的端点时,速度最大,加速度为零。 解:根据简谐振动的速度和加速度公式分析。 答案选C 。 2.下列四种运动(忽略阻力)中哪一种不是简谐振动?( ) A. 小球在地面上作完全弹性的上下跳动; B. 竖直悬挂的弹簧振子的运动; C. 放在光滑斜面上弹簧振子的运动; D. 浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动。 解:A 中小球没有受到回复力的作用。 答案选A 。 3. 一个轻质弹簧竖直悬挂,当一物体系于弹簧的下端时,弹簧伸长了l 而平衡。则此系统作简谐振动时振动的角频率为( ) A. l g B. l g C. g l D. g l 解 由kl =mg 可得k =mg /l ,系统作简谐振动时振动的固有角频率为l g m k ==ω。 故本题答案为B 。 4. 一质点作简谐振动(用余弦函数表达),若将振动速度处于正最大值的某时刻取作t =0,则振动初相?为( ) A. 2π- B. 0 C. 2π D. π 解 由 ) cos(?ω+=t A x 可得振动速度为 ) sin(d d ?ωω+-==t A t x v 。速度正最大时有0) cos(=+?ωt ,1) sin(-=+?ωt ,若t =0,则 2 π-=?。 故本题答案为A 。 5. 如图所示,质量为m 的物体,由劲度系数为k 1和k 2的两个轻弹簧连接,在光滑导轨上作微小振动,其振动频率为 ( )

波尔共振实验报告

波尔共振 振动是一种常见的物理现象,而共振是特殊的振动,为了趋利避害在工程技术和科学研究领域中对其给予了足够的重视。 目前,电力传输采用的是高压输电法。而据报载,2007年6月美国麻省理工学院的物理学家索尔加斯克领导的一个小组,成功地利用无线输电技术,点亮了距离电源2米远的灯泡!无线输电法原理的核心就是共振。人们期待着能在更远的距离实现无线输电,那时生产和生活将会发生一场重大变革。 【目的与要求】 1. 观察测量自由振动中振幅与周期的关系。 2. 研究阻尼振动并测量阻尼系数。 3. 观察共振现象及其特征;研究不同阻尼力矩对受迫振动的影响及其辐频特性和相频特 性。 4. 学习用频闪法测定动态物理量----相位差。 【实验原理】 物体在周期性外力(即强迫力)的作用下发生的振动称为受迫振动。若外力是按简谐振动规律变化,则稳定状态时的振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统的固有频率以及阻尼系数有关。在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。在无阻尼情况下,当强迫力频率与系统的固有频率相同时产生共振,此时振幅最大,相位差为90°。 当摆轮受到周期性强迫外力矩t M M ωcos 0=的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为dt d b θ-),其运动方程为 t M dt d b k dt d J ωθ θθcos 02 2+--= (33-1) 式中,J 为摆轮的转动惯量,-k θ为弹性力矩,M 0为强迫力矩的幅值,ω为强迫力的圆频率。 令 ,2 0J k =ω ,2J b =β J M m 0= 则式(33-1)变为 t m dt d dt d ωθωθβθcos 22022=++ (33-2) 当0cos =t m ω时,式(2)即为阻尼振动方程。 当0=β,即在无阻尼情况时式(33-2)变为简谐振动方程,系统的固有圆频率为ω0。方程(33-2)的通解为 )cos()cos(021?ωθαωθθβ+++=-t t e f t (33-3) 由式(33-3)可见,受迫振动可分成两部分: 第一部分,)cos(1αωθβ+-t e f t 和初始条件有关,经过一定时间后衰减消失。

弦振动实验报告

弦振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系, 并进行测量。 三、 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程

分别为: Y1=Acos2π(ft-x/ λ) Y2=Acos[2π (ft+x/λ)+ π] 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos[2π(x/ λ)+π/2]Acos2πft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2π(x/ λ)+π/2] |,与时间无关t,只与质点的位置x有关。 由于波节处振幅为零,即:|cos[2π(x/ λ)+π/2] |=0 2π(x/ λ)+π/2=(2k+1) π/ 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=kλ /2 ② 而相邻两波节之间的距离为: x k+1-x k =(k+1)λ/2-kλ / 2=λ / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2π(x/ λ)+π/2] | =1 2π(x/ λ)+π/2 =kπ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)λ/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=nλ/ 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: λ=2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=λf,将⑤式代入可得弦线上横波的

驻波实验报告

实验目的: 1、观察弦振动及驻波的形成; 3、在振动源频率不变时,用实验确定驻波波长与张力的关系; 4、在弦线张力不变时,用实验确定驻波波长与振动频率的关系; 4、定量测定某一恒定波源的振动频率; 5、学习对数作图法。 实验仪器: 弦线上驻波实验仪(FD-FEW-II型)包括:可调频率的数显机械振动源、平台、固定滑轮、可动刀口、可动卡口、米尺、弦线、砝码等;分析天平,米尺。 实验原理: 如果有两列波满足:振幅相等、振动方向相同、频率相同、有固定相位差的条件,当它们相向传播时,两列波便产生干涉。一些相隔半波长的点,振动减弱最大,振幅为零,称为波节。两相邻波节的中间一点振幅最大,称为波腹。其它各点的振幅各不相同,但振动步调却完全一致,所以波动就显得没有传播,这种波叫做驻波。驻波相邻波节间的距离等于波长λ的一半。 如果把弦线一端固定在振动簧片上,并将弦线张紧,簧片振动时带动弦线由左向右振动,形成沿弦线传播的横波。若此波前进过程中遇到阻碍,便会反射回来,当弦线两固定端间距为半波长整数倍时,反射波与前进波便形成稳定的驻波。波长λ、频率f和波速V满足关系:V = fλ (1) 又因在张紧的弦线上,波的传播速度V与弦线张力T及弦的线密度μ有如下关系:(2) 比较(1)、(2)式得:(3) 为了用实验证明公式(3)成立,将该式两边取自然对数,得: (4) 若固定频率f及线密度μ,而改变张力T,并测出各相应波长λ ,作ln T -lnλ图,若直线的斜率值近似为,则证明了的关系成立。同理,固定线密度μ及张力T,改变振动频率f,测出各相应波长λ,作ln f - lnλ图,如得一斜率为的直线就验证了。 将公式(3)变形,可得:(5) 实验中测出λ、T、μ的值,利用公式(5)可以定量计算出f的值。 实验时,测得多个(n个)半波长的距离l,可求得波长λ为:(6) 为砝码盘和盘上所挂砝码的总重量;用米尺测出弦线的长度L,用分析天平测其质量,求出弦的线密度(单位长度的质量):(7) 实验内容: 1、验证横波的波长λ与弦线中的张力T 的关系(f不变) 固定波源振动的频率,在砝码盘上添加不同质量的砝码,以改变同一弦上的张力。每改变一次张力(即增加一次砝码),均要左右移动可动卡口支架⑤的位置,使弦线出现振幅较大而稳定的驻波。将可动刀口支架④移到某一稳定波节点处,用实验平台上的标尺测出④、⑤之间的距离l,数出对应的半波数n,由式(6)算出波长λ。张力T改变6次,每一T下测2次λ,求平均值。作lnλ- ln T图,由图求其斜率。

气垫弹簧振子的简谐振动实验报告

××大学实验报告 学院:×× 系:物理系专业:×× 年级:××级 姓名:×× 学号:×× 实验时间:×× 指导教师签名:_______________ 实验四:气垫弹簧振子的简谐振动 一.实验目的与要求: 1. 考察弹簧振子的振动周期与振动系统参量的关系。 2. 学习用图解法求出等效弹簧的倔强系数和有效质量。 3. 学会气垫调整与试验方法。 二.实验原理: 1.弹簧的倔强系数 弹簧的伸长量x 与它所受的拉力成正比 F=kx k=X F 2.弹簧振子的简谐运动方程 根据牛顿第二定律,滑块m 1 的运动方程为 -k 1(x+x 01)-k 2(x-x 02)=m 2 2dt x d ,即-(k 1+k 2)x=m 2 2dt x d 式中,m=m 1+m 0(系统有效质量),m 0是弹簧有效质量,m 1是滑块质量。令 k=k 1+k 2,则 -kx= m 2 2dt x d 解为x=A sin (ω0t+ψ0 ),ω0= m k = m k k 2 1+ 而系统振动周期 T 0=0 2ωπ=2π k m

当 m 0《 m 1时,m 0=3 s m ,m s 是弹簧的实际质量(m 0与m s 的关系可简单写成 m 0=3 m s )。 本实验通过改变m 1测出相应的T ,以资考察T 和m 的关系,从而求出m 0和 k 。 三.主要仪器设备: 气垫导轨、滑块(包括挡光刀片)、光电门、测时器、弹簧。 四.实验内容及实验数据记录: 1.气垫导轨水平的调节 使用开孔挡光片,智能测时器选在2pr 功能档。让光电门A 、B 相距约60cm (取导轨中央位置),给滑块以一定的初速度(Δ t 1和Δt 2控制在20-30ms 内),让 它在导轨上依次通过两个光电门.若在同一方向上运动的Δ t 1和Δt 2的相对 误差小于3%,则认为导轨已调到水平.否则重新调整水平调节旋钮。 2.研究弹簧振子的振动周期与振幅的关系 先将测时器设置于6pd (测周期)功能档。按动选择钮,屏幕显示6pd 时,按动执行键,显示为0。每按一次选择键,显示加1;当达到预定值(如预置数为n =6,则表示测3个周期的时间)后,将滑块拉离平衡点6.00厘米(即选定某一振幅),再按执行键,放手让其运动,进入测周期操作。当屏幕上显示预置数减为0后,显示屏上出现总时间t ;由此可得周期T = n t 2。 再重新测量几次并取平均值。并测量滑块和弹簧的质量,利用T 0= 2ωπ =2π k m 计算弹簧的倔强系数。取不同的振幅测量,探讨周期与振幅是否有关。 3.观测简谐振动周期T 与m 的关系,并求出k 与弹簧的有效质量m 0。

均匀弦振动实验报告

实验八 固定均匀弦振动的研究 XY 弦音计是研究固定金属弦振动的实验仪器,带有驱动和接收线圈装置,提供数种不同的弦,改变弦的张力,长度和粗细,调整驱动频率,使弦发生振动,用示波器显示驱动波形及传感器接收的波形,观察拨动的弦在节点处的效应,进行定量实验以验证弦上波的振动。它是传统的电子音叉的升级换代产品。它的优点是无燥声污染,通过函数信号发生器可以方便的调节频率,而这两点正好是电子音叉所不及的。 [实验目的] 1. 了解均匀弦振动的传播规律。 2. 观察行波与反射波互相干涉形成的驻波。 3. 测量弦上横波的传播速度。 4. 通过驻波测量,求出弦的线密度。 [实验仪器] XY 型弦音计、函数信号发生器、示波器、驱动线圈和接收线圈等。 [实验原理] 设有一均匀金属弦线,一端由弦码A 支撑,另一端由 弦码B 支撑。对均匀弦线扰动,引起弦线上质点的振动, 假设波动是由A 端朝B 端方向传播,称为行波,再由B 端 反射沿弦线朝A 端传播,称为反射波。行波与反射波在同 一条弦线上沿相反方向传播时将互相干涉,移动弦码B 到 适当位置。弦线上的波就形成驻波。这时,弦线就被分成 几段,且每段波两端的点始终静止不动,而中间的点振幅 最大。这些始终静止的点称为波节,振幅最大的点称为波 腹。驻波的形成如图4-8-1所示。 设图4-8-1中的两列波是沿x 轴相反方向传播的振幅相等、频率相同的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,它们的合成驻波用粗实线表示。由图4-8-1可见,两个波腹间的距离都是等于半个波长,这可以从波动方程推导出来。 下面用简谐表达式对驻波进行定量描述。设沿x 轴正方向传播的波为行波,沿x 轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点,且在x =0处,振动质点向上达最大位移时开始计时,则它们的波动方程为: )(2cos 1λπx ft A y -= )(2cos 2λ πx ft A y += 式中A 为简谐波的振幅,f 为频率,λ为波长,x 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: 图 4-8-1

大学物理实验简谐振动与阻尼振动的实验报告

湖北文理学院物理实验教学示范中心 实 验 报 告 学院 专业 班 学号: 姓名: 实验名称 简谐振动与阻尼振动的研究 实验日期: 年 月 日 实验室: N1-103 [实验目的]: 1. 验证在弹性恢复力作用下,物体作简谐振动的有关规律;测定弹簧的弹性系数K 和有效质量m. 2. 测定阻尼振动系统的半衰期和品质因数,作出品质因数Q 与质量M 的关系曲线。 [仪器用具]:仪器、用具名称及主要规格(包括量程、分度值、精度等) 气垫导轨、滑块、附加质量(2)、弹簧(4)、光电门(2)、数字毫秒计. [实验原理]:根据自己的理解用简练的语言来概括(包括简单原理图、相关公式等) 1.简谐振动 在水平气垫导轨上的滑块m 的两端连接两根弹性系数1k 、2k 近乎相等的弹簧,两弹簧的另一端分别固定在气轨的两端点。滑块的运动是简谐振动。其周期为: 2 122k k M T +== π ω π 由于弹簧不仅是产生运动的原因,而且参 加运动。因此式中M 不仅包含滑块(振子)的质量m ,还有弹簧的有效质量0m 。M 称为弹簧振子系统的有效质量。经验 证:0m m M += 其中 s m m 31 0=,s m 为弹簧质量。假设:k k k ==21则有周期: 22T πω= = 若改变滑块的质量m ?,则周期2T 与m ?成正比。222 4422M m T k k ππ?=+。以2T 为纵坐标,以m ?为横坐标,作2T -m ?曲线。则为一条斜率为242k π的直线。由斜率可以求出弹簧的弹性系数k 。求出弹性系数后再根据式22 42M T k π=求出弹簧的 有效质量。 2.阻尼振动 简谐振动是一种振幅相等的振动,它是忽略阻尼振动的理想情况。事实上,阻尼力不可避免,而抵抗阻力做功的结果,使振动系统的能量逐渐减小。因此,实验中发生的一切自由振动,振幅总是逐渐减小以至等于零的。这种振动称为阻尼振动。用品质因数(即Q 值),来反映阻尼振动衰减的特性。其定义为:振动系统的总能量E 与在一个周期中所损耗能 量E ?之比的π2倍,即 2E Q E π =?;通过简单推导也有: 12 ln 2 T Q T π= 2 1T 是 阻尼振动的振幅从 0A 衰减为 2 0A 所用时 间,叫做半衰期。测出半衰期就可以计算出品质因数Q 。在实验中,改变滑块的质量。作质量与品质因数的关系曲线。 [实验内容]: 简述实验步骤和操作方法 1. 打开气泵观察气泵工作是否正常,气轨出气孔出气大小是否均匀。 2. 放上滑块,调节气轨底座,使气轨处于水平状态。 3. 把滑块拉离平衡位置,记录下滑块通过光电门10次所用的时间。 4. 改变滑块质量5次,重复第3步操作。 5. 画出m T -2 关系曲线,.据m T -2关系曲线,求出斜率K ,并求出弹性系数k 。 6. 用天平测量滑块(附挡光片)、每个附加物的质量后;求出弹簧的有效质量。 7. 用秒表测量滑块儿的振幅从A 0衰减到A 0/2所用的时间2 1T ;求出系统的品质因数Q 8. 滑块上增至4个附加物,重复步骤7作出Q-m ?的关系曲线;

弦振动研究试验(教材)分析

弦振动研究试验 传统的教学实验多采用音叉计来研究弦的振动与外界条件的关系。采用柔性或半柔性的弦线,能用眼睛观察到弦线的振动情况,一般听不到与振动对应的声音。 本实验在传统的弦振动实验的基础上增加了实验内容,由于采用了钢质弦线,所以能够听到振动产生的声音,从而可研究振动与声音的关系;不仅能做标准的弦振动实验,还能配合示波器进行驻波波形的观察和研究,因为在很多情况下,驻波波形并不是理想的正弦波,直接用眼睛观察是无法分辨的。结合示波器,更可深入研究弦线的非线性振动以及混沌现象。 【实验目的】 1. 了解波在弦上的传播及弦波形成的条件。 2. 测量拉紧弦不同弦长的共振频率。 3. 测量弦线的线密度。 4. 测量弦振动时波的传播速度。 【实验原理】 张紧的弦线4在驱动器3产生的交变磁场中受力。移动劈尖6改变弦长或改变驱动频率,当弦长是驻波半波长的整倍数时,弦线上便会形成驻波。仔细调整,可使弦线形成明显的驻波。此时我们认为驱动器所在处对应的弦为振源,振动向两边传播,在劈尖6处反射后又沿各自相反的方向传播,最终形成稳定的驻波。 图 1

为了研究问题的方便,当弦线上最终形成稳定的驻波时,我们可以认为波动是从左端劈尖发出的,沿弦线朝右端劈尖方向传播,称为入射波,再由右端劈尖端反射沿弦线朝左端劈尖传播,称为反射波。入射波与反射波在同一条弦线上沿相反方向传播时将相互干涉,在适当的条件下,弦线上就会形成驻波。这时,弦线上的波被分成几段形成波节和波腹。如图1所示。 设图中的两列波是沿X轴相向方向传播的振幅相等、频率相同、振动方向一致的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,当传至弦线上相应点时,相位差为恒定时,它们就合成驻波用粗实线表示。由图1可见,两个波腹或波节间的距离都是等于半个波长,这可从波动方程推导出来。 下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射波,沿X轴负方向传播的波为反射波,取它们振动相位始终相同的点作坐标原点“O”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为:Y1=Acos2π(ft-x/ λ) Y2=Acos2π(ft+x/ λ) 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos2π(x/ λ)cos2πft ······①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2Acos2π(x / λ) |,只与质点的位置X有关,与时间无关。 由于波节处振幅为零,即|cos2π(x / λ) |=0 2πx / λ=(2k+1) π / 2 ( k=0.1. 2. 3. ······) 可得波节的位置为: X=(2K+1)λ /4 ······②而相邻两波节之间的距离为: X K+1-X K =[2(K+1)+1] λ/4-(2K+1)λ / 4)=λ / 2 ·····③又因为波腹处的质点振幅为最大,即|cos2π(X / λ) | =1 2πX / λ=Kπ ( K=0. 1. 2. 3. ······) 可得波腹的位置为: X=Kλ / 2= 2kλ / 4 ·····④这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节(或相邻两波腹)间的距离,就能确定该波的波长。 1

6.机械振动习题及答案

一、 选择题 1、一质点作简谐振动,其运动速度与时间的曲线如图所示,若质点的振动按余弦函数描述,则其初相为 [ D ] (A ) 6π (B) 56π (C) 56π- (D) 6π- (E) 23 π- 2、已知一质点沿y 轴作简谐振动,如图所示。其振动方程为3cos()4 y A t π ω=+,与之对应的振动曲线为 [ B ] 3、一质点作简谐振动,振幅为A ,周期为T ,则质点从平衡位置运动到离最大 振幅 2A 处需最短时间为 [ B ] (A );4T (B) ;6T (C) ;8 T (D) .12T 4、如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为m 4的物体,最后将此弹簧截断为两个弹簧后并联悬挂质量为m 的物体, 此三个系统振动周期之比为 (A);2 1 : 2:1 (B) ;2:21:1 [ C ] (C) ;21:2:1 (D) .4 1 :2:1

5、一质点在x 轴上作简谐振动,振幅cm A 4=,周期s T 2=,其平衡位置取坐标原点。若0=t 时刻质点第一次通过cm x 2-=处,且向x 轴负方向运动,则质点第二次通过cm x 2-=处的时刻为 (A);1s (B) ;32s (C) ;34 s (D) .2s [ B ] 6、一长度为l ,劲度系数为k 的均匀轻弹簧分割成长度分别为21,l l 的两部分, 且21nl l =,则相应的劲度系数1k ,2k 为 [ C ] (A );)1(,121k n k k n n k +=+= (B );11,121k n k k n n k +=+= (C) ;)1(,121k n k k n n k +=+= (D) .1 1 ,121k n k k n n k +=+= 7、对一个作简谐振动的物体,下面哪种说法是正确的 [ C ] (A ) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B ) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C ) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D ) 物体处于负方向的端点时,速度最大,加速度为零。 8、 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为 A 2 1 ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]

弦振动实验-报告

弦振动实验-报告

实验报告 班级姓名学号 日期室温气压成绩教师 实验名称弦振动研究 【实验目的】 1.了解波在弦上的传播及驻波形成的条件 2.测量不同弦长和不同张力情况下的共振频率 3.测量弦线的线密度 4.测量弦振动时波的传播速度 【实验仪器】 弦振动研究试验仪及弦振动实验信号源各一台、双综示波器一台 【实验原理】 驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。 当入射波沿着拉紧的弦传播,波动方程为 ()λ πx =2 y- cos A ft 当波到达端点时会反射回来,波动方程为 ()λ πx cos =2 y+ A ft

式中,A 为波的振幅;f 为频率;λ为波长;x 为弦线上质点的坐标位置,两拨叠加后的波方程为 ft x A y y y πλπ2cos 2cos 22 1=+= 这就是驻波的波函数,称为驻波方程。式中,λπx A 2cos 2是各点的振幅 ,它只与x 有关,即各点 的振幅随着其与原点的距离x 的不同而异。上式表明,当形成驻波时,弦线上的各点作振幅为λ πx A 2cos 2、频率皆为f 的简谐振动。 令02cos 2=λπx A ,可得波节的位置坐标为 () 412λ +±=k x Λ2,1,0=k 令12cos 2=λπx A ,可得波腹的位置坐标为 2λ k x ±= Λ 2,1,0=k 相邻两波腹的距离为半个波长,由此可见,只要从实验中测得波节或波腹间的距离,就可以确定波长。 在本试验中,由于弦的两端是固定的,故两端 点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)L 等于半波长的整数倍时,才能形成驻波。 既有 2λ n L = 或 n L 2=λ Λ2,1,0=n

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等) 一. 实验目的 1. 观察弦上形成的驻波 2. 学习用双踪示波器观察弦振动的波形 3. 验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系 二. 实验仪器 XY弦音计、双踪示波器、水平尺 三实验原理 当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。论和实验证明,波在弦上传播的速度可由下式表示: ρ 1 另外一方面,波的传播速度v 和波长λ及频率γ之间的关系是:

v= λ γ -- ② 将②代入①中得 γ =λ1 -- ③ρ 1 又有L=n* λ/2或λ =2*L/n 代入③得γ n=2L --- ④ρ 1 四实验内容和步骤 1. 研究γ和n 的关系 ①选择 5 根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。 ②设置两个弦码间的距离为60.00cm ,置驱动线圈距离一个弦码大约5.00cm 的位置上,将接受线圈放在两弦码中间。将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。 ③将1kg 砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必

要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则 T=2mg;若砝码挂在第三个槽,则T=3mg??. )④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1 时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5 时的共振频率,做γn 图线,导出γ和n 的关系。 2. 研究γ和T 的关系保持L=60.00cm,ρ 1 保持不变,将1kg 的砝码依次挂在第1、2、3、4、5 槽内,测出n=1 时的各共振频率。计算lg r 和lgT,以lg2 为纵轴,lgT 为横轴作图,由此导出r 和T 的关系。 3. 验证驻波公式 根据上述实验结果写出弦振动的共振频率γ与张力T、线密度ρ关系,验证驻波公式 1、弦长l1 、波腹数n 的 五数据记录及处理

第九章简谐振动自测题

第九章简谐振动自测题 一、选择题 1、对于一个作简谐振动的物体,下列说法正确的是( (A)物体处在正的最大位移处时,速度和加速度都达到最大值 (B)物体处于平衡位置时,速度和加速度都为零 (C)物体处于平衡位置时,速度最大,加速度为零 (D)物体处于负的最大位移处时,速度最大,加速度为零 2、对一个作简谐振动的物体,下面哪种说法是正确的( (A)物体位于平衡位置且向负方向运动时,速度和加速度都为零 (B)物体位于平衡位置且向正方向运动时,速度最大,加速度为零 (C)物体处在负方向的端点时,速度和加速度都达到最大值 (D)物体处在正方向的端点时,速度最大,加速度为零 3、一弹簧振子作简谐振动,当运动到平衡位置时,下列说法正确的是:() (A)速度最大(B)加速度最大 (C)频率最小(D)周期最小 4、一弹簧振子作简谐振动,当运动到最大振幅处时,下列说法正确的是:() (A)速度最大(B)加速度最大 (C)频率最小(D)周期最小 5、一质点作简谐振动,振动方程为二Acos(‘t ?「),当质点处于最大位移时则 有() (A)=0 ;(B)V =0 ;(C)a =0 ;(D)- 0. 6 —质点作简谐振动,振动方程为x=Acos( 7 + ■'),当时间t=T 2( T为周期)时,质点的速度为() (A)A sin :(B)-A sin :(C)-A cos :(D A cos 7、将一个弹簧振子分别拉离平衡位置1m和2 m后,由静止释放(形变在弹性限度内),则它们作简谐振动时的() (A)周期相同(B)振幅相同(C)最大速度相同(D)最大加速度相同 8、一作简谐振动的物体在t=0时刻的位移x=0,且向x轴的负方向运动,则其初相位为()

弦振动实验_报告

弦振动的研究报告 班级:工程力学二班 学号:120107020045 姓名:康昕程

实 验 报 告 【实验目的】 1. 了解波在弦上的传播及驻波形成的条件 2. 测量不同弦长和不同张力情况下的共振频率 3. 测量弦线的线密度 4. 测量弦振动时波的传播速度 【实验仪器】 弦振动研究试验仪及弦振动实验信号源各一台、双综示波器一台 【实验原理】 驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。 当入射波沿着拉紧的弦传播,波动方程为 ()λπx ft A y -=2cos 当波到达端点时会反射回来,波动方程为 ()λπx ft A y +=2cos 式中,A 为波的振幅;f 为频率;λ为波长;x 为弦线上质点的坐标位置,两拨叠加后的波方程为 ft x A y y y πλ π 2cos 2cos 221=+= 这就是驻波的波函数,称为驻波方程。式中,λ π x A 2cos 2是各点的振幅 ,它只与x 有关, 即各点的振幅随着其与原点的距离x 的不同而异。上式表明,当形成驻波时,弦线上的各点作振幅为λ π x A 2cos 2、频率皆为f 的简谐振动。 令02cos 2=λ π x A ,可得波节的位置坐标为 ()4 12λ +±=k x 2,1,0=k 令12cos 2=λ π x A ,可得波腹的位置坐标为 2 λ k x ±= 2,1,0=k 相邻两波腹的距离为半个波长,由此可见,只要从实验中测得波节或波腹间的距离,就可以确定波长。 在本试验中,由于弦的两端是固定的,故两端点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)L 等于半波长的整数倍时,才能形成驻波。

相关文档
最新文档