精馏塔的结构、工作原理及分类汇总(附图)

精馏塔的结构、工作原理及分类汇总(附图)

精馏塔的功能和分类:

基本功能:形成气液两相充分接触的相界面,使质、热的传递快速有效地进行,接触混合与传质后的气、液两相能及时分开,互不夹带。

精馏塔分类:精馏塔的种类很多,按接触方式可分为连续接触式(填料塔)和逐级接触式(板式塔)两大类,在吸收和蒸馏操作中应用极广。板式塔:

在圆柱形壳体内按一定间距水平设置若干层塔板,液体靠重力作用自上而下流经各层板后从塔底排出,各层塔板上保持有一定厚度的流动液层;气体则在压强差的推动下,自塔底向上依次穿过各塔板上的液层上升至塔顶排出。气、液在塔内逐板接触进行质、热交换,故两相的组成沿塔高呈阶跃式变化。

2、板式塔

板式塔通常是由一个圆柱型的壳体及沿塔高按一定的间距水平设置的若干层塔板(或塔盘)所组成。

在塔内沿塔高装有若干层塔板,液体靠重力的作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,有塔底向上依次穿过各塔板上的液层而流向塔顶。气液两相在塔内进行逐级接触,两相组成沿塔高呈梯级式变化。

板式塔的塔板

塔板是板式塔的主要构件,决定塔的性能。在几种主要类型错流塔板中,应用最早的是泡罩板,目前使用最广泛的筛板塔和浮阀塔板。同时,各种新型高效塔板不断问世。

按照结构分,板式塔塔板可以分为泡罩塔、筛板塔、浮阀塔和舌形塔等。

按照流体的路径分,可以分为单溢流型和双溢流型。3.按照两相流动的方式不同,可以分为错流式和逆流式两种。

(1)溢流塔板

溢流塔板(错流式塔板):塔板间有专供液体溢流的降液管(溢流管),横向流过塔板的流体与由下而上穿过塔板的气体呈错流或并流流动。板上液体的流径与液层的高度可通过适当安排降液管的位置及堰的高度给予控制,从而可获得较高的板效率,但降液管将占去塔板的传质有效面积,影响塔的生产能力。

溢流式塔板应用很广,按塔板的具体结构形式可分为:泡罩塔板、筛孔塔板、浮阀塔板、网孔塔板、舌形塔板等。

(2)逆流塔板

逆流塔板(穿流式塔板):

塔板间没有降液管,气、液两相同时由塔板上的孔道或缝隙逆向穿流而过,板上液层高度靠气体速度维持。

优点:塔板结构简单,板上无液面差,板面充分利用,生产能力较大;

缺点:板效率及操作弹性不及溢流塔板。

与溢流式塔板相比,逆流式塔板应用范围小得多,常见的板型有筛孔式、栅板式、波纹板式等。

(3)泡罩塔板

在工业上最早(1813年)应用的一种塔板,其主要元件由升气管和泡罩构成,泡罩安装在升气管顶部,泡罩底缘开有若干齿缝浸入在板上液层中,升气管顶部应高于泡罩齿缝的上沿,以防止液体从中漏下。

液体横向通过塔板经溢流堰流入降液管,气体沿升气管上升折流经泡罩齿缝分散进入液层,形成两相混合的鼓泡区。

优点:操作稳定,升气管使泡罩塔板低气速下也不致产生严重的漏液现象,故弹性大。

缺点:结构复杂,造价高,塔板压降大,生产强度低。

(4)筛孔塔板

筛孔塔板即筛板出现也较早(1830年),是结构最简单的一种板型。但由于早期对其性能认识不足,为易漏液、操作弹性小、难以稳定操作等问题所困,使用受到极大限制。

1950年后开始对筛孔塔板进行较系统全面的研究,从理论和实践上较好地解决了有关筛板效率,流体力学性能以及塔板漏液等问题,获得了成熟的使用经验和设计方法,使之逐渐成为应用最广的塔板类型之一。

(5)浮阀塔板

自1950年代问世后,很快在石油、化工行业得到推广,至今仍为应用最广的一种塔板。

结构:以泡罩塔板和筛孔塔板为基础基础。有多种浮阀形式,但基本结构特点相似,即在塔板上按一定的排列开若干孔,孔的上方安置可以在孔轴线方向上下浮动的阀片。阀片可随上升气量的变化而自动调节开启度。

在低气量时,开度小;气量大时,阀片自动上升,开度增大。因此,气量变化时,通过阀片周边流道进入液体层的气速较稳定。同时,气体水平进入液层也强化了气液接触传质。

优点:结构简单,生产能力和操作弹性大,板效率高。综合性能较优异。

缺点:采用不锈钢,浮阀易脱落

(6)JCV浮阀塔板

结构:阀笼与塔板固定,阀片在阀笼内上下浮动。

将单一鼓泡传质,变为双流传质,一部分为鼓泡、另一部分为喷射湍动传质,使塔的分离效率和生产能力都大大提高。

该塔板可作为化工过程中的气液传质、换热设备。

特点:结构简单、阀片开启灵活、高效、高通量、寿命长、耐堵塞。

(7)JCPT塔板

与普通塔板在传质机理上的区别:它是填料与塔板的复合体,靠填料实现传质,靠塔板实现多级并流。

塔板上的液体通过提液管与塔板之间的间隙被气体提升,气液并流通过提液管,在提液管内高速湍动混合、传质,然后气液并流进入填料中进一步强化传质,并完成气液分离。

气体靠压差继续上升,进入上一层塔板;液体基本以清液的形式回落到塔板上,沿流道进入降液管,下降到下一层塔板。

(8)舌形塔板

一种斜喷射型塔板。结构简单,在塔板上冲出若干按一定排列的舌形孔,舌片向上张角a 以20°左右为宜。

优点:气流由舌片喷出并带动液体沿同方向流动。气液并流避免了返混和液面落差,塔板上液层较低,塔板压降较小。

气流方向近于水平。相同的液气比下,舌形塔板的液沫夹带量较小,故可达较高的生产能力。

缺点:张角固定,在气量较小时,经舌孔喷射的气速低,塔板漏液严重,操作弹性小。

液体在同一方向上加速,有可能使液体在板上的停留时间太短、液层太薄,板效率降低。

(9)浮舌塔板

为使舌形塔板适应低负荷生产,提高操作弹性,研制出了可变气道截面(类似于浮阀塔板)的浮舌塔板。

(10)斜孔塔板

在舌形塔板上发展的斜孔塔板,斜孔的开口方向与液流垂直且相邻两排开孔方向相反,既保留了气体水平喷出、气液高度湍动的优点,又避免了液体连续加速,可维持板上均匀的低液面,从而既能获得大的生产能力,又能达到好的传质效果。

(11)网孔塔板

网孔塔板由冲有倾斜开孔的薄板制成,具有舌形塔板的特点。这种塔板上装有倾斜的挡沫板,其作用是避免液体被直接吹过塔板,并提供气液分离和气液接触的表面。

网孔塔板具有生产能力大,压降低,加工制造容易的特点。

(12)垂直筛板

在塔板上开按一定排列的若干大孔(直径100~200mm),孔上设置侧壁开有许多筛孔的泡罩,泡罩底边留有间隙供液体进入罩内。

气流将由泡罩底隙进入罩内的液体拉成液膜形成两相上升流动,经泡罩侧壁筛孔喷出后两相分离,即气体上升液体落回塔板。液体从塔板入口流至降液管将多次经历上述过程。

与普通筛板相比,垂直筛板为气液两相提供了很大的不断更新的相际接触表面,强化了传质过程;且气液由水平方向喷出,液滴在垂直方向的初速度为零,降低了液沫夹带量,因此垂直筛板可获得较高的塔板效率和较大的生产能力。

(13)径相测导喷射塔板(CJST)

CJST是在新型垂直筛板的基础上开发出来的一种高效塔板。对于塔径较大、气液相负荷较高的工况具有很好的适应性。

CJST具有通量大、效率高、压降低、操作弹性大、抗堵塞、运行周期长等特点。

(13)立体传质塔板(CTST)

立体传质塔板(CTST)为独特的立体结构,以梯形喷射罩作为气液接触、传热、传质元件;塔板采用矩形开孔,并在上方设置梯形喷射罩,罩的侧面为带筛孔的喷射板,两端为梯形的短板,上部为分离板,喷射板与分离板间为气液通道,喷射板与塔板的底隙,为液体进入罩体的通道。分离板的作用,一是提供气液接触空间,二是使气液两相有效分离,减少雾沫夹带。

特点:打破了传统塔板以板上液层为首要传质区域的平面型办法,把传质区域拓宽到塔板至罩顶的立体空间方案;

将塔板的空间运用率行进到50%~70%,又由于气液在罩内和罩直触摸十分充沛,故塔板功率很高(比F1浮阀高10%以上);

矩形开孔使得开孔率大崎岖行进(达20%),与浮阀塔板比照,CTST 的通量可行进50%~100%。

(14)新型垂直筛板(New-VST)

上气液流动接触呈喷射状态,气液两相取并流接触形式。来自上一层的液体从降液管流出,横向穿过各排帽罩,经帽罩底隙流入帽内;从板孔上升的来自下一层的气体在罩内与液体进行接触,这过程可以四段论加以描述:

托液拉膜段

破膜粉碎段

气液喷射段

气液分离段

被喷出的气液混合物中的大液滴回落入板上液层并进行循环(重复上述四段);小液滴(雾沫)悬浮于罩顶空间并随气流进入上一层塔板。而液体则从上游帽罩周围流过,并到达下游帽罩直至通过降液管流入下一塔板。

特点:

因为New-VST的操作上限为过量雾沫夹带,而其帽罩结构决定了它的气液混合物乃呈水平方向喷出。这就使它能大大降低了液沫夹带量,也因此可以大大提高其空塔气速。

New-VST系呈喷射状态操作,通过在帽罩内气液的激烈接触与冲突,使液体被分散成为细小液滴(一般情况下95%的液滴粒径为0.5~5mm的范围),从而大大增加(提供了)气液接触传质面积,并且

由于气液混合物在两板之间的空间接触时,液滴不断被气流翻动,从而使气液两相接触表面不断更新,遂可大大提高传质系数,这就使New-VST具有高的传质速率。

工业生产对塔板的要求主要是:

1.通过能力要大,即单位塔截面能处理的气液流量大;

2.塔板效率要高;

3.塔板压力降要低;

4.操作弹性要大;

在这些要求中,对于要求产品纯度高的分离操作,首先应考虑高效率;对于处理量大的一般性分离(如原油蒸馏等),主要是考虑通过能力大。

筛板上的气液接触状态

塔板上气液两相的接触状态是决定板上两相流流体力学及传质和

传热规律的重要因素。当液体流量一定时,随着气速的增加,可以出现三种不同的接触状态。

鼓泡接触状态

当气速较低时,气体以鼓泡形式通过液层。由于气泡的数量不多,形成的气液混合物基本上以液体为主,气泡表面的湍动程度低,传质阻力较大。

泡沫接触状态

孔速增加使气泡数量增加,气泡表面连成一片并发生合并与破裂。液体大部分以液膜形式存在与气泡之间。传质表面是面积很大的液膜(高度湍动),有利于传质。

喷射接触状态

孔速增加,动能很大的气体从筛孔以射流形式穿过液层。板上的液体破碎成液滴,落下后在塔板上形成很薄的液层,并在此破碎成液滴抛出。两相传质面积是液滴的外表面。液滴的多次形成与合并使传质表面不断更新,为传质创造了更好的流体力学条件。

喷射状态与泡沫状态的根本区别:前者液体—分散相,气体—连续相;后者液体—连续相,气体—分散相。转相点:泡沫状态喷射状态的临界点。筛孔直径和塔板开孔率越大,转相点气速越低。

精馏塔的结构、工作原理及分类汇总(附图)

精馏塔的结构、工作原理及分类汇总(附图) 精馏塔的功能和分类: 基本功能:形成气液两相充分接触的相界面,使质、热的传递快速有效地进行,接触混合与传质后的气、液两相能及时分开,互不夹带。 精馏塔分类:精馏塔的种类很多,按接触方式可分为连续接触式(填料塔)和逐级接触式(板式塔)两大类,在吸收和蒸馏操作中应用极广。板式塔: 在圆柱形壳体内按一定间距水平设置若干层塔板,液体靠重力作用自上而下流经各层板后从塔底排出,各层塔板上保持有一定厚度的流动液层;气体则在压强差的推动下,自塔底向上依次穿过各塔板上的液层上升至塔顶排出。气、液在塔内逐板接触进行质、热交换,故两相的组成沿塔高呈阶跃式变化。

2、板式塔 板式塔通常是由一个圆柱型的壳体及沿塔高按一定的间距水平设置的若干层塔板(或塔盘)所组成。 在塔内沿塔高装有若干层塔板,液体靠重力的作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,有塔底向上依次穿过各塔板上的液层而流向塔顶。气液两相在塔内进行逐级接触,两相组成沿塔高呈梯级式变化。

板式塔的塔板 塔板是板式塔的主要构件,决定塔的性能。在几种主要类型错流塔板中,应用最早的是泡罩板,目前使用最广泛的筛板塔和浮阀塔板。同时,各种新型高效塔板不断问世。 按照结构分,板式塔塔板可以分为泡罩塔、筛板塔、浮阀塔和舌形塔等。 按照流体的路径分,可以分为单溢流型和双溢流型。3.按照两相流动的方式不同,可以分为错流式和逆流式两种。 (1)溢流塔板 溢流塔板(错流式塔板):塔板间有专供液体溢流的降液管(溢流管),横向流过塔板的流体与由下而上穿过塔板的气体呈错流或并流流动。板上液体的流径与液层的高度可通过适当安排降液管的位置及堰的高度给予控制,从而可获得较高的板效率,但降液管将占去塔板的传质有效面积,影响塔的生产能力。

精馏塔的结构和工作原理

精馏塔的结构和工作原理 精馏塔是一种化工设备,常用于分离液体混合物中不同成分的纯度, 可用于提纯化合物、分离混合物中的杂质以及提取组分等。其结构和工作 原理是很重要的,下面将详细介绍。 一、结构 精馏塔主要由塔壳、填料和塔盘三部分组成。 1.塔壳:塔壳是整个精馏塔的基础结构,可分为上壳体和下壳体两部分。上壳体通常设置液位探测器和液位控制器,用于监测和控制塔内液位。下壳体通常设计有入口和出口,用于将料液引入塔内。 2.填料:填料是塔内的填充物,主要作用是提供大量的表面积和接触面,增加塔内液体与气体之间的接触,从而促进物质的传质和传热。常用 的填料有环形填料、板式填料和筛板填料等。 3.塔盘:塔盘是一种平坦的圆盘结构,可分为穿孔板和筛板两种形式。穿孔板上布满了数量不等的小孔,而筛板则由多个平行密排的矩形筛孔组成。塔盘上形成的液膜和气泡共同作用,实现液体与气体的质量传递。 二、工作原理 精馏塔的工作原理基于不同组分在不同温度下的沸点差异。其分离过 程主要包括蒸馏、冷凝、回流和分离四个步骤。 1.蒸馏:在塔底施加加热,使混合物中的易挥发组分汽化,形成蒸汽。蒸汽上升到塔内,与下降的液体接触,并通过填料或塔盘上的小孔进入下 一塔层。

2.冷凝:在塔顶设置冷凝器,冷却蒸汽,并将其转化为液体。冷却过 程中,蒸汽中的高沸点组分冷凝成液体,而低沸点组分保持挥发状态。 3.回流:冷凝后的液体通过回流管回流到塔顶,重新进入塔内。回流 液的作用是增加塔壁的液体,并通过填料或塔盘上的孔洞与上升的蒸汽混合。 4.分离:回流液与上升的蒸汽在塔内产生剪切力,使其彼此接触并进 一步传质。不同组分在塔内通过多次挥发和冷凝步骤的重复循环分离,逐 渐提纯。 工作原理的关键在于塔内的物质传质和传热。填料和塔盘提供了大量 的表面积和接触面,使液体和气体之间能够充分接触。高效的传质和传热 能够促使组分之间相互转移,达到分离的目的。 总结: 精馏塔的结构和工作原理是使得不同成分纯度提高的关键。通过加热、冷凝和回流等步骤进行反复蒸发和冷凝,最终实现混合物中组分的分离。 其结构中的填料和塔盘提供了大量的接触面,促进了物质的传质和传热。 我们可以根据不同的物质特性和工艺要求来设计和选择适当的精馏塔结构 和操作参数,达到所需的分离效果。

精馏塔的原理和流程

精馏塔的原理和流程 一、引言 精馏塔是一种常用于化工领域的分离设备,其具有高效且可控的分离性能。本文将介绍精馏塔的原理和流程,包括其基本结构、工作原理、操作流程以及应用领域等。 二、精馏塔的基本结构 精馏塔由塔身、填料层、留液器、塔盘等组成。其中,塔身是塔的主要部分,填料层用于增加表面积和接触机会,留液器用于收集液体,塔盘用于改变气体和液体的流动方向。 三、精馏塔的工作原理 精馏塔是利用物质在不同温度下蒸发和凝结的特性进行分离的。其基本工作原理是通过对混合液体进行加热,使其蒸发产生蒸汽,蒸汽与冷凝介质接触后凝结为液体。在塔内,液体从上方往下滴流,气体从下方往上冒泡,两相之间通过填料层或塔盘的接触进行质量传递和热量传递,从而实现不同物质的分离。 四、精馏塔的操作流程 精馏塔的操作流程包括四个主要步骤:进料、加热、分离和收集。具体操作如下: 1. 进料 首先将混合液体通过进料口进入精馏塔,进料的速度和方式需要根据具体情况进行调整。 2. 加热 通过加热设备对塔内的混合液体进行加热。加热温度需要根据待分离物质的沸点来确定,以确保液体能够蒸发。

3. 分离 在塔内,混合液体被加热后产生蒸汽,蒸汽通过填料层或塔盘与下方的冷凝介质接触,凝结为液体。在这个过程中,不同物质由于具有不同的挥发性和热稳定性,会在塔内产生不同程度的蒸发和凝结,实现物质的分离。 4. 收集 经过分离的液体会被收集到留液器中,通过排液口进行排放。收集的液体可以进一步处理或进行其他用途的利用。 五、精馏塔的应用领域 精馏塔广泛应用于化工、石油、制药、食品等行业中,用于分离和提纯不同物质,以满足不同领域的需求。 1. 化工领域 在化工生产中,精馏塔常用于各类化工原料的分离和纯化,例如分离石油产品、分离有机化合物、提纯合成氨等。 2. 石油领域 精馏塔在石油炼制过程中起到至关重要的作用,可用于分离石油中的不同成分,如汽油、柴油、煤油、液化气等。 3. 制药领域 在制药行业中,精馏塔用于药物的提取和纯化,可分离出目标药物并去除其他杂质物质。 4. 食品领域 精馏塔在食品饮料行业中也有应用,例如用于酒精的提纯、脱水等。

精馏塔设计说明书(最全)

引言 塔设备是化学工业,石油化工,生物化工,制药等生产过程中广泛采用的传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 板式塔为逐级接触式气液传质设备,塔内设置一定数量的塔板,气体以鼓泡形式或喷射形式通过塔板上的液层,正常条件下,气相为分散相,液相为连续相,气相组成呈阶梯变化,它具有结构简单,安装方便,压降低,操作弹性大,持液量小等优点,被广泛的使用。本设计的目的是分离苯—甲苯的混合液,故选用板式塔。 设计方案的确定和流程说明 1.塔板类型 精馏塔的塔板类型共有三种:泡罩塔板,筛孔塔板,浮阀塔板。 浮阀塔板具有结构简单,制造方便,造价低等优点,且开孔率大,生产能力大,阀片可随气流量大小而上下浮动,故操作弹性大,气液接触时间长,因此塔板效率较高。本设计采用浮阀塔板。 2. 加料方式 加料方式共有两种:高位槽加料和泵直接加料。 采用泵直接加料,具有结构简单,安装方便等优点,而且可以引入自动控制系统来实时调节流量及流速。故本设计采用泵直接加料。 3. 进料状况 进料方式一般有两种:冷液进料及泡点进料。 对于冷液进料,当进料组成一定时,流量也一定,但受环境影响较大;而采用泡点进料,不仅较为方便,而且不受环境温度的影响,同时又能保证精馏段和提馏段塔径基本相等,制造方便。故本设计采用泡点进料。 4. 塔顶冷凝方式 苯和甲苯不反应,且容易冷凝,故塔顶采用全凝器,用水冷凝。塔顶出来的气体温度不高,冷凝后的回流液和产品无需进一步冷却,选用全凝器符合要求。 5. 回流方式 回流方式可分为重力回流和强制回流。 本设计所需塔板数较多,塔较高,为便于检修和清理,回流冷凝器不适宜塔

精馏塔

概述

主要物性数据

筛板塔工艺设计计算结果汇总 精馏段设备工艺参数总汇表 序号 项目 符号 单位 计算数据 1 平均温度 m t ℃ 87.8 2 气相流量 g V m 3 /s 3 10563.6-? 3 液相流量 L V m 3 /s 5 10 341.1-? 4 实际塔板数 P N --- 17 5 有效高度 Z m 7.5 6 塔径 D m 1.8 7 板间距 H T m 0.45 8 堰长 w l m 1.105 9 堰高 w h m 0.0665 10 板上清液层高度 L h m 0.07 11 堰上清液层高度 OW h m 0.00035 12 降液管内清夜层高度 d H m 0.1657 13 塔板压降 P h m 0.0957 14 降液管底隙高度 0h m 0.0605 15 气相动能因子 a F )(5 .05 .0s m kg ? 9.982 16 弓形降液管宽度 d W m 0.221 17 筛孔总面积 0A m 2 1.614 18 筛孔直径 0d m 0.0025 19 筛孔数目 n --- 272 20 孔中心距 t m 0.075 21 开孔率 ? 68.73 22 空塔气速 u s m 4.90 23 筛孔气速 0u s m 3.368 24 稳定系数 K --- 1.715 25 停留时间 τ s 11 26 液沫夹带 V e kg 液/kg 气 12 10 7996.7-? 27 气相负荷上限 max )(g V m 3 /s 18.23 28 气相负荷下限 min )(g V m 3 /h 6.32 29 操作弹性 --- --- 2.88

精馏原理

4.1精馏原理(化工精制工序中精馏塔建模与仿真的研究) 利用混合物中各组分挥发能力的差异,通过液相和气相的回流,使气、液两相逆向多级接触,在热能驱动和相平衡关系的约束下,使得易挥发组分(轻组分)不断从液相往气相中转移,而难挥发组分却由气相向液相中迁移,使混合物得到不断分离,称该过程为精馏。该过程中,传热、传质过程同时进行(当重组分由气相向液相转移时是一个冷凝过程,放出热量,而当液相中轻组分向气相转移时为一气化过程,将吸收热量,彼此存在交换。由此可见,精馏过程是热能驱动,传质、传热过程同时进行的过程。但该过程还受相平衡关系制约,主要由传质所控制。),属传质过程控制。 图3-1是连续精馏塔图。原料从塔中部适当位置进塔,将塔分为两段,上段为精馏段,不含进料,下段含进料板为提馏段,塔顶设有冷凝器,塔底设有再沸器。气、液相回流是指原料从塔中部适当位置进入塔内,当液体流至塔底建立液面后,再沸器加热使之部分气化。蒸气在塔内逐级上升。当蒸气到达塔顶时,由冷凝器将其部分或全部冷凝,其凝液一部分返回塔内作为回流,另一部分作为液相产品采出。回流液沿塔逐板下流的过程中与上升气体多次逆向接触及分离,在接触过程中发生传质和传热。当流至塔底时,经再沸器加热部分气化,其气相返回塔内作气相回流,而液相部分作为塔底的产品采出。气液相回流是精馏重要特点。 图3-1 连续精馏过程图3-2 板式精馏塔 Fig.3-1 Continuous distillation process Fig.3-2 Plate distillation column 4.1.1精馏段 以二元混合物精馏为例,当气相上升至进料板以上第n板时,则与上方(n-1)板流下的液相接触混合。由于气相中的难挥发组分B(俗称重组分)高于液相的平衡气组成(1-y n-1),因过程是趋向平衡的,所以重组分由气相向液相转移。同时,液相中易挥发组分A(俗称轻组分)X n-1其气相所平衡的液气组成X n+1,为此,液相轻组分A向气相内转移,相互传质的结果,使上升气相轻组分增浓,下降液相重组分增浓。当该气相在继续上升过程中,同理,气相轻组分得到不断精制和增浓。为此,称进料板上方塔段为精馏段。在精馏段,气相在上升的过程中,气相轻组分不断得到精制,在气相中不断地增浓,在塔顶获轻组分产品。 4.1.2提馏段 在进料板以下(含进料板)液相沿塔逐级流下时,同上分析可知,在某一板上与上升气体接触混合时,该液相中的轻组分向气相中转移,而气相中的重组分则向液相中转移,使液相中重组分增浓。当液相下流过程中,气相会不断将液相中轻组分提出,使气相中重组分B 返回液相。为此,称进料板以下(含进料板)塔段部分为提馏段。在提馏段,其液相在下降的过程中,其轻组分不断地提馏出来,使重组分在液相中不断地被浓缩,在塔底获得重组分的产品。精馏过程与其他蒸馏过程最大的区别,是在塔两端同时提供纯度较高的液相和气相回流,为精馏过程提供了传质的必要条件。提供高纯度的回流,使在相同理论板的条件下,为精馏实现高纯度的分离时,始终能保证一定的传质推动力。所以,只要理论板足够多,回流足够大时,就能在塔顶得到高纯度的轻组分产品,而在塔底获得高纯度的重组分产品。

(完整版)精馏塔工作原理

精馏塔单元 一、工作原理简述 二、典型精馏塔动画演示 三、工艺流程简介 四、组态画面及设备说明 一、工作原理简述 精馏是化工生产中分离互溶液体混合物的典型单元操作,其实质是多级蒸馏,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组分(沸点较低或饱和蒸汽压较高的组分)汽化,经多次部分液相汽化和部分气相冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,从而实现分离。 精馏过程的主要设备有:精馏塔、再沸器、冷凝器、回流罐和输送设备等。精馏塔以进料板为界,上部为精馏段,下部为提留段。一定温度和压力的料液进入精馏塔后,轻组分在精馏段逐渐浓缩,离开塔顶后全部冷凝进入回流罐,一部分作为塔顶产品(也叫馏出液),另一部分被送入塔内作为回流液。回流液的目的是补充塔板上的轻组分,使塔板上的液体组成保持稳定,保证精馏操作连续稳定地进行。而重组分在提留段中浓缩后,一部分作为塔釜产品(也叫残液),一部分则经再沸器加热后送回塔中,为精馏操作提供一定量连续上升的蒸气气流。 二、精馏塔动画演示 1.板式塔结构

2.板式塔工作原理

三、工艺流程简介 本单元是一种加压精馏操作,原料液为脱丙烷塔塔釜的混合液,分离后馏出液为高纯度的C4产品,残液要是C5以上组分。 67.80C的原料液经流量调节器FIC101控制流量(14056Kg/h)后,从精馏塔DA405的第16块塔板(全塔共32块塔版)进料。塔顶蒸气经全凝器EA419冷凝为液体后进入回流罐FA408;回流罐FA408的液体由泵GA412A/B抽出,一部分作为回流液由调节器FC104控制流量(9664KG/H)送回DA405第32层塔板;另一部分则作为产品,其流量由调节器FC103控制(6707Kg/h)。回流罐的液位由调节器LC103与FC103构成的串级控制回路控制。DA405操作压力由调节器PC102分程控制为5.0Kg/m2。同时调节器PC101将调节回流罐的气相出料,保证系统的安全和稳定。 塔釜液体的一部分经再沸器EA408A/B回精馏塔,另一部分由调节器FC102控制流量(7349Kg/h),作为塔底采出产品。调节器LC101和FC102构成串级控制回路,调节精馏塔的液位。再沸器用低压蒸气加热,加热蒸气流量由调节器TC101控制,其冷凝液送FA414。FA414的液位由调节器LC102调节。 四、组态画面及设备

精馏塔中精馏过程的原理

精馏塔中精馏过程的原理 精馏是一种常用于分离混合物的方法,它是基于混合物中各组分沸点不同的原理而进 行的。在精馏过程中,混合物被加热至沸点以上,然后再经过冷凝,使其中沸点较高的组 分被分离出来。精馏塔是一种用于进行精馏过程的设备,它主要由一个塔体、进料口、塔板、引流管、液位计、沸点计等组成。下面就来详细解析一下精馏塔中精馏过程的原理。 1. 精馏塔的结构 精馏塔通常由一个塔体和一个加热器组成,该塔体内部设有塔板,塔板上分布着许多 小孔,其中塔板之间又相互隔开。混合物从塔体的进料口部进入塔体,经过加热器加热, 被蒸发分离出来的气体会从塔板上的小孔中流出,进入下一个塔板。然后再从下一层塔板 上流出,进入下一个塔板,如此循环,整个塔体内的混合物不断被加热、蒸发,冷却、凝结,最终分离出各组分。 2. 精馏的原理 精馏的原理是根据混合物中各组分沸点不同的原理进行的分离。在混合物加热至沸点 以上时,其中沸点较低的组分首先被蒸发分离出来,随着温度的升高,沸点高的组分也会 逐渐蒸发,最后被冷凝于塔顶部分离出来。当混合物进入精馏塔后,沸点较低的组分先蒸 发出来,通过下一个塔板上的小孔进入下一塔板。在下一塔板上,气体被再次加热,继续 升高温度,使得沸点较高的组分也逐渐蒸发出来。如此往复,最终使得各组分被分离出来,沸点较低的组分被分离在塔底,沸点较高的组分则被分离在塔顶。通过在塔体上设置不同 的温度,可以将不同沸点的组分分离出来,从而完成物质混合物的分离。 3. 精馏塔的操作过程 在进行精馏操作时,应该进行以下步骤: (1)将待分离的混合物加入精馏塔中,并加热至沸点以上。在加热的过程中,应该逐渐增加加热功率,避免发生剧烈沸腾。 (2)将沸点较低的组分在塔底部分离出来,通过引流管排出。 (3)随着沸点的升高,沸点高的组分逐渐分离出来,如此往复,直到完全分离出所有组分。在过程中可以通过液位计和沸点计等仪器进行监测。 (4)停止加热后,将分离出的各组分分别采集收容,完成分离过程。 4. 精馏塔的应用

双级精馏塔工作原理

双级精馏塔工作原理 双级精馏塔是一种常用的分离设备,主要用于将混合物中的组分按照沸点的差异进行分离。它的工作原理是利用不同组分的沸点差异,在塔内进行多次蒸馏和冷凝,从而实现组分的分离。 双级精馏塔由上下两个塔段组成,上塔段称为粗馏塔,下塔段称为精馏塔。整个工作过程中,粗馏塔和精馏塔之间通过一个回流槽连接,形成了两个相互联系的塔段。 工作过程中,混合物首先进入粗馏塔的底部,经过加热后开始蒸发。在粗馏塔中,混合物会逐渐分解为不同的组分,其中低沸点的组分会先蒸发出来。这些蒸发出来的组分会上升到粗馏塔的顶部,并通过回流槽流入精馏塔。 在精馏塔中,回流槽中的液体会均匀分布在塔内。蒸发出来的组分会与回流液体进行多次接触和混合,从而实现更好的分离效果。高沸点的组分会在精馏塔中凝结,形成液体,然后沉入塔底。而低沸点的组分则会继续上升,最终从精馏塔的顶部流出。 通过这样的多次蒸馏和冷凝过程,双级精馏塔可以实现对混合物中不同组分的有效分离。粗馏塔和精馏塔之间的回流槽起到了平衡液体分布的作用,使得整个系统能够保持稳定的工作状态。 双级精馏塔的工作原理可以通过以下几个方面进一步解释。首先,

不同组分在蒸发过程中的沸点差异导致了它们在塔内的分布差异。低沸点组分蒸发得快,上升得快,而高沸点组分则需要更高的温度才能蒸发。其次,回流槽中的液体流动保证了组分之间的充分接触,从而提高了分离效率。最后,粗馏塔和精馏塔的结构设计使得混合物能够在两个塔段之间进行逐步分解,从而实现了较好的分离效果。 双级精馏塔是一种常用的分离设备,通过利用组分的沸点差异,在多次蒸馏和冷凝过程中实现混合物的分离。它的工作原理是基于不同组分的沸点差异以及回流槽的作用,通过粗馏塔和精馏塔的结构设计,实现了混合物的有效分离。在实际应用中,双级精馏塔具有分离效率高、操作灵活等优点,被广泛应用于石油化工、化学工程等领域。

精馏塔的原理及控制要求

精馏塔的原理及控制要求 一、精馏原理 精馏是化工生产中分离互溶液体混合物的典型单元操作,其实质是多级蒸馏,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组 分(沸点较低或饱和蒸汽压较高的组分)汽化,经多次部分液相汽化和部分气相 冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,从而实现分离。 精馏过程的主要设备有:精馏塔、再沸器、冷凝器、回流罐和输送设备等。 精馏塔以进料板为界,上部为精馏段,下部为提馏段。一定温度和压力的料液进 入精馏塔后,轻组分在精馏段逐渐浓缩,离开塔顶后全部冷凝进入回流罐,一部 分作为塔顶产品(也叫馏出液),另一部分被送入塔内作为回流液。回流液的目 的是补充塔板上的轻组分,使塔板上的液体组成保持稳定,保证精馏操作连续稳 定地进行。而重组分在提留段中浓缩后,一部分作为塔釜产品(也叫残液),一 部分则经再沸器加热后送回塔中,为精馏操作提供一定量连续上升的蒸气气流。 精馏塔从结构上分,有板式塔和填料塔两大类。而板式塔根据塔结构不同, 又有泡罩塔、浮阀塔、筛板塔、穿流板塔、浮喷塔、浮舌塔等等。各种塔板的改 进趋势是提高设备的生产能力,简化结构,降低造价,同时提高分离效率。填科 塔是另一类传质设备,它的主要特点是结构简单,易用耐蚀材料制作,阻力小等,一般适用于直径小的塔。 在实际生产过程中,精馏操作可分为间歇精馏和连续精馏两种。对石油化工 等大型生产过程,主要是采用连续精馏。 精馏塔是一个多输入多输出的多变量过程,内在机理较复杂,动态响应迟缓缓,变量之间相互关联,不同的塔工艺结构差别很大,而工艺对控制提出的要求 又较高,所以确定精馏塔的控制方案是一个极为重要的课题。而且从能耗的角度 来看,精馏塔是三传一反典型单元操作中能耗最大的设备,因此,精馏塔的节能 控制也是十分重要的。

精馏装置-板式塔的结构和原理

精馏塔是进行精馏的一种塔式汽液接触装置。作为精馏过程的主要设备,有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。今天就带大家了解板式塔的结构和原理。 一、板式塔 板式塔通常是由一个圆柱型的壳体及沿塔高按一定的间距水平设置的若 干层塔板(或塔盘)所组成。

板式塔实物图

板式塔结构图 二、板式塔塔板 板式塔的塔板可分为有降液管及无降液管两大类。有降液管的一般液体呈错流式,无降液管的液体呈逆流式。 板式塔由塔板不同可以分为泡罩塔、浮阀塔、筛板塔、舌型板和斜孔板

等等。其中以泡罩塔,浮阀塔和筛板塔在工业生产中使用最为广泛。 三、泡罩塔 泡罩塔板是工业上应用最早的塔板,它由升气管及泡罩构成。泡罩安装在升气管的顶部,分圆形和条形两种,以前者使用较广。泡罩有f80、f100和f150mm三种尺寸,可根据塔径大小选择。泡罩下部周边开有很多齿缝,齿缝一般为三角形、矩形或梯形。泡罩在塔板上为正三角形排 列。 泡罩边缘开有纵向齿缝,中心装升气管。升气管直接与塔板连接固定。塔板下方的气相进入升管,然后从齿缝吹出与塔板上液相接触进行传质。由于升气管作用,避免了低气速下的漏液现象。

优点:该塔板操作弹性,塔效率也比较高,运用较为广泛。 缺点:是结构复杂,塔压降低,生产强度低,造价高。 四、筛板塔 筛孔塔板简称筛板,其结构特点是在塔板上开有许多均匀小孔,孔径一

般为3~8mm。筛孔在塔板上为正三角形排列。塔板上设置溢流堰,使板 上能保持一定厚度的液层。 筛板塔的优点是结构简单、造价低,生产能力大,板上液面落差小,气 体压降低,同时塔板效率较高。

板式精馏塔课程设计

板式精馏塔课程设计 板式精馏塔(TrayDistillationTower)是能够从复杂混合物中分离出更纯更高品质的物质的装置,被广泛应用于制造的各个领域。例如,在石油工业中,它可以用来净化石油,使之变成汽油、柴油和其他产品;在食品工业中,它可以用于酿酒等;在化工工业中,它可以用于多种原料的分离,并生产出纯度更高的有用成分。因此,理解板式精馏塔的原理和操作,对于应用其净化、分离复杂物质并获得高纯度产品是至关重要的。 本课程设计旨在向学生介绍板式精馏塔的基本原理、结构构造及其应用。具体内容如下: 一、板式精馏塔的原理 1、板式精馏塔的作用:板式精馏塔是一种分离装置,它借助物料的沸点差,将多种物质分离,并可以将其中某种物质精馏出来。 2、板式精馏塔的过程:板式精馏塔通常由二到三个气相和一个液相传输层组成,将原料混合物按顺序层叠在塔内,通过蒸汽热量加热,使其中的某种物质蒸发,并通过高温蒸汽把蒸发物分离出来、冷却并凝结,最终得到精馏物质。 3、板式精馏塔的优点:板式精馏塔具有功率小、料仓容量大、效率高、分离精度高,且操作简单,可以降低操作成本,增加生产效率。 二、板式精馏塔的结构 1、板式精馏塔的结构:板式精馏塔的空腔是由顶部的首体和底

部的结构体共同支撑,腔体内装有一定间距的板条,将空腔分隔成几层,每一层上装有一定数量的垂直支撑架,从而形成多种不同的结构,如单层结构、双层结构、三层结构等。 2、板式精馏塔的参数:板式精馏塔的最大加热面积、冷却面积以及精馏液流量、蒸汽流量等参数都有一定的要求,可以根据实际情况来确定,以确保精馏效率。 三、板式精馏塔的应用 1、板式精馏塔在石油工业中的应用:板式精馏塔能用于石油工业分离常见的液体组分,如石脑油、柴油、汽油等,以及精馏出高纯度的催化剂和润滑油等物质。 2、板式精馏塔在食品工业中的应用:板式精馏塔在食品工业中的应用也很广泛,主要用于精馏出高纯度的天然果汁,也可以用来制作各种中间产品,如各种酿酒发酵物质。 3、板式精馏塔在化工工业中的应用:板式精馏塔在化工工业中的应用最广泛,其主要功能是将各种原料混合物分离、提纯出纯度高的物质,或者将复杂物质经过改性,将其变成可以供生产制造使用的物质。 四、实践操作 本课程中,学生将通过实物模型进行操作实践。主要内容如下: 1、学生首先根据实物模型结构来认识不同部件,如安装板条、首体、蒸汽管道等,理解板式精馏塔的基本结构; 2、学生通过熊猫触摸模拟器进行操作,模拟真实的操作过程,

精馏工段操作规程(最终版)

精馏工段 工 艺 技 术 及 操 作 规 程

目录 第一章适用范围及职责范围 第二章甲醇精馏工艺原理 第三章工艺流程简述 第四章工艺操作指标、质量要求 第五章原始开车步骤 第六章精馏工段停车步骤 第七章精馏工段再开车 第八章正常维护与操作要点 第九章异常情况及处理 第十章精馏设备一览表 第十一章精馏工段工艺流程图(见附图)第十二章三塔构造简图(附图) 第十三章甲醇的性质 第十四章甲醇精馏岗位分析项目及方法第十五章精醇质量控制 第十六章事故处理 第十七章安全、工业卫生、环保要求 第十八章巡回检查 第十九章冬季防冻要点

第一章适用范围及职责范围 1、适用范围 本操作仅适用于煤制甲醇装置甲醇精馏岗位 2、本岗位主要任务 将甲醇合成工段生产的粗甲醇(含醇量92%左右,杂质有水、二甲醚、乙醇等)进行多次蒸馏提纯,制得纯度在99.9%以上的精甲醇。 3、职责范围 (1)、负责岗位所有设备、管线、仪表、电器、贮槽、泵等设施的操作,维护保养,主要设备有预精馏塔、加压精馏塔、常压精馏塔、三塔回流槽、粗醇入料泵、加压塔入料泵、三塔回流泵、碱液泵、三塔再沸器、预塔回流蒸发冷凝器、加压塔精甲醇蒸发冷凝器、常压塔回流蒸发冷凝器、三合一蒸发冷凝器等设备。 (2)、在值班期间,坚守岗位,认真操作,并按时填写操作记录表和规范各项考核表,遵守并严格执行各项工艺指标和安全技术规程。 (3)、在值班期间接受值班长和调度的领导,对生产中出现的问题及时向值班长或值班主任汇报。 (4)、负责保管好本岗位的工器具及防护器材,并做到文明生产。 (5)、认真做好交接班工作,并做到交接高风格。 第二章甲醇精馏工艺原理 为了得到纯甲醇,利用甲醇与杂质之间各种物理性质的差异,将杂质分离,在甲醇精制时,通常用精馏与萃取等方法 把液体混合物进行多次部分气化,同时又把产生的蒸汽多次部分冷凝,使混合物分离为所要求组分的操作过程称为精馏。 对于一次气化和一次冷凝来说,由于液体混合物中所含组分的沸点不同,当其在一定温度下部分气化时,因低沸点物易于气化,故它在气相中的浓度较液相高,而液相中高沸点物的浓度较气相高,这就改变了气、液两相的组成。当对部分气化所得的蒸气进行部分冷凝时,因高沸点易于冷凝,使冷凝液中高沸点物的浓度较气相高,而未冷凝气中低沸点物的浓度比冷凝液

相关主题
相关文档
最新文档