改进的相关干涉仪测向处理方法

改进的相关干涉仪测向处理方法
改进的相关干涉仪测向处理方法

FD-IM-II新型转动惯量测定仪说明书

FD-IM-II 新型转动惯量测定仪 说 明 书 上海复旦天欣科教仪器有限公司 中国上海

FD-IM-II 新型转动惯量测定仪 一、概述 转动惯量是描述刚体转动中惯性大小的物理量,它与刚体的质量分布及转轴位置有关。正确测定物体的转动惯量,在工程技术中具有十分重要的意义。用三线摆法测定刚体的转动惯量是高校理工科物理实验教学大纲中的一个重要基本实验。为了使教学仪器和教学内容更好的反映现代科学技术,复旦大学物理实验教学中心与上海复旦天欣科教仪器有限公司共同研制并生产了新型转动惯量测定仪。该仪器采用激光光电传感器与计数计时仪相结合,测定悬盘的扭转摆动周期。通过实验使学生掌握物体转动惯量的物理概念及实验测量方法,了解物体转动惯量与哪些因素有关。本实验仪的计数计时仪具有记忆功能,从悬盘扭转摆动开始直到设定的次数为止,均可查阅相应次数所用的时间,特别适合实验者深入研究和分析悬盘振动中等周期振动及周期变化情况。仪器直观性强,测量准确度高。本仪器是传统实验采用现代化技术的典型实例,不仅保留了经典实验的内容和技能,又增加了现代测量技术和方法,可以激发学生学习兴趣,提高教学效果。 二、仪器用途 1、学习用三线摆法测定物体的转动惯量。 2、测定二个质量相同而质量分布不同的物体的转动惯量,进行比较。 3、验证转动惯量的平行轴定理。 三、仪器的技术指标 1、摆线长度>500mm 2、启动盘质量>悬盘质量 3、仪器体积:①实验平台:300mm×240mm×740mm ②计数计时仪:200mm×158mm×65mm 4、总重量:13.6Kg 5、计数计时仪量程精度:0.001S 6、预置次数≤66次

二维干涉仪测向算法研究

摘要:为明确二维干涉仪测向中传统体制和相关体制两类算法的不同适用范围,一方面将扩展基线干涉仪算法从一维测向拓展到方位俯仰角二维测向;另一方面采用插值拟合技术提高空间夹角相关干涉仪算法测向精度。通过matlab对两种算法的测向精度和抗系统误差性能进行仿真对比实验,明确了各算法的优势,为干涉仪测向设备中测向技术的选择提供依据。 关键词:干涉仪;空间夹角;扩展基线;测向精度;抗系统误差 中图分类号:tn966?34 文献标识码:a 文章编号:1004?373x(2013)01?0001?04 0 引言 干涉仪测向通过测量来波信号在接收天线上产生的电信号之间的相位差来确定波达方向[1]。干涉仪测向技术因其具有测角范围广、能被动测向、测向精度高、实时性好等优点,已被广泛地应用于导航、探测、航空航天等军事和民用领域的测向系统中[2]。 干涉仪测向体制主要分为两类——传统干涉仪和相关干涉仪[3]。传统干涉仪通过直接计算求解出方位俯仰角,相关干涉仪通过对比实测相位差和原始相位差样本实现测向[4]。目前,传统干涉仪主要致力于解模糊技术的创新发展[5],主要的方法[6?8]有长短基线法、虚拟基线法、参差基线法和辅助基线法等。具有代表性的是基于辅助基线的扩展基线干涉仪算法,因其不受阵列形式限制且测向精度高等优点而被广泛应用。而相关干涉仪当样本数据量较大时,难以实现测向的实时性。文献[9]中介绍的空间夹角相关干涉仪算法,通过引入空间夹角,使得针对方位角和俯仰角的二维搜索变成了空间夹角的一维搜索,从而降低算法的运算量。 可以看出,目前关于提高干涉仪测向性能的研究大都针对干涉仪测向算法的某个方面存在的问题提出新的或改进方法,缺少对两类体制算法进行横向系统的比较,进而无法弄清具体条件下两类算法的优劣性和实现的可能性。因此本文选取扩展基线干涉仪算法和空间夹角相关干涉仪算法展开研究,一方面将扩展基线算法的应用从一维测向扩展到二维测向,另一方面将三点插值应用到空间夹角算法提高其测向精度。接着通过仿真对比,给出了两算法在测向精度和抗系统误差性能等方面的差异,明确了两者的优劣,以便在不同的条件下选择最优的算法来满足测向性能需求。

JKY-ZS转动惯量实验仪实验操作指导书

JKY-ZS (塔轮式)转动惯量实验仪实验及操作指导书 转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分布、形状大小和转轴位置。对于形状简单,质量均匀分布的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量,但对于形状比较复杂,或质量分布不均匀的刚体,用数学方法计算其转动惯量是非常困难的,因而大多采用实验方法来测定。 转动惯量的测定,在涉及刚体转动的机电制造、航空、航天、航海、军工等工程技术和科学研究中具有十分重要的意义。测定转动惯量常采用扭摆法或恒力矩转动法,本实验采用恒力矩转动法测定转动惯量。 一、实验目的 1、学习用恒力矩转动法测定刚体转动惯量的原理和方法。 2、观测刚体的转动惯量随其质量,质量分布及转轴不同而改变的情况,验证平行轴定理。 3、学会使用智能计时计数器测量时间。 二、实验原理 1、恒力矩转动法测定转动惯量的原理 根据刚体的定轴转动定律: M I β= (1) 只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯 量I 。 设以某初始角速度转动的空实验台转动惯量为I 1,未加砝码时,在摩擦阻力矩M μ的作用下,实验台将以角加速度β1作匀减速运动,即: 11M I μβ-= (2) 将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。若砝码的加速度为a ,则细线所受张力为T= m (g - a)。若此时实验台的角加速度为β2,则有a= Rβ2。细线施加给实验台的力矩为M T =T R= m (g -Rβ2) R ,此时有: 212()m g R R M I μββ--= (3) 将(2)、(3)两式联立消去M μ后,可得: 2121() mR g R I βββ-= - (4) 同理,若在实验台上加上被测物体后系统的转动惯量为I 2,加砝码前后的角加速度分别为β3与β4,则有: 4243 () mR g R I βββ-= - (5) 由转动惯量的迭加原理可知,被测试件的转动惯量I 为: 21I I I =- (6) 测得R 、m 及β1、β2、β3、β4,由(4),(5),(6)式即可计算被测试件的转动惯量。 2、β的测量 实验中采用智能计时计数器计录遮挡次数和相应的时间。固定在载物台圆周边缘相差π角的两遮光细棒,每转动半圈遮挡一次固定在底座上的光电门,即产生一个计数光电脉冲,计数器计下遮档次数k 和相应的时间t 。若从第一次挡光(k =0,t=0)开始计次,计时,且初始角速度为ω0,则对于匀变速运动中测量得到的任意两组数据(k m ,t m )、(k n ,t n ),相应的角位移θm 、θn 分别为: 2 021 m m m m t t k βωπθ+== (7) 2 02 1n n n n t t k βωπθ+== (8) 从(7)、(8)两式中消去ω0,可得: () 2() n m m n m n n m k t k t t t t t πβ-= - (9) 由(9)式即可计算角加速度β。 3、平行轴定理 理论分析表明,质量为m 的物体围绕通过质心O 的转轴转动时的转动惯量I 0最小。当转轴平行移动距离d 后,绕新转轴转动的转动惯量为:

实验六 相位干涉仪测向技术

学 院 通信工程学院 专 业 信息对抗技术 指导教师 沈雷老师/孙闽红老师 学生姓名 邓斌 学 号 11073115 实验日期 2014.05. 实验六 相位干涉仪测向技术 一、实验目的 无线电测向和定位就是确定通信辐射源的来波方向和位置。对通信信号的测向和定位是通信侦察对抗领域的一个重要且相对独立的技术领域。干涉仪测向又称为相位法测向。本实验主要目的为通过实验,了解并掌握通信测向中相位法测向的基本原理和方法。 二、实验原理 1、相位干涉仪测向原理 图 1 以单基线干涉仪测向为例,其电波到达相邻天线阵元形成的波程差如上图所示。图中测向天线阵由两个阵元组成,假设辐射源与阵元相距很远,所以可认为辐射源发射到阵元1和2的信号平行。假设阵元1和阵元2之间的间距为d ,来波方向与阵列法线方向的夹角为θ。测向的实质是测量夹角θ。 阵元1和阵元2接收到的信号传播存在波程差,因而也存在相位差。设阵元1接收信号为 20()()cos(2)r t s t E f t π== 则阵元2的接收信号为 102sin ()()cos(2)d r t s t E f t πθ τπλ =-=- 其中0/c f λ=为信号波长。 从上可以看出,信号传播距离差为θsin ?=?d l ,则相位差为:

λθπ?/sin 2??=?d 实际中d 、λ均已知,所以只要得到阵元1和2接收信号的相位差,便可以求出θ。需要注意的是,为了避免相位模糊问题,常需要满足条件π?

转动惯量实验报告

实验项目:测量形状不规则物体的转动惯量 (一)实验目的及要求: 发散思维设计两种不同的方法去求物体的转动惯量。 结合理论知识,加深转动惯量在刚体运动中所起作用的理解。 (二)仪器器材: 密度均匀薄木板、三线摆、DH4601转动惯量测试仪、实验机架、水平仪、游标卡尺、米尺、细线、圆柱体、天平、大头针、剪刀、钳子、透明胶。 (三)理论值计算: 2d J r m =? 2i i J r m =?∑ 计算得J= 。 方案一:三线摆法1 一、实验原理: 1.重心——物体各部分所受重力的合力的作用点。在物体内各部分所受重力可看作平行力的情况下,重心是一个定点。一般物体可用悬挂法求的重心。 质心——物体的质量中心,是研究物体机械运动的一个重要参考点。当作用力通过该点时,物体只作平动而不发生转动;否则在发生移动的同时物体将绕该点转动。在研究质心的运动时,可将物体的质量看作集中于质心。对于密度平均的物体,其质心与重心重合。 根据平衡力定理:重力和拉力平衡,大小相等,在一条直线上测两次就可以得到两条直线两条不平行的直线交于一个点就是重心,亦即质心。 2. 左图是三线摆实验装置的示意图。上、下圆盘均处于水平,悬挂在横梁上。 三个对称分布的等长悬线将两圆盘相连。上圆 盘固定,下圆盘可绕中心轴O ’O 作扭摆运动。 下圆盘转动角很小,且略去空气阻力时,扭摆的运动可以近似的看作简谐运动。根据能量守 恒定律或刚体的转动定律均可以导出物体绕 中心轴O ’O 的转动惯量。 I 0=T 02(M 0gRr )/(4π2H 0)……① 其中M0为下盘的质量:r 、R 分别为上下悬点 离各自圆盘中心的距离;H0为平衡时上下盘间的垂直距离;To 为下盘作简谐运动的周期,g 为重力加速度(在广州地区g=9.788m/s 2)。 将质量为m 的待测物体放在下盘上,并使待测刚体的转轴与OO ’轴重合。测

干涉仪测向系统误差分析

龙源期刊网 https://www.360docs.net/doc/0716273677.html, 干涉仪测向系统误差分析 作者:李华龙 来源:《数字技术与应用》2011年第07期 摘要:本文根据干涉仪测向系统的测向原理,对基线的选择进行了分析,列出了影响测向结果的各项因素。分析了在试验条件允许的情况下,增加目标和测向系统间距离,将有助于从多个方面减小测向误差,提出了减小测向误差、提高测向精度的方法,取得了良好的试验结果。 关键词:干涉仪测向误差基线 中图分类号:TN98 文献标识码: A 文章编号:1007-9416(2011)07-0021-02 1、引言 无线电测向技术从二十世纪初开始出现,到现在已发展了上百年的时间,出现了各种各样的测向定位系统。目前根据测向体制划分主要有以下方法:比幅度法、相位法、多普勒法、时差测向法、空间谱估计测向法等方法。每一种测向方法都有其优点和缺点,测向体制的选择应根据不同的需要而确定,不存在最好的测向方法,而是在某种应用情况下必须考虑给定的环境条件下哪种方法能最好地满足要求。在车载平台中经常使用的是干涉仪测向系统。根据干涉仪测向基本原理可以得出单基线干涉仪测向系统的测向误差为: 即以下三大因素:波长测量精度(即频率测量精度)、选择的基线长度与信号波长的比值和测向设备的相位测量精度。还可以看出,在视场角范围内测向精度与信号的入射角有关,越靠近基线的垂直方向(小)测向精度越高。另外相关干涉仪测向有外场测试过程,因此在试验中测向天线阵场地和天线架设对最终的测向结果有很大的影响。 2、误差分析和改良 2.1波长测量精度 一般无线电侦察测向系统中,对频率测量误差要求在通信信号带宽的一半以内。在超短波频段,一般在系统中采用了运算速度较高的芯片组,通过FFT运算最后达到的测频精度为 5MHz/800=6.25kHz。 而系统工作频段为30~500MHz,因此将测频精度代入式(1)/中,其最大影响为0.2%。由此可见测频误差即使在单基线测量中对测向精度的影响也是很小的,因此在实际应用中一般可以忽略不计。以下为波长测量误差对不同频率影响情况:

相位干涉仪测向

相位干涉仪测向 07083115 07083119 一、 题目要求 使用Simulink 模拟构建一个相位测向系统, 构造两个有时延的到来信号,对其进行捕获,分别在时域和频域上对接收的信号进行方向估计,并评估侧向效果。 二、 实验方案及公式推导 A. 公式推导 图 1 信号为0()cos(2)s t E f t π=,则如图 1所示天线长为d,信号方向与参考方向夹角为θ 设2点的接收信号为20()()cos(2)r t s t E f t π== (1) 则1点的接收信号为102sin ()()cos(2) d r t s t E f t πθ τπλ =-=- (2) 其中0 c f λ= 为信号波长 ①时域测向 将12(),()r t r t 改写为复数形式得 022()j f t r t Ee π= (3) 21()j f t r t Ee π?-= (4) 其中2sin d πθ ?λ =- 对(3)式取共轭得, 0 2*2()j f t r t Ee π-= (5) (4)式与(5)式相乘得, *212()()j r t r t E e ?-= (6)

对(6)式求相角,乘以2d λ π-得, sin 2d ?λ θ π= (7) 取反正弦,乘以0 180 π ,求出 θ ②频域测向 将(3)、(4)作FFT 得, 20()()R w E f f δ=- (8) 10()()j R w E f f e ? δ-=- (9) 由公式 ()arctan () I Q R k R k θ= 求出 2121()()arctan arctan () () I I Q Q R k R k R k R k ?=- (10) 同① ,可求出 θ B.方案论述 一、伯努利二进制码流经BPSK 产生2()r t 二、产生12()()j r t r t e ?-= 三、①时域法:*12()()r t r t 取出? ②频域法:对12(),()r t r t 作FFT,求出相位差? 四、根据?的值对应求出θ 三、Simulink 框图说明及参数设计: 依据方案的设计,建立Simulink 仿真模型 A.框图模块说明 : 相乘器 相加器 二进制数据流 高斯白噪声信道

激光干涉仪原理及应用详解

激光干涉仪概述 SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。通过激光热稳频控制技术,实现快速(5~10分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。

SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,

为机床误差修正提供依据。 激光干涉仪性能特点 1.测量精度高、速度快,稳定性好 ①使用美国高性能氦氖激光器,结合伺服稳频控制系统,达到高精度稳频(0.05ppm) ②以光波长(633nm)为测量单位,分辨率可达nm级 ③使用高速光电信号采样和处理技术,测量速度可达到4m/s。 ④配合有环境补偿单元,在环境变化的情况下,也可以得到较高的测量精度 ⑤分离式干涉镜设计,避免了测量镜组由于主机发热而引起的镜组形变 2.应用范围广 ①可以实现线性、角度、直线度、垂直度、平面度等几何量的检测 ②结合我们的软件系统,可以用于速度,加速度,振动分析以及稳定度等分析 ③可实时监控精密加工机床等机器的动态数据,进行动态特性分析 3.软件界面友好 ①使用当前热门的软件界面开发工具,软件界面人性化,操作简单。 ②将静态测量和动态测量两种功能合并到一个软件中,更方便用户切换测量类型。

科学性分析三线摆法测刚体转动惯量的实验改进

科学性分析三线摆法测刚体转动惯量的实验改进 摘要通过光电门测试三线摆的转动周期,从而更精确的测量三线摆的转动惯量,并通过实验对比分析实验改进前后的精确度和误差,得出改进实验后,误差有一定程度的减小。 关键词三线摆;光电门;转动惯量 前言 转动惯量是大学物理教学中的重要内容,大一学生开始上大学物理就接触到转动惯量,而高中阶段未接触过,学生难以理解。因此,在实验中学习测量刚体的转动惯量是大学物理实验教学中的一个基础性的实验项目,对学生理解转动惯量非常重要。对于形状规则、质量分布均匀的物体可以通过理论计算的方法算出刚体的转动惯量,但是对于几何形状复杂或者质量分布不均匀的刚体,则只能通过实验的方法测出转动惯量。 测量刚体转动惯量的方法很多,例如三线摆法[1]、扭摆法[2]等。董英伟等[3]导出摆角与转动惯量之间的表达式,探讨了摆角、摆动次数的选择和空气阻尼对测量精度的影响;陈庆东等[4]对三线摆测量刚体的转动惯量进行了改进,在竖直支杆上刻上刻度直接读出两水平圆盘之间的垂直距离,在上圆盘上方加一个固定的圆盘,同时在下圆盘的圆心位置刻一个圆形洞口,改进后的仪器在某种程度上减少了实验误差;张国玺等[5]对三线摆实验进行了改进,实验改进后精确度提高了18倍之多,但是该实验采用了电脑通用计数器、He-Ne激光器、气垫导轨光电门等,实验改进后,实验效果很好,但是设计比较复杂,对学生做实验来说要掌握的东西较多,比较难懂。我们仅仅采用最简单的设备光电门对实验进行改进,比较适合学生实验,提高实验的精确度,减小误差,并且我们在现有的仪器进行改造,比较容易施行。桂林理工大学是理工科学校,大多数学生都要学习大学物理课程,而三线摆实验是一个非常重要的实验,但是以往实验中采用秒表测试三线摆的周期,但是在计算公式中,周期是一个二次方项,对结果计算影响较大。本实验采用实验室已有的设备-数字毫秒计对实验进行改装,研究了改进的实验对结果的影响。 1 实验原理 我们实验室采用YJ-SP-1型三线摆测刚体的转动惯量。三线摆采用一个匀质圆盘,三条等长的悬线对称地悬挂在一个水平的上盘(如图1所示),下盘可绕两盘的中心轴线OO/ 作扭转摆动,同时其质心沿转轴做轴向移动。扭转摆动的周期由下盘的转动惯量决定。 若下圆盘的质量为m,扭转时它沿轴线上升的高度为h,则势能的增量为:圆盘回到平衡位置所具有的动能为:

迈克尔逊干涉仪的原理与应用

迈克尔逊干涉仪的原理与应用 在大学物理实验中,使用的是传统迈克尔逊干涉仪,其常见的实验内容是:观察等倾干涉条纹,观察等厚干涉条纹,测量激光或钠光的波长,测量钠光的双线波长差,测量玻璃的厚度或折射率等。 由于迈克尔逊干涉仪的调节具有一定的难度,人工计数又比较枯燥,所以为了激发学生的实验兴趣,增加学生的科学知识,开阔其思路,建议在课时允许的条件下,向学生多介绍一些迈克尔逊干涉仪的应用知识。这也是绝大多数学生的要求。下面就向大家介绍一些利用迈克尔逊干涉仪及其原理进行的测量。 一、传统迈克尔逊干涉仪的测量应用 1. 微小位移量和微振动的测量[11-14];采用迈克尔逊干涉技术,通过测量KDP晶体生长的法向速率和台阶斜率来研究其台阶生长的动力学系数、台阶自由能、溶质在边界层内的扩散特征以及激发晶体生长台阶的位错活性。He-Ne激光器的激光通过扩束和准直后射向分束镜,参考光和物光分别由反射镜和晶体表面反射,两束光在重叠区的干涉条纹通过物镜成像,该像用摄像机和录像机进行观察和记录.滤膜用于平衡参考光和物光的强度. 纳米量级位移的测量:将迈克尔逊型激光干涉测量技术应用于环规的测量中。采用633nm稳频的He-Ne激光波长作为测量基准,采用干涉条纹计数,用静态光电显微镜作为环规端面瞄准装置,对环

规进行非接触、绝对测量,配以高精度的数字细分电路,使仪器分辨力达到5nm;静态光电显微镜作为传统的瞄准定位技术在该装置中得以充分利用,使其瞄准不确定度达到30nm;精密定位技术在该装置中也得到了很好的应用,利用压电陶瓷微小变动原理,配以高精度的控制系统,使其驱动步距达到5nm。 测振结构的设计原理用半导体激光器干涉仪对微振动进行测量时,用一弹性体与被测量(力或加速度)相互作用,使之产生微位移。将这一变化引到动镜上来,就可以在屏上得到变化的干涉条纹,对等倾干涉来讲,也就是不断产生的条纹或不断消失的条纹。由光敏元件将条纹变化转变为光电流的变化,经过电路处理可得到微振动的振幅和频率。 压电材料的逆压电效应研究:压电陶瓷材料在电场作用下会产生伸缩效应,这就是所谓压电材料的逆压电现象,其伸缩量极微小。将迈克尔逊干涉仪的动镜粘在压电陶瓷片上,当压电陶瓷片受到电激励产生机械伸缩时就带动动镜移动。而动镜每移动λ/2的距离,就会到导致产生或消失一个干涉环条纹,根据干涉环条纹变化的个数就可以计算出压电陶瓷片伸缩的距离。 2. 角度测量[15-16]:刘雯等人依照正弦原理改型设计了迈克尔逊干涉仪,可以完成小角度测量。仪器的两个反射镜由三棱镜代替,反射镜组安装在标准被测转动器件的转动台上。被测转角依照正弦原理转化成反射镜组两个立体棱镜的相应线位移,而后进行干涉测量,小角度干涉仪测角分辨率达到10-3角秒量级。

发动机转动惯量测试仪技术参数

发动机转动惯量测试仪技术参数 一、总则 凡与此项目相关的一切费用均包括在投标总价内,买方不再承担其他费用,投标报价须包含:货物的运输、卸货、安装、调试、培训等服务费用。 二、设备技术规格 1、整体要求 能在同一台设备上测试发动机总成(变速箱)的质量、三维质心、三轴转动惯量、惯性积。软件具有自动纠错功能,可防止错误姿态的测量,并可留中间所有过程量,可实现不连续操作。 1、技术参数 1)质量测量范围:≤700KG; 2)质量测量误差:≤±200g; 3)X方向质心测量误差≤±1.0mm; 4)Y方向质心测量误差≤±1.0mm; 5)Z方向质心测量误差≤±1.0mm; 6)X方向转动惯量测量误差:≤1%; 7)Y方向转动惯量测量误差:≤1%; 8)Z方向转动惯量测量误差:≤1%; 9)能同时计算三个方向的惯性积; 三、其他要求 1)在同一台设备上实现发动机总成质量、三维质心、三个方向的转动惯量及三个方 向的惯性积的测量。 2)测量时只需要借助简易工装即可完成所有参数的测量。 3)测量时需甲方给出在发动机坐标系中几个特征点的坐标(不少于6个点)。 4)该系统具有计算显示打印报表参数自动修正系统等功能。 5)对于六个姿态的测试状态必须满足两个条件:第一,其中三个姿态保证被测件的 X、Y、Z三个轴与设备的测试的测试轴的夹角小于10度;第二,剩下的三个姿态中,两两姿态的差异越大越好。 6)测试用传感器性能优良、安全可靠。 7)甲方按乙方提供的标准样柱检定标准进行设备检定,检定合格后设备方可使用。 8)软件系统应有对违反操作及理论的防错提示和功能,并有帮助文件功能。 9)软件能实现坐标系的转换,(即输入特征点的坐标,能直接给出相对特征点坐标系 的质心坐标值。) 10)测试数据能输出ASSCESS等格式文件,包括试验时间、操作人员、试验样品名 称、试验样品型号和试验结果。 11)乙方负责在甲方现场安装设备,甲方负责提供现场布置图以便乙方预留电缆线的 长度。

激光干涉仪相关基础知识

一.激光干涉仪概述 激光干涉仪,以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量工具。SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。通过激光热稳频控制技术,实现快速(5~10分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。 二.激光干涉仪工作原理 激光器发射单一频率光束射入线性干涉镜,然后分成两道光束,一道光束(参考光束)射向连接分光镜的反射镜,而第二道透射光束(测量光束)则通过分光镜射入第二个反射镜,这两道光束再反射回到分光镜,重新汇聚之后返回激光器,其中会有一个探测器监控两道光束之间的干涉(见图)。若光程差没有变化时,探测器会在相长性和相消性干涉的两极之间找到稳定的信号。

若光程差有变化时,探测器会在每一次光程变化时,在相长性和相消性干涉的两极之间找到变化信号,这些变化会被计算并用来测量两个光程之间的差异变化。 三.激光干涉仪功能 SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,为机床误差修正提供依据。

相位干涉仪测向算法及其在TMS320C6711上的实现

摘要:对实施被动无源测向定位的主要工具之一的相位干涉仪进行了较为详细和系统的研究,给出了一维相位干涉仪的基本关系式,分析了五通道相位干涉仪测向定位算法及其性能指标?熏对解相位模糊问题进行了探讨。最后,在高速浮点数字信号处理器TMS320C6711系统上实现了五通道相位干涉仪测向定位算法,达到了性能指标及实时实现。关键词:相位干涉仪测向定位相位模糊定位误差实时处理相位干涉仪测向技术广泛应用于天文、雷达、声纳等领域。将干涉仪原理用于无线电测向始于上世纪五十年代和六十年代,随着数字信号处理器的出现,通过数字信号处理器来实现高精度实时测向成为可能。本文在对一维和二维相位干涉仪进行研究的基础上给出了五通道相位干涉仪的基本关系式,分析了测向精度,并对解相位模糊问题和信道校正问题进行了探讨。采用多基线五元圆形天线阵列为模型,由天线阵列接收到的信号求解出五元天线阵列的互相关信号,并由此提取测向所需的方位信息。本文以五通道相位干涉仪硬件实现为目标,采用高速浮点数字信号处理芯片TMS320C6711进行测向处理。1相位干涉仪测向原理1.1一维相位干涉仪测向原理图1所示为一个最简单的一维双阵元干涉仪模型。图中,间隔为d(d称为基线)的两根天线A1和A2所接收的远场辐射 φ=(4πd/λ)cosθ(1)式(1)中,λ为接收电磁波的波长。因此,只要测量出φ,就能算出辐射源的到达方向θ:θ=arccos(φλ/4πd)(2)1.2测向误差的分析在实际系统中,两根天线A1和A2接收的信号为:xi(t)=s(t)exp[(-1)jj2πd/λcosθ]+ni(t),i=1,2(3)其中,ni代表对应阵元i接收的噪声,两阵元的噪声统计相互独立,且与信号统计独立。两个阵元接收信号的互相关为:r=E{x1(t)x2*(t)}=Psexp(j4πd/λcosθ)(4)式中,E代表数学期望运算,“*”代表复共轭运算,Ps代表信号功率,相关以后噪声得到抑制。由(4)式有:θ=arccos[(λ/4πd)arg(r21)+kλ/2d(5)式中,arccos表示反余弦函数,arg代表复数取幅角运算,区间为[-π,π]。k为整数,且满足:-2d/λ-arg(r21)/2π≤k≤2d/λ-arg(r21)/2π(6)在(6)式中,当d/λ>0.5时,k的取值不唯一,θ有多个解,由此产生测向模糊。对(5)式求导,有:|Δθ|=λ/4πd|sinθ|Δarg(r21)(7)由(7)式可以得出以下结论:sinθ越大,即方位角与干涉仪法线方向的夹角越小,测向精度越高;反之,测向精度降低,直至测向无效。当θ=±90°(即信号从干涉仪法线方向入射)时,精度最高;θ=0°或180°(即信号从干涉仪基线方向入射)时,接收信号互相关的幅角arg(r21)反映不出方位角的变化,测向无效。但单基线干涉仪不能同时测量俯仰角和方位角,此时至少需要另一条独立基线的干涉仪对测得的数据联合求解。1.3二维干涉仪测向原理及去模糊处理1.3.1多基线五元圆形天线模型五通道相位干涉仪采用宽口径、多基线的五元圆形天线阵,五边形的五个阵元均匀分布在半径为R的圆上,五个阵源分别为1、2、3、4、5,如图2所示。天线阵平面与地面平行,测得的方位角θ为以天线到地面的垂足为原点,目标在地面上的方位角。测得的俯仰角φ对应于目标到原点的距离(俯仰角0°对应原点)。两个阵元接收信号之间的互相关为:ri,j+1=E{xi(t)x*i+1(t)}=GiGi+1Psexp{j2π(R/λ)sinφ?[cos(θ+54°-72°i)-cos(θ-18°-72°i)]}i=1~5,定义r56=r51方位角θ和俯仰角φ的具体计算如下:Qri,i+1的幅角为αi,i+1=arg(ri,i+1)+2k2π=4π(R/λ)cos54°sinφcos(θ+108°-72°i)ri+3,i+4的幅角为αi+3,i+4=arg(ri+3,i+4)+2k1π=4π(R/λ)cos54°sinφcos(θ-108°-72°i)∴θ=atan2[αi+3,i+4-αi,i+1)csc108°,(αi+3,i+4+αi,i+1)sec108°]+72°i(8)式中,i=1~5,令r56=r51、r67=r12、r78=r23、r89=r34;atan2(y,x)代表四象限求反正切函数;arcsin代表反正弦函数。k1、k2为整数,且满足:

干涉仪

干涉仪 开放分类:定义、工程、机械、仪器仪表、光谱学 interferometer 利用干涉原理测量光程之差从而测定有关物理量的光学仪器。两束相干光间光程差的任何变化会非常灵敏地导致干涉条纹的移动,而某一束相干光的光程变化是由它所通过的几何路程或介质折射率的变化引起,所以通过干涉条纹的移动变化可测量几何长度或折射率的微小改变量,从而测得与此有关的其他物理量。测量精度决定于测量光程差的精度,干涉条纹每移动一个条纹间距,光程差就改变一个波长(~10-7米),所以干涉仪是以光波波长为单位测量光程差的,其测量精度之高是任何其他测量方法所无法比拟的。 根据光的干涉原理制成的一种仪器。将来自一个光源的两个光束完全分并,各自经过不同的光程,然后再经过合并,可显出干涉条纹。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。 干涉仪分双光束干涉仪和多光束干涉仪两大类,前者有瑞利干涉仪、迈克耳孙干涉仪及其变型泰曼干涉仪、马赫-秦特干涉仪等,后者有法布里-珀罗干涉仪等。干涉仪的应用极为广泛,主要有如下几方面: ①长度的精密测量。在双光束干涉仪中,若介质折射率均匀且保持恒定,则干涉条纹的移动是由两相干光几何路程之差发生变化所造成,根据条纹的移动数可进行长度的精确比较或绝对测量。迈克耳孙干涉仪和法布里-珀罗干涉仪曾被用来以镉红谱线的波长表示国际米。 ②折射率的测定。两光束的几何路程保持不变,介质折射率变化也可导致光程差的改变,从而引起条纹移动。瑞利干涉仪就是通过条纹移动来对折射率进行相对测量的典型干涉仪。应用于风洞的马赫-秦特干涉仪被用来对气流折射率的变化进行实时观察。 ③波长的测量。任何一个以波长为单位测量标准米尺的方法也就是以标准米尺为单位来测量波长的方法。以国际米为标准,利用干涉仪可精确测定光波波长。法布里-珀罗干涉仪(标准具)曾被用来确定波长的初级标准(镉红谱线波长)和几个次级波长标准,从而通过比较法确定其他光谱线的波长。 ④检验光学元件的质量。泰曼干涉仪被普遍用来检验平板、棱镜和透镜等光学元件的质量。在泰曼干涉仪的一个光路中放置待检查的平板或棱镜,平板或棱镜的折射率或几何尺寸的任何不均匀性必将反映到干涉图样上。若在光路中放置透镜,可根据干涉图样了解由透镜造成的波面畸变,从而评估透镜的波像差。 ⑤用作高分辨率光谱仪。法布里-珀罗干涉仪等多光束干涉仪具有很尖锐的干涉极大,因而有极高的光谱分辨率,常用作光谱的精细结构和超精细结构分析。 ⑥历史上的作用。19世纪的波动论者认为光波或电磁波必须在弹性介质中才得以传播,这种假想的弹性介质称为以太。人们做了一系列实验来验证以太的存在并探求其属性。以干涉原理为基础的实验最为精确,其中最有名的是菲佐实验和迈克耳孙-莫雷实验。1851年,A.H.L.菲佐用特别设计的干涉仪做了关于运动介

转动惯量测试仪说明书-浙江大学力学试验教学中心

振动测试系统 一、装置简介 ZJY-601型振动测试系统是一套集成化的振动测试试验系统,主要由三部分组成:1、ZJY-601T型振动教学实验台;2、ZJY-601A型振动教学试验放大仪性能及各种传感器;3、INV303/306系列信号采集处理分析仪和DASP大容量数据采集与信号处理分析软件。 二、操作规程: 1、振动系统使用前应根据振动系统仪器安装图连接,并检查组件是否齐全良好,接头是否牢固。 2、估计需要测量的振动类型和振级,判别周期性振动,随即振动还是冲击型或瞬变型振动。选择仪器的可测频率范围,注意频率的上限和下限。调节好频率、增益、振幅控制等旋钮。考虑测量振级和仪器的动态范围,即可测量程的上限和下限。注意在可测频率范围内的量程是常数还是变数,(因为有的仪器量程随频率增大而增大,有的仪器量程随频率增加而减少)。注意避免使仪器在测试过程中过载和饱和。 3、选定能代表被测对象特征的传感器安装位置,并考虑是否会产生传感器附加质量荷载的影响。考虑环境条件,如电磁场,温度,湿度和声场等各种因素,选择合适的激振器类型和传感器种类。 4、打开分析软件,并按实验需要参考软件说明书,适当调节软件视窗设置。对传感器,放大器和记录装置等全套测试系统的特性进行标定,定出标定值。确定测量参数和记录分析方式,直到能分析最佳数据为止。 5、记下各个仪器控制旋钮的位置。对测试环境条件做详细记录,以便供数据处理时参考,并可以查对一些偶然因素。 6、闭合电源开关,启动设备。按实验步骤进行操作,改变放大器档位,运行分析软件,测试并记录实验结果。在测试过程中应经常检查系统的“背景噪声”(即“基底噪声”)。 7、实验完毕,先关闭放大仪电源,把所有旋钮复位,再关闭电脑,拆卸实验仪器连线,收拾好每个组件,整理完毕方能离开实验室。 浙江大学国家工科基础课程力学教学基地 浙江大学力学实验中心理论力学实验室

菲索干涉仪之基本原理

菲索干涉仪之基本原理 发布时间:2008-4-2 20:01:46 返回 菲索干涉仪 菲索干涉仪(图1)又可称为光学平板,通常用来检验经过研磨或抛光加工的工件,例如测微器砧座、精测块规、卡规、精密研磨平面、光学玻璃皆可使用菲索干涉仪来检验。其加工状况。利用菲索干涉仪作检验的工件,表面须经过研磨或抛光加工,以求工件表面之反射光线有足够强度,以便与菲索干涉仪的作用面所反射光线相干涉而形成色带,因此一般加工表面,因为表面不光滑或太粗糙,工件表面之反射光线太弱,与菲索干涉仪的作用面所反射光线相干涉而形成色带也太弱而无法分辨,另外,工件表面太粗糙时,空气楔间隔也太大,造成条纹太密,以致肉眼无法观察。 图 1 菲索干涉仪 菲索干涉仪利用光波干涉原理而形成明暗相间的色带,很多场合都只把菲索干涉仪当作定性分析的工具,但事实上,以此色带的数目及形状便可以作微小尺寸,菲索干涉仪的原理可由光的干涉原理来解释,菲索干涉仪部份反射镜与反射面的空气楔间隔为 d,则菲索干涉仪部份反射镜的作用面与工件表面分别会反射光线,因为工件反射面所反射的光比菲索干涉仪部份反射镜的作用面所反射光线多走了 2d 的光程差,因此造成两道光干涉所需之相位差,因而形成干涉条纹,干涉条纹可以肉眼观察,亦可以CCD 照相取得,由黑色干涉条纹数可以推算出空气楔间隔的大小,考虑光波从疏介质进入密介质波前相位改变 180 度,其黑色干涉条纹之公式如下: 2d = (n +1/2 )

n :为条纹数 d :空气间距 λ :空气间光波的波长 在作干涉条纹之定量分析时,并不须刻意去找寻接触点或基准点,若光学平板与工件被测面呈一微小角度相交,其上所产生出的条纹分别表示菲索干涉仪与被测面相对点的空气楔高度。我们可以任意令工件表面某点为基准点,依此向前后左右推得工件表面整体的空气楔高度,最后将光学平板之倾斜高度扣掉,即得工件被测面之表面起伏情形。初次使用菲索干涉仪的人可能会迷惑于干涉条纹数常因空气楔高度的改变而改变,亦即将菲索干涉仪之光学平镜下压时,干涉条纹数目通常变少,干涉条纹间隔加大,但如扣掉菲索干涉仪之光学平镜倾斜高度,则工件被测面之表面起伏情形结果应一致。 菲索干涉仪之光源可使用发出单一波长的气体放电灯,例如氦气和钠灯,若使用普通光,则无法看到条纹,因为普通光具有各种波长,导致各种条纹互相迭合无法辨识。使用单色光即可避免上述情形,唯须在其同调长度内测量。像氦氖灯这种单色光,其同调长度很短,如果不在这个很短的距离量测的话,就得不到干涉条纹,所以光学平镜必须与待测物贴紧来量测,这样的量测有一缺点:即是会磨损光学平镜与待测物。其解决之道,就是采用同调长度较长的雷射光来量测,可将光学平镜和待测物分开一段距离。氦氖灯价格7万元至15万,氦气雷射价格1万至万元,但使用雷射时须加上光束扩散架设装置。 至于菲索干涉仪之条纹之分析可直接将光学平镜量测所得之条纹建立一个高度对照表再利 用最小平方误差的方法将倾斜面之高度差消除掉此法又可称为倾斜面消除法。有些人在测量时,对光学平镜、施力不同,而得到不同的条纹,认为光学平镜不准确,事实上,只是因为施力不同造成不同的倾斜面,此时必须将倾斜面因素扣除,仍然都能得到相同的结果。 另外值得一提的是光学平镜的第二种检查方式(目前最常用),如果待测物表面很平,则检查的条纹应该是互相平行的直线,且彼此间间隔相等。如果有斜线产生,则对此斜线作一切线:视其与相邻的第几条干涉条纹相交,切线与隔二条条纹的干涉条纹相交,我们可称其偏差量为二个暗带。最后可得实际偏差量2 ?λ/2 (当使用氦气灯时,λ/2=0.294μm ),这种检查法实施简单,因此为一般机械工厂品管人员所乐用,但只能提供初步判断,对于一些特殊条纹,例如条纹彼此平行且为直线,但间隔不相等时,就必须用倾斜去除法来量测,或者将光学平镜作各种倾斜方向来量测,亦可消除此类误差。

转动惯量测量方法

实验题目:用三线摆测物体的转动惯量 教学目的: 1、了解三线摆原理,并会用它测定圆盘、圆环绕对称轴的转动惯量; 2、学会游标卡尺等测量工具的正确使用方法,掌握测周期的方法; 3、验证转动惯量的平行轴定理。 重 难 点: 1、理解三线摆测转动惯量的原理; 2、掌握正确测三线摆振动周期的方法。 教学方法: 讲授、讨论、实验演示相结合 学 时: 3学时 一、前言 转动惯量是刚体转动惯性大小的量度,是表征刚体特征的一个物理量。转动惯量的大小处 于物体质量有关外,还与转轴的位置和质量分布(即形状、大小和密度)有关。如果刚体形状简单,且质量分布均匀,可以直接计算出它绕特定轴的转动惯量。但是工程实践中,我们常常碰到大量的形状复杂,且质量分布不均匀刚体,理论计算将极其复杂,通常采用实验方法来测定。 测量刚体转动惯量的方法有多种,三线摆法具有设备简单、直观、测试方便的优点。 二. 实验仪器 DH4601转动动惯量测试仪,计时器,游标卡尺,电子天平,卷尺 三. 实验原理 三线摆实验装置如图1所示,上、下圆盘均处于水平,且悬挂在横梁上。三个对称分布的等长悬线将两圆盘相连。上圆盘固定,下圆盘可绕中心轴O O '作扭摆运动。当下盘转动角度很小,且略去空气阻力时,扭摆的运动可近似看作简谐运动。根据能量守恒定律和刚体转动定律均可以导出物体绕中心轴O O '的转动惯量。 2 2 004T H g R r m I π= (1) 式中各物理量的意义如下:0m 为下盘的质量;r 、R 分别为上下悬点离各自圆盘中心的距离;0 H 为平衡时上下盘间的垂 直距离;T 0为下盘作简谐运动的周期;g 为重力加速度。 将质量为A M 的待测刚体放在下盘上,并使待测刚体的 图4-1 三线摆实验装置图 图1 三线摆实验装置图

干涉仪原理与使用

第一章:为何使用干涉仪做检测 1- 1干涉度量学 第一章 为什么要使用干涉仪检测首先我们要先了解, 什么是干涉度量学? 所谓干涉度量学是指 利用光干涉的效应来量测特定物理量的方法 ,也就是说藉由观察干涉条纹的变化 ,来量测岀待 测物的特征 1- 2何谓干涉仪 干涉仪是什么? 一般来说,只要是利用光干涉的原理来量测的仪器便可以称为干涉仪 ,但是干 利用光干涉原理量測之儀器便屬於干曲儀。 % *, Q ? T 部應腔■测之H 僮■於干涉■ 涉仪的种类众多且多变化,因此本课程中将针对最为外界常用之种类作介绍 ■f I? 卫莘技痢研究陕. 干渉堪调

1- 3干涉仪之优缺点 干涉仪的优点及缺点 第一高精度 以光学组件来说,因为组件的微小变化均会严重改变原有的光学质量, 因此必须要有非常精确的 量测仪器,干涉仪具有精度非常高的优点 ,最高可达1/100的波长甚至到1/1000的波长,波长 是指干涉仪中使用光源的波长值 .举例来说:一般干涉仪的波长为 632.8( nm ),而632.8的百分 之一约为6个(nm),目前的奈米科技是在这个尺度,甚至有些更好的干涉仪可以到 0.6个(nm ), 从此可以看出干涉仪的精度有多好了 j_ -U D n UID 卜一 干涉 兽■!&酥 TUtt !M 千那■利用光 辛 嗤左境當钊之确邕槌?FW *强傑 利用光干涉原理量剧之儀器便凰於干涉儀。

第二章:非球面玻璃模造的原理 第二.非接触式量测 另一种量测用的轮廓仪是使用接触式的量测方式,即使目前已可以微调接触的力量,但对于表 面较脆弱的被量测物是否真的完全不会造成损害则仍无法确定.而当用干涉仪量测时,是把光照 射到被量测的物体上,所以干涉仪上的探针也就是光,并不会对物体表面照成任何伤害 第三使用探针来量测时无法一次量测所有的面积,而可能必需分很多扫瞄线去量测,相对来说干涉仪的量测速度就非常快了,可能几秒钟就量完了,而不需要等待几个小时的时间. 第四则是干涉仪的缺点,一个操作员在会使用干涉仪却不太清楚干涉仪的使用限制、条件及原 理的时候,可能会量测到不是他所要的东西,而且,因为干涉仪是用光线量测,在调整上也会

相关文档
最新文档