十字交叉法解析

十字交叉法解析
十字交叉法解析

十字交叉双乘法没有公式,一定要说的话

那就是利用x^2+(p+q)x+pq=(x+q)(x+p)其中PQ为常数。x^2是X的平方

1.因式分解

即和差化积,其最后结果要分解到不能再分为止。而且可以肯定一个多项式要能分解因式,则结果唯一,因为:数域F上的次数大于零的多项式f(x),如果不计零次因式的差异,那么f(x)可以唯一的分解为以下形式:

f(x)=aP1k1(x)P2k2(x)…Piki(x)*,其中α是f(x)的最高次项的系数,P1(x),P2(x)……Pi(x)是首1互不相等的不可约多项式,并且Pi(x)(I=1,2…,t)是f(x)的Ki重因式。

(*)或叫做多项式f(x)的典型分解式。证明:可参见《高代》P52-53

初等数学中,把多项式的分解叫因式分解,其一般步骤为:一提二套三分组等

要求为:要分到不能再分为止。

2.方法介绍

2.1提公因式法:

如果多项式各项都有公共因式,则可先考虑把公因式提出来,进行因式分解,注意要每项都必须有公因式。

例15x3+10x2+5x

解析显然每项均含有公因式5x故可考虑提取公因式5x,接下来剩下x2+2x+1仍可继续分解。

解:原式=5x(x2+2x+1)

=5x(x+1)2

2.2公式法

即多项式如果满足特殊公式的结构特征,即可采用套公式法,进行多项式的因式分解,故对于一些常用的公式要求熟悉,除教材的基本公式外,数学竞赛中常出现的一些基本公式现整理归纳如下:

a2-b2=(a+b)(a-b)

a2±2ab+b2=(a±b)2

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

a3±3a2b+3ab2±b2=(a±b)3

a2+b2+c2+2ab+2bc+2ac=(a+b+c)2

a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2

a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)

an+bn=(a+b)(an-1-an-2b+…+bn-1)(n为奇数)

说明由因式定理,即对一元多项式f(x),若f(b)=0,则一定含有一次因式x-b。可判断当n为偶数时,当a=b,a=-b时,均有an-bn=0故an-bn中一定含有a+b,a-b因式。

例2分解因式:①64x6-y12②1+x+x2+…+x15

解析各小题均可套用公式

解①64x6-y12=(8x3-y6)(8x3+y6)

=(2x-y2)(4x2+2xy2+y4)(2x+y2)(4x2-2xy2+y4)

②1+x+x2+ (x15)

=(1+x)(1+x2)(1+x4)(1+x8)

注多项式分解时,先构造公式再分解。

2.3分组分解法

当多项式的项数较多时,可将多项式进行合理分组,达到顺利分解的目的。当然可能要综合其他分法,且分组方法也不一定唯一。

例1分解因式:x15+m12+m9+m6+m3+1

解原式=(x15+m12)+(m9+m6)+(m3+1)

=m12(m3+1)+m6(m3+1)+(m3+1)

=(m3+1)(m12+m6++1)

=(m3+1)[(m6+1)2-m6]

=(m+1)(m2-m+1)(m6+1+m3)(m6+1-m3)

例2分解因式:x4+5x3+15x-9

解析可根据系数特征进行分组

解原式=(x4-9)+5x3+15x

=(x2+3)(x2-3)+5x(x2+3)

=(x2+3)(x2+5x-3)

2.4十字相乘法

对于形如ax2+bx+c结构特征的二次三项式可以考虑用十字相乘法,

即x2+(b+c)x+bc=(x+b)(x+c)当x2项系数不为1时,同样也可用十字相乘进行操作。

例3分解因式:①x2-x-6②6x2-x-12

解①1x2

1x-3

原式=(x+2)(x-3)

②2x-3

3x4

原式=(2x-3)(3x+4)

注:“ax4+bx2+c”型也可考虑此种方法。

2.5双十字相乘法

在分解二次三项式时,十字相乘法是常用的基本方法,对于比较复杂的多项式,尤其是某些二次六项式,如4x2-4xy-3y2-4x+10y-3,也可以运用十字相乘法分解因式,其具体步骤为:

(1)用十字相乘法分解由前三次组成的二次三项式,得到一个十字相乘图

(2)把常数项分解成两个因式填在第二个十字的右边且使这两个因式在第二个十字中交叉之积的和等于原式中含y的一次项,同时还必须与第一个十字中左端的两个因式交叉之积的和等于原式中含x的一次项

例5分解因式

①4x2-4xy-3y2-4x+10y-3②x2-3xy-10y2+x+9y-2

③ab+b2+a-b-2④6x2-7xy-3y2-xz+7yz-2z2

解①原式=(2x-3y+1)(2x+y-3)

2x-3y1

2xy-3

②原式=(x-5y+2)(x+2y-1)

x-5y2

x2y-1

③原式=(b+1)(a+b-2)

0ab1

ab-2

④原式=(2x-3y+z)(3x+y-2z)

2x-3yz

3x-y-2z

说明:③式补上oa2,可用双十字相乘法,当然此题也可用分组分解法。

如(ab+a)+(b2-b-2)=a(b+1)+(b+1)(b-2)=(b+1)(a+b-2)

④式三个字母满足二次六项式,把-2z2看作常数分解即可:

2.6拆法、添项法

对于一些多项式,如果不能直接因式分解时,可以将其中的某项拆成二项之差或之和。再应用分组法,公式法等进行分解因式,其中拆项、添项方法不是唯一,可解有许多不同途径,对题目一定要具体分析,选择简捷的分解方法。

例6分解因式:x3+3x2-4

解析法一:可将-4拆成-1,-3即(x3-1)+(3x2-3)

法二:添x4,再减x4,.即(x4+3x2-4)+(x3-x4)

法三:添4x,再减4x即,(x3+3x2-4x)+(4x-4)

法四:把3x2拆成4x2-x2,即(x3-x2)+(4x2-4)

法五:把x3拆为,4x2-3x3即(4x3-4)-(3x3-3x2)等

解(选择法四)原式=x3-x2+4x2-4

=x2(x-1)+4(x-1)(x+1)

=(x-1)(x2+4x+4)

=(x-1)(x+2)2

2.7换元法

换元法就是引入新的字母变量,将原式中的字母变量换掉化简式子。运用此种方法对于某些特殊的多项式因式分解可以起到简化的效果。

例7分解因式:

(x+1)(x+2)(x+3)(x+4)-120

解析若将此展开,将十分繁琐,但我们注意到

(x+1)(x+4)=x2+5x+4

(x+2)(x+3)=x2+5x+6

故可用换元法分解此题

解原式=(x2+5x+4)(x2+5x+6)-120

令y=x2+5x+5则原式=(y-1)(y+1)-120

=y2-121

=(y+11)(y-11)

=(x2+5x+16)(x2+5x-6)

=(x+6)(x-1)(x2+5x+16)

注在此也可令x2+5x+4=y或x2+5x+6=y或x2+5x=y请认真比较体会哪种换法更简单?

2.8待定系数法

待定系数法是解决代数式恒等变形中的重要方法,如果能确定代数式变形后的字母框架,只是字母的系数高不能确定,则可先用未知数表示字母系数,然后根据多项式的恒等性质列出n个含有特殊确定系数的方程(组),解出这个方程(组)求出待定系数。待定系数法应用广泛,在此只研究它的因式分解中的一些应用。

例7分解因式:2a2+3ab-9b2+14a+3b+20

分析属于二次六项式,也可考虑用双十字相乘法,在此我们用待定系数法

先分解2a2+3ab+9b2=(2a-3b)(a+3b)

解设可设原式=(2a-3b+m)(a+3b+n)

=2a2+3ab-9b2+(m+2n)a+(3m-3n)b+mn……………

比较两个多项式(即原式与*式)的系数

m+2n=14(1)m=4

3m-3n=-3(2)=>

mn=20(3)n=5

∴原式=(2x-3b+4)(a+3b+5)

注对于(*)式因为对a,b取任何值等式都成立,也可用令特殊值法,求m,n

令a=1,b=0,m+2n=14m=4

=>

令a=0,b=1,m=n=-1n=5

2.9因式定理、综合除法分解因式

对于整系数一元多项式f(x)=anxn+an-1xn-1+…+a1x+a0

由因式定理可先判断它是否含有一次因式(x-)(其中p,q互质),p为首项系数an的约数,q为末项系数a0的约数

若f()=0,则一定会有(x-)再用综合除法,将多项式分解

例8分解因式x3-4x2+6x-4

解这是一个整系数一元多项式,因为4的正约数为1、2、4

∴可能出现的因式为x±1,x±2,x±4,

∵f(1)≠0,f(1)≠0

但f(2)=0,故(x-2)是这个多项式的因式,再用综合除法

21-46-4

2-44

1-220

所以原式=(x-2)(x2-2x+2)

当然此题也可拆项分解,如x3-4x2+4x+2x-4

=x(x-2)2+(x-2)

=(x-2)(x2-2x+2)

分解因式的方法是多样的,且其方法之间相互联系,一道题很可能要同时运用多种方法才可能完成,故在知晓这些方法之后,一定要注意各种方法灵活运用,牢固掌握!

-------------------------------------------------------------------------------------------------------------

不知道你是什么教材的

初中的都给你好了

-------------------------------------------------------------------------------------------------------------

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边

17 三角形内角和定理三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形

是直角三角形

48定理四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理n边形的内角的和等于(n-2)×180°

51推论任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角

61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h

83 (1)比例的基本性质如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d wc呁/S∕ ?

84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94 判定定理3 三边对应成比例,两三角形相似(SSS)

95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121①直线L和⊙O相交d<r

②直线L和⊙O相切d=r

③直线L和⊙O相离d>r ?

122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理弦切角等于它所夹的弧对的圆周角

129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离d>R+r ②两圆外切d=R+r

③两圆相交R-r<d<R+r(R>r)

④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r)

136定理相交两圆的连心线垂直平分两圆的公*弦

137定理把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积Sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长扑愎剑篖=n兀R/180

145扇形面积公式:S扇形=n兀R^2/360=LR/2

146内公切线长= d-(R-r) 外公切线长= d-(R+r)

(还有一些,大家帮补充吧)

实用工具:常用数学公式

公式分类公式表达式

乘法与因式分解

a^2-b^2=(a+b)(a-b)

a^3+b^3=(a+b)(a^2-ab+b^2)

a^3-b^3=(a-b(a^2+ab+b^2)

三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解-b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a

根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式

b^2-4ac=0 注:方程有两个相等的实根

b^2-4ac>0 注:方程有两个不等的实根

b^2-4ac<0 注:方程没有实根,有*轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B) )

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 5

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径

余弦定理b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角

圆的标准方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标

圆的一般方程x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0

抛物线标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h

正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2

圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l

弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h

斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长

柱体体积公式V=s*h 圆柱体V=pi*r2h

十字交叉法解题两个易错点

十字交叉法解题 十字交叉法是化学计算中常用的一种速解巧解方法,适用于二元混合体系所产生的具有平均意义的计算问题。对于等量关系:ma+nb=(m+n)c 整理得:m n= c-b a-c 可写成图式: a c-b ↘↗ c ↗↘ b a-c 其中a、b为分量,c为平均量,一般只写其数值。因图式成十字交叉形,所以叫十字交叉法,多用于计算型的选择题或填空题。一般用起来比较简捷,但任何解题方法都有其局限性,十字交叉法也不例外,有时候不仅不能起简化作用,反而会造成失误。因此应具体问题具体分析,恰当采用。下面就十字交叉法解题最易出错的二元混合物反应的有关计算,通过例题加以分析。

1.十字交叉法比值的含义 例1:镁和铝的混合物10 g,与足量的稀硫酸充分反应,生成1.0 g氢气,混合物中镁和铝的质量比为 解析:用十字交叉法解题,关键是定好基准,找出分量和平均量。该题以失去电子的物质的量1mol作为基准,求出所对应金属的质量。失去单位物质的量电子的金属质量称作该金属的摩尔电子质量,则镁和铝的摩尔电子质量分别为12g/(mol e-)、9g/(mol e-)作为分量,1.0 gH2是H+得到1.0 mol电子所生成的,说明10 g镁和铝的混合物共失去1.0 mol电子,即镁、铝混合物的平均摩尔电子质量为10g/(mol e-),作为平均量,即两个分量值分别为12和9,平均值为10,用十字交叉法图解如下: Mg 12 1 ↘↗ 10 ↗↘ Al 9 2 那么比值1/2的含义是什么?是镁和铝的质量比、物质的量之比,还是镁和铝失去电子的物质的量之比,这就是用十字交叉法解题最易出错的地方。十字交叉法的解题要点是“斜向找差值,横向看结果”,指的是:十字交叉所得的两个差值与它横对的物质成正比例关系,两个差值比的含义取决于分量和平均量单位的分母,即该比值是产生分量的基准物的分配比,并且是基准物所对应的物理量之比,它与两个分量比值的乘积有一定的物理意义。本题所得比值1/2显然是镁和铝失去电子的物质的量之比,原混合物中镁和铝的质量比为:1×12∶2×9=2∶3。 如果本题由十字交叉法所得比值求镁和铝的物质的量之比,据镁和铝失去电子的物质的量之比为1/2,很容易求得:n(Mg):n(Al) =1×1 2 ∶2× 1 3 =3∶4。

化学十字交叉法的原理和应用

化学十字交叉法的原理和应用 孟州一中 王俊强 化学计算是中学化学中的重要组成部分,运用恰当的数学方法和模型解决化学问题,可以培养学生的科学思维能力,提高学生分析问题、解决问题的能力,同时也可以加深学生对化学基本概念和基本原理的理解。“十字交叉法”的应用就是其中的典型。 一、十字交叉法的原理 对于一个具有平均意义的由组分A 、B 形成的二元混合体系,设a 、b (a >b )为组分 A 、 B 单位物理量的分属性,c 为混合物的混合属性即平均值,a,b,c 表示的物理量是一致的(如摩尔质量、相对原子质量、质量分数、焓变、分子式等),X 、Y 两组分单位物理量的数量因子。此时通常可以建立一个二元一次方程组: aX+bY=c X+Y=1 对上边的二元一次方程组进行变式得: X c-b Y a-c 为了方便同学们的记忆,将其变为固定模式: 单位物理量的组分A a c-b c 单位物理量的组分B b a-c 二、十字交叉法的应用 十字交叉法作为一种简单算法,它特别适合于两总量、两关系的混合物的有关计算。具体适用题型如下: (1)有关质量分数的计算(用两种不同浓度溶液的质量分数与混合溶液的质量分数作十字交叉,求两种溶液的质量比) 例1 将50%的盐酸溶液与10%盐酸溶液混合成40%的盐酸溶液,求所取两种溶液的质量比。 解析: (2)有关物质的量浓度的计算(用混合钱的物质量的浓度与混合后的物质量的浓度做十字交叉,求体积比) 13 )%10() %50( HCl m HCl m 100g50% 盐酸 50 30 40 100g10% 盐酸 10 10 例2 现有浓度为 4mol ·L -1 和6mol ·L -1 的两种硫酸溶液,欲配制5 mol/L 的硫酸溶液(混合时体积变化忽略不计)则取两种硫酸溶液的体积比是多少?

行测:十字交叉法的应用

行测备考:十字交叉法的应用 在加权平均数的相关题型中,由于数量关系复杂,列方程做比较困难,十字交叉法能轻松解决这一问题。十字交叉法经常运用于浓度、比重、人口、平均分等问题的求解,同时也可以运用于某些较为复杂的问题中。在数学运算及资料分析中经常用到,达到行测考场上的“秒杀”。 下面我们首先学习下十字交叉法的原理。 十字交叉法使用时要注意几点: 第一点:用来解决两者之间的比例关系问题。 第二点:得出比例关系是基数的比例关系。 第三点:总均值放中央,右侧对角线上,大数减小数。 下面我们通过例题来看一下十字交叉法在浓度问题中的应用。 【例1】有100克溶液,第一次加入20克水,溶液的浓度变成50%;第二次再加入80克浓度为40%的同种溶液,则溶液的浓度变为( ) A. 45% B. 47% C. 48% D. 46% 【解析】本题相当于是120克50%的溶液与80克40%的溶液混合,我们利用“十字交叉法”,把选项代入到其中,很明显只有D选项46%得出的比例等于120:80=3:2. 【例2】红酒桶中有浓度为68%的酒,绿酒桶中有浓度为48%的酒,若每个酒桶中取若干混合后,酒浓度为52%;若每个酒桶中取酒的数量比原来都多12 升,混合后的酒浓度为53.2%。第一次混合时,红酒桶中取的酒是( )。

A.17.8 升 B.19.2 升 C.22.4 升 D.36.3 升 【解析】运用“十字交叉法”,易知第一次混合前的质量比为1:4, 所以假设第一次分别取x,4x升,再用十字交叉得到第二次混合前的质量比为13:37,所以(x+12):(4x+12)=13:37,得到x=19.2,选择B。 【例3】烧杯中装了100克浓度为10%的盐水,每次向该烧杯中加入不超过14克浓度为50%的盐水,问最少加多少次之后,烧杯中的盐水浓度能达到25%?(假设烧杯中盐水不会溢出)( ) A.6 B. 5 C. 4 D. 3 解析:运用“十字交叉法”,易知 所以至少要加60克,每次最多14克,至少5次。 以上就是我们的十字交叉法在溶液问题中的运用,做题中遇到类似这样的题目,解答起来就比直接列方程要省时省力一些。

浓度问题(十字交叉法的巧妙运用)

浓度问题(十指交叉法巧妙运用) 如果题目中给出两个平行的情况A, B, 满足条件a, b ; 然后A和B按照某种条件混合在一起形成的情况C, 满足条件c. 而且可以表示成如下的表达式. 那么这个时候就可以用十字交叉法. 判断式: A×a+B×b=(A+B)×c=C×c 用十字交叉法表示: (一)基本知识点: 1、溶液=溶质+溶剂; 2、浓度=溶质/溶液; 3、溶质=溶液*浓度; 4、溶液=溶质/浓度; (二)例题与解析 1. 甲容器中有浓度为4%的盐水250克,乙容器中有某种浓度的盐水若干克。现从乙中取出750 克盐水,放人甲容器中混合成浓度为8%的盐水。问乙容器中的盐水浓度约是多少? A.9.78% B.10.14% C.9.33% D.11.27% 答案:C 解析: 方法一:设乙容器中盐水的浓度为x (250×4%+750*x)/(250+750)=8% x=9.33% 方法二:设浓度为x 2. 甲、乙两瓶酒精溶液分别重300克和120克;甲中含酒精120克,乙中含酒精90克。问从两瓶中应各取出多少克才能兑成浓度为50%的酒精溶液140克? A 甲100克,乙 40克 B 甲90克,乙50克 C 甲110克,乙30克 D 甲70克,乙70克 答案:A

解析:甲浓度为40%,乙浓度为75%, 甲中取A,乙中取140-A A:(140-A)=5:2 A=100 3、一杯含盐15%的盐水200克,要使盐水含盐20%,应加盐()克。 A.14.5 B.10 C.12.5 D.15 解析:假设加盐x克,15%的盐水200克, 100%的盐x克, 混合成20%的200+x.满足: 15%*200+100%*x=20%*(200+x), 所以可以用十字交叉法. 解出x=12.5克. 说明:浓度问题,无论是稀释、浓缩还是配制,一定要转化为甲、乙两种溶液混合成第三种丙溶液,方可利用十字交叉法

十字交叉法解析

十字交叉双乘法没有公式,一定要说的话 那就是利用x^2+(p+q)x+pq=(x+q)(x+p)其中PQ为常数。x^2是X的平方 1.因式分解 即和差化积,其最后结果要分解到不能再分为止。而且可以肯定一个多项式要能分解因式,则结果唯一,因为:数域F上的次数大于零的多项式f(x),如果不计零次因式的差异,那么f(x)可以唯一的分解为以下形式: f(x)=aP1k1(x)P2k2(x)…Piki(x)*,其中α是f(x)的最高次项的系数,P1(x),P2(x)……Pi(x)是首1互不相等的不可约多项式,并且Pi(x)(I=1,2…,t)是f(x)的Ki重因式。 (*)或叫做多项式f(x)的典型分解式。证明:可参见《高代》P52-53 初等数学中,把多项式的分解叫因式分解,其一般步骤为:一提二套三分组等 要求为:要分到不能再分为止。 2.方法介绍 2.1提公因式法: 如果多项式各项都有公共因式,则可先考虑把公因式提出来,进行因式分解,注意要每项都必须有公因式。 例15x3+10x2+5x 解析显然每项均含有公因式5x故可考虑提取公因式5x,接下来剩下x2+2x+1仍可继续分解。 解:原式=5x(x2+2x+1) =5x(x+1)2 2.2公式法 即多项式如果满足特殊公式的结构特征,即可采用套公式法,进行多项式的因式分解,故对于一些常用的公式要求熟悉,除教材的基本公式外,数学竞赛中常出现的一些基本公式现整理归纳如下: a2-b2=(a+b)(a-b) a2±2ab+b2=(a±b)2 a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2) a3±3a2b+3ab2±b2=(a±b)3 a2+b2+c2+2ab+2bc+2ac=(a+b+c)2 a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2 a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc) an+bn=(a+b)(an-1-an-2b+…+bn-1)(n为奇数) 说明由因式定理,即对一元多项式f(x),若f(b)=0,则一定含有一次因式x-b。可判断当n为偶数时,当a=b,a=-b时,均有an-bn=0故an-bn中一定含有a+b,a-b因式。 例2分解因式:①64x6-y12②1+x+x2+…+x15 解析各小题均可套用公式 解①64x6-y12=(8x3-y6)(8x3+y6) =(2x-y2)(4x2+2xy2+y4)(2x+y2)(4x2-2xy2+y4) ②1+x+x2+ (x15) =(1+x)(1+x2)(1+x4)(1+x8) 注多项式分解时,先构造公式再分解。 2.3分组分解法 当多项式的项数较多时,可将多项式进行合理分组,达到顺利分解的目的。当然可能要综合其他分法,且分组方法也不一定唯一。 例1分解因式:x15+m12+m9+m6+m3+1 解原式=(x15+m12)+(m9+m6)+(m3+1) =m12(m3+1)+m6(m3+1)+(m3+1) =(m3+1)(m12+m6++1) =(m3+1)[(m6+1)2-m6]

”十字交叉法“的原理和应用要点

化学计算中“十字交叉法”的数学原理和应用 一. “十字交叉法”简介 “十字交叉法”是二元混合物(或组成)计算中的一种特殊方法,若已知两组分量和这两个量的平均值,求这两个量的比例关系等,多可运用“十字交叉法”计算。十字交叉法在化学计算中是一种常用的方法,在很多习题中采用十字交叉法可以简化计算过程,提高计算效率。下面先从一道简单的例题来介绍何为十字交叉法。 例1、50克10%的硫酸溶液和150克30%的硫酸溶液混合后,所得硫酸溶液的质量分数是多少? 采用十字交叉法计算的格式如下: 设混合后溶液的质量分数为x%,则可列出如下十字交叉形式所得的等式: 10%的溶液 10 30 — x X 30%的溶液 30 x — 10 50g(10% 的溶液质量) 150(30%的溶液质量)

由此可得出x = 25,即混合后溶液的质量分数为25%。 以上习题的计算过程中有一个十字交叉的形式,因此通常将这种方法叫做“十字交叉法”。然而怎样的计算习题可以采用这种方法?且在用“十字交叉法”时,会涉及到最后差值的比等于什么的问题,即交叉后所得的差值之比是实际中的质量之比还是物质的量之比?这些问题如果不明确,计算中便会得出错误的结论。 针对以上问题,在以前的教学中,可能往往让学生从具体的习题类型死记差值之比的实际意义。由于十字交叉法常用于: ①核素“丰度”与元素相对原子质量的计算; ②混合气体不同组分体积之比和混合气体平均相对分子质量的计算; ③不同浓度的同种溶液混合后质量分数与组分溶液质量之比的计算等类型的习题中。 因此可以简单记忆为前两种类型中,差值之比为物质的量之比,第三种类型差值之比为质量之比。这种记忆方法束缚了学生的思维,同时也限制了“十字交叉法”的使用范围。实质上“十字交叉法”的运用范围很广,绝不仅仅只能在以上三种类型的习题中才可运用。然而不同情况下,交叉后所得的差值之比的实际意义是什么?该怎样确定其实际意义?是我们应该探讨和明了的问题。要解决此问题,就要明了“十字交叉法”的数学原理,然后再从原理的角度去分析,便能确定差值之比在何时为组分的质量之比,何时为组分的物质的量之比。

浓度问题之十字交叉法

浓度问题 一个好玩的故事——熊喝豆浆 黑熊领着三个弟弟在森林里游玩了半天,感到又渴又累,正好路过了狐狸开的豆浆店。 只见店门口张贴着广告:“既甜又浓的豆浆每杯0.3元。”黑熊便招呼弟弟们歇脚,一起来喝豆浆。黑熊从狐狸手中接过一杯豆浆,给最小的弟弟喝掉 6 1,加 满水后给老三喝掉了 3 1,再加满水后,又给老二喝了一半,最后自己把剩下的一半喝完。 狐狸开始收钱了,他要求黑熊最小的弟弟付出0.3× 6 1=0.05(元);老三0.3 × 3 1=0.1(元); 老二与黑熊付的一样多,0.3× 2 1=0.15(元)。兄弟一共付了0.45元。 兄弟们很惊讶,不是说,一杯豆浆0.3元,为什么多付0.45-0.3=0.15元?肯定是黑熊再敲诈我们。 不服气的黑熊嚷起来:“多收我们坚决不干。” “不给,休想离开。” 现在,说说为什么会这样呢? 专题简析: 溶质:在溶剂中的物质。 溶剂:溶解溶质的液体或气体。 溶液:包含溶质溶剂的混合物。 在小升初应用题中有一类叫溶液配比问题,即浓度问题。我们知道,将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液=糖+水)二者质量的比值决定的。这个比值就叫糖水的含糖量或糖含量。类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比值叫酒精含量。因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即, 浓度=溶质质量 溶液质量 ×100%= 溶质质量 溶质质量+溶剂质量 ×100% 相关演化公式 溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量

十字交叉法原理

“十字交叉法”与“杠杆原理” (162650)内蒙古扎兰屯林业学校孙涛 摘要:化学计算是中学化学重要的一环,只有掌握正确的解决方法,才能得心应手,“十字交叉法”就是一种十分 有效、快捷的计算方法。 关键词:化学计算、十字交叉法 随着中学化学新教改,化学计算很多都可有“十字交叉法”简洁、迅速而准确地求解。理解“十字交叉法”的理论实质,不妨联想一下力学中的“杠杆原理”。 设有两个力f1与f2分别作用在杠杆的a、b两个端点,杠杆支点为c,将杠杆看作有向线段,各点坐标a>b>c. 如图所示 b .c a------ 其平衡条件可表述为:“作用在杠杆两端的两力矩相等,则杠杆平衡即f1(a-c) = f2(c-b) 或表述为:”若作用在杠杆两端的两个力与其力臂长成反比,则杠杆平衡。 亦即f1/f2 = (c-b)/(a-c) 导出“十字交叉法”为 a c-b c b a-c 由此可知,化学计算中的问题若能和“杠杆原理”联系起来,找出两个“力”,两个“力臂”:或找出杠杆上的一个“支点”,两个“端点”以及作用在“端点”的两个“力”,就可求解。 下面谨举几例说明: 1、关于相对原子质量(同位素相对原子质量)的计算 例:氯元素有两种同位素35Cl和37Cl。已知氯元素的原子量为35.5,则35Cl的天然丰度。 分析:本题中氯的两种同位素的原子量可看作杠杆两端的两 第 1 页,共5页

第 2 页,共 5页 个“力”,各自的天然丰度为其“力臂”,而相对原子质量35.5为其“支点”。 35 1.5 35.5 =1 3 36 0.5 可知35Cl 与37Cl 的物质的量之比(即天然丰度之比)为3:1. 所以35Cl 的天然丰度为3 11+×100% =75% 2、 相对分子质量的计算 例2,在标准状况下,11.2LCO 和CO 2混合气体质量为20.4g, 求混合气体中CO 和CO 2的体积比? 分析:混合气体CO 和CO 2的相对质量作两个“力”,各自的体积看作“力臂”,而混合气体的平均相对分子质量作为“支点”。 解:混合气体的平均相对分子质量为 混M =n m = 2 .114.20×22.4=40.8 CO: 28 3.2 40.8 =4 1 CO 2: 44 12.8 即4 12=CO CO V V 3、 关于体积分数的计算 例:在标准状况下,CH 4、CO 和C 2H 2混合气8.96L,完全燃烧生成26.4gCO 2, 则混合气中乙炔体积分数是多少? 解:①求混合气平均1mol 含C 原子数n 混合气=mol 4.04 .2296.8= 共生成CO 2=mol 6.044 4.26= 所以n 5.14 .06.0==

十字交叉法

某机关共有干部职工350人,其中55岁以上共有70人。现拟进行机构改革,总体规模压缩为180人,并规定55岁以上的人裁减比例为70%。请问55岁以下的人裁减比例约是多少?() A.51% B.43% C.40% D.34% 裁人后比例为50%— 55以下 280(4)50%-X 55以上70 (1)50%+20% 十字交叉 4 对应20% 1对应X 即5% 裁人后比例为50%—所以选43% 不是十字相乘应该为十字交叉法不过我研究的时候给他起的名字叫权重法自己起的名字,感觉这个更恰当 十字相乘法用来解决一些比例问题特别方便。但是,如果使用不对,就会犯错。 (一)原理介绍 通过一个例题来说明原理。 某班学生的平均成绩是80分,其中男生的平均成绩是75,女生的平均成绩是85。求该班男生和女生的比例。 方法一:搞笑(也是高效)的方法。男生一人,女生一人,总分160分,平均分80分。男生和女生的比例是1:1。 方法二:假设男生有A,女生有B。 (A*75+B85)/(A+B)=80 整理后A=B,因此男生和女生的比例是1:1。 方法三: 男生:75 5 80 女生:85 5 男生:女生=1:1。 一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设A有X,B有(1-X)。 AX+B(1-X)=C

X=(C-B)/(A-B) 1-X=(A-C)/A-B 因此:X:(1-X)=(C-B):(A-C) 上面的计算过程可以抽象为: A C-B C B A-C 这就是所谓的十字相乘法。 十字相乘法使用时要注意几点: 第一点:用来解决两者之间的比例关系问题。 第二点:得出的比例关系是基数的比例关系。 第三点:总均值放中央,对角线上,大数减小数,结果放对角线上。 1.(2006年江苏省考)某体育训练中心,教练员中男占90%,运动员中男占80%,在教练员和运动员中男占82%,教练员与运动员人数之比是 A.2:5 B.1:3 C.1:4 D.1:5 答案:C 分析: 男教练:90% 2% 82% 男运动员:80% 8% 男教练:男运动员=2%:8%=1:4 2.(2006年江苏省考)某公司职员25人,每季度共发放劳保费用15000元,已知每个男职必每季度发580元,每个女职员比每个男职员每季度多发50元,

十字交叉法运用原理

一、十字交叉法的原理 (这个有的前辈和大侠有比较详细的讲解,简单易懂,在这里就直接用前辈写的东西来说明了,但是为了符合我的一些习惯,还是做了一定的修改) 首先通过例题来说明原理。 某班学生的平均成绩是80分,其中男生的平均城市75分,女生的平均城市85分,求该班男生和女生的比例。 方法一:搞笑(也是高效)的方法。男生一人,女生一人,总分160分,平均分80分,男生和女生的比例是1:1。 月月讲解:这个就是咱常用的特殊值法吧,不过思路稍微特殊一点。 方法二:假设男生有X,女生有Y。有(X×75+Y×85)/(X+Y)=80,整理有X=Y,所以男生和女生的比例是1:1。 月月讲解:这个就是常用的列方程法 方法二:假设男生有X,女生有Y。 男生:X 75 85-80=5

80 女生:Y 85 80-75=5 男生:女生=X:Y=1:1。 月月讲解:这一步前辈说的不是很清楚,补充修正了一下,其实说白了,十字交叉的左侧是各部分的量,右侧是混合后的量。 总结一下, 一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设A有X,B有(1-X)。 AX+B(1-X)=C X=(C-B)/(A-B) 1-X=(A-C)/A-B 因此:X:(1-X)=(C-B):(A-C) 上面的计算过程可以抽象为: A C-B C B A-C 这就是所谓的十字相乘法。

月月讲解:这个是大侠的,不过我个人觉得,十字交叉法用溶液问题来讲解更加浅显易懂,怎么说呢,我们还是通过例题来讲解。 有两种溶度浓度的溶液A、B,其浓度为x、y,现将这些溶液混合到一起得到浓度为r的溶液,那么这两种溶液的浓度之比为多少? 假设A溶液的质量为X,B溶液的浓度为Y,则有: X*x+Y*y=(X+Y)*r 整理有X(x-r)=Y(r-y); 所以有X:Y=(r-y):(x-r) 上面的计算过程就抽象为: X x r-y r Y y x-r 这样就看着清楚多了吧,知道是哪个比哪个等于什么值了。 十字相乘法使用时要注意几点: 第一点:用来解决两者之间的比例关系问题。 第二点:得出的比例关系是基数的比例关系。 月月讲解:这个尤其需要注意,因为在资料分析中运用的时候,好多时候都会忘记得到的值是基期的,而感觉到十字交叉法应用错误,不过十字交叉法在资料分析中的用法,我们会在下面有更加详细的讲解。

国考行测:十字交叉法在各种题型中的应用

国考行测:十字交叉法在各种题型中的应用 “十字交叉”法做为数学运算中常用的一种解题思想,老师会在基础班型中向学生重点讲述。一般情况下,我们是在“溶液问题”中引入“十字交叉法”,我们简单把“十字交叉”法的原理重述一遍。 例:重量分别为A和B的溶液,浓度分别为a和b,混合后的浓度为r。 例:A个男生的平均分为a,B个女生的平均分为b,总体平均分为r。 上述两个例子,我们均可以用如下的关系表示:(此处假设a>b) 上述“十字交叉”法的操作过程很简单,但是碰到类似的题目,学生很难把握A到底放哪个量,因此就很难将复杂的计算转化成简单的“十字交叉”法来操作。如果学生能理解“十字交叉”法到底适合哪类题型,并且记住接下来讲的做题套路,就可以从“战略”层次提升“十字交叉”法的应用。 【例题1】(山西路警2010-12)现有含盐20%的盐水500g,要把它变成含盐15%的盐水,应加入5%的盐水多少克? A.200 B.250 C.350 D.500 【答案】B 【华图公务员[微博]考试研究中心解析】这是一道非常典型的溶液问题,溶液由两部分混合而成,我们可以用“十字交叉”法来操作,如下:

此题在溶液问题中是一道非常基础的题。其特点是:难度较低,考察溶液混合过程中各个量的变化,在国考中类似难度的题不太会出现,但确是我们掌握“十字交叉”法的典型例题。 【例题2】(河北选调生-2009-47)一只松鼠采松子,晴天每天采24个,雨天每天采16个,它一连几天共采168个松子,平均每天采21个,这几天当中晴天有几天? A.3 B.4 C.5 D.6 【答案】C 【华图公务员考试研究中心解析】本题是典型的一个整体由两个部分组成。 根据倍数特性,晴天的天数能被5整除。选C。 此题符合“十字交叉”法的特征,考生抓住A与a分母的关系,很容易将题目求出来。本解难度不大,在国考中出现类似题型的可能性还是很大的。类似的题目是考生得分的题。 【例题3】某地区按以下规定收取燃气费:如果用气量不超过60,按每立方米0.8元收费,如超过60,则超过部分按每立方米1.2元收费。某用户8月份交费平均每立方米0.88元,则8月份燃气费为多少? A.66元 B.56元 C.48元 D.61.6元 【答案】A

浓度问题(十字交叉法)

浓度问题(十字交叉法) 1,基本公式:溶液=溶质+溶剂 浓度=溶质/溶液 一杯盐水,其中有盐5克,有水45克,那么该盐水的浓度是多少? (2003国考)一种挥发性药水,原来有一整瓶,第二天挥发后变为原来的 2 1;第三天变为第二天的 3 2;第四天变为第三天的4 3,请问第几天时药水还剩下30 1瓶( ) A .5天 B .12天 C .30天 D .100天 (2005湖南)在10克盐与40克水的盐水中,取出40克盐水,其中盐与水分别为( )克 A .8,32 B .10,30 C .8,30 D .10,32 (2005上海)在20度时,100克水最多能溶解36克食盐。从中取出食盐水50克,取出的溶液的浓度是多少( ) A .36.0% B .18.0% C .26.5% D .72.0% 浓度70%的酒精溶液100克与浓度20%的酒精溶液400克混合后的酒精溶液浓度是多少( ) A .30% B .32% C .40% D .45% (2008北京)甲杯有浓度为17%的溶液400克,乙杯有浓度为23%的溶液600克,现在从甲,乙两杯中取出相同总量的溶液,把甲杯中取出的倒入乙杯中,把乙杯中取出的倒入甲杯中,使甲,乙两杯溶液的浓度相同,问现在两杯溶液的浓度是多少( ) A .20% B .20.6% C .21.2% D .21.4% (2009安徽)当含盐30%的60千克盐水蒸发为含盐40%的盐水时,盐水重量为多少千克?( ) A .45 B .50 C .55 D .60 (2007湖南)一个容器内有若干克盐水。往容器内加入一些水,溶液的浓度变为3%,再加入同样多水,溶液的浓度变为2%,问第三次再加入同样多水后,溶液的浓度变为( ) A .1.8% B .1.5% C .1% D .0.5% (2009国考)一种溶液,蒸发一定的水后,浓度为10%,再蒸发同样的水,浓度为12%,第三次蒸发同样多的水后,浓度变为多少( )

高中化学十字交叉法的应用

十字交叉法在化学计算中的应用 化学计算是高考每年必考的题目,而计算中的巧解巧算又是高考命题的热点,特别是在选择、填空题中体现尤为突出。那么如何来对付这类题型呢?这就要求我们教师在平时的教学中,经常给学生介绍一下这方面的知识;今天咱们就来讨论“十字交叉法”在化学计算中的应用,十字交叉法这个名词大家很熟悉,在许多的资料中也都有论述,但学生在实际应用中还存在许多问题,按十字交叉法求出的结果往往有出入。那么这是怎么回事呢?如何来解决这个问题呢?下面就我在教学中的做法和大家共同商讨一下。 一、 十字交叉法公式(大家很熟悉) 二、 十字交叉法适用范围 凡是能用二元一次方程组求解的题,均可用十字交叉法。 三、 防止滥用 防止滥用是十字交叉法教学的重点和难点,如何突破这个难点呢?我在教学 中是先给学生写出两句话: 1、用十字交叉法求出的比值该是什么比就是什么比,不是想是什么比就是上什么比。换句话说不是题中求什么比就是什么比。 2、每几份(始终不变的物理量)是多少(不断变化的物理量),用十字交叉法求出的比值是不变的物理量之比。 然后通过实例加以分析理解: 例1:若Na 2CO 3和NaHCO 3的混合物的平均摩尔质量为:M =100g ·mol -1 则用十字交叉法求出的比值该是什么比呢? 如果我们把摩尔质量拆开来理解的话,就是:其中的物质的量是始终不变的,即都是1 mol ,而质量是在不断变化者,分别是106 g 、84 g 和100 g ,所以按十字交叉法公式求出的比值应该是始终不变的物质的量之比,当然可以是以物质的量成正比例的物理量之比,如相同条件下气体的体积之比等。 练习1:已知空气的相对分子质量为28.8,则空气中N 2和O 2质量比为 , 体积比为 ,物质的量之比为 (忽略空气中的其他气体)。 X 2 X 1—X X X 1 X —X 2 ( ) 注:推断号,不是等号 摩尔质量 :106 g ·mol -1 84 g ·mol -1 100 g ·mol -1 物质的量: 1 mol 1 mol 1 mol (始终不变) 质量: 106 g 84 g 100 g (不断变化) { 物质 Na 2CO 3 NaHCO 3 混合物 [ 分析 (分析上述数量及其单位) 2 1 X X → X X X X --12 我常写成

十字交叉法快速解数学运算题讲课教案

2011国考冲刺:十字交叉法快速解数学运算题 一、十字交叉法简介 当数学运算题最终可以通过下式解出解出,我们就称这类问题为"加权平均问题"。 二、适用题型 十字交叉法最初在浓度问题上应用广泛,但在实际计算过程中,十字交叉法并没有将浓度问题有所简化,而是在以下几种题型中有更广泛的应用,解题速度也有明显提高。 1.数量分别为A与B的人口,分别增长a与b,总体增长率为r。 2.A个男生平均分为a,B个女生平均分为b,总体平均分为r。 3.农作物种植问题,A亩新品种的产量为a,B亩原来品种的产量为b,平均产量为r。 当然还有其他类似的问题,这类问题本质上都是两个不同浓度的东西混合后形成了一个平均浓度,这类问题都可以运用十字交叉法快速解题。 三、真题解析 【例1】某市现有70万人,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口() A.30万 B.31.2万 C.40万 D.41.6万

【例2】某班男生比女生人数多80%,一次考试后,全班平均成绩为75分,而女生的平均分比男生的平均分高20%,则此班女生的平均分是()。A.84分 B.85分 C.86分 D.87分 所以女生平均分为70×1.2=84,答案为A。 加权平均这种方法要经过一定的练习才能熟练掌握,因此华图教育希望大家利用最后的时间加紧练习,迅速提高自己的解题速度,在考场中发挥出最好的水平,祝所有考生马到成功。 【例1】浓度为70%的酒精溶液100克与浓度为20%的酒精溶液400克混合后得到的酒精溶液的浓度是多少? A.30% B.32% C.40% D.45% 【解析】这道题是典型的浓度混合问题,大部分考生在30秒的时间都可以解决。方法就是利用浓度公式求解:设混合后的浓度为x%,根据题意(不管怎么混合,溶质总量不变)则有100*70%+400*20%=(100+400)*x%解得x=30。然而在这里引用这道题,笔者是想想引出关于比例混合问题的一种解题方法——十字交叉法。大家先仔细看看下面的解题板书过程:

小学数学浓度问题

小升初专题:浓度问题 在百分数应用题中有一类叫溶液配比问题,即浓度问题。我们知道,将糖溶于水就得到了 糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。如果水的量不变,那么糖加得越多,糖水就越 甜,也就是说糖水甜的程度是由糖(溶质)与糖水(溶液二糖 +水)二者质量的比值决定的。这 个比值就叫糖水的含糖量或糖含量。类似地,酒精溶于水中,纯酒精与酒精溶液二者质量的比 值叫酒精含量。因而浓度就是溶质质量与溶液质量的比值,通常用百分数表示,即, 溶质质量10 溶质质量 溶液质量X 10% =溶质质量+溶剂质量 解答浓度问题,首先要弄清什么是浓度。在解答浓度问题时,根据题意列方程解答比较容易, 在列方程时,要注意寻找题目中数量问题的相等关系。 浓度问题变化多,有些题目难度较大,计算也较复杂。要根据题目的条件和问题逐一分析, 也可以分步解答。 浓度问题的内容与我们实际的生活联系很紧密,就知识点而言它包括小学所学 2个重点知 识:百分数,比例。 一、 浓度问题中的基本量 溶质:通常为盐水中的 盐”糖水中的 糖”酒精溶液中的 酒精”等 溶剂:一般为水,部分题目中也会出现煤油等 溶液:溶质和溶剂的混合液体。 浓度:溶质质量与溶液质量的比值。 二、 几个基本量之间的运算关系 1、溶液二溶质+溶剂 、解浓度问题的一般方法 1、 寻找溶液配比前后的不变量,依靠不变量建立等量关系列方程 2、 十字交叉法:(甲溶液浓度大于乙溶液浓度) 形象表达: 甲溶液质量旦 甲溶液与混合溶液的浓度差 形豕表达:乙溶液质量 B . A 混合溶液与乙溶液的浓度差 注:十字交叉法在浓度问题中的运用也称之为浓度三角,浓度三角与十字交叉法实质 上是相同的?浓度三角的表示方法如下: 3、列方程解应用题也是解决浓度问题的重要方法. 【例1】有含糖量为7%的糖水600克,要使其含糖量加大到10%,需要再加入多少克糖? 【思路导航】根据题意,在 7%的糖水中加糖就改变了原来糖水的浓度,糖的质量增加了,糖 水的质量也增加了,但水的质量并没有改变。因此,可以先根据原来糖水中的浓度求出水的质 量,再根据后来糖水中的浓度求出现在糖水的质量,用现在糖水的质量减去原来糖水的质量就 是增加的糖的质量。 x 100% 2、浓度= 溶质 溶液 100%= 溶质 溶质+溶液 100% 混合浓度z% z-y : x-z II 甲溶液质量:乙溶液质量

十字交叉法在平均数问题中的应用

十字交叉法在平均数问题中的应用 上一节内容我们学习了“十字交叉法”如何解决溶液混合的问题,本节内容我们学习下“十字交叉法”在平均数的相关题型中的运用。由于平均数的相关题型数量关系复杂,列方程做比较繁杂,十字交叉法能轻松解决这一问题。 下面我们通过例题来看一下十字交叉法在平均数相关题型中的应用。 【例1】某单位共有职工72人,年底考核平均分数为85分,根据考核分数,90分以上的职工评为优秀职工,已知优秀职工的平均分数为92分,其他职工的平均分数是80分,问优秀职工的人数是多少?( ) A.12 B.24 C.30 D.42 【解析】本题相当于是优秀职工的平均分与其他职工的平均分混合,我们利用“十字交叉法”,易知 所以优秀员工共有30人,选择C. 【例2】某工厂共有160名员工,该厂在7月的平均出勤率是85%,其中女员工的出勤率为90%,男员工的出勤率为70%,问该厂男员工共有多少人?( ) A.40 B.50 C.70 D.120 【解析】运用“十字交叉法”,易知 所以男员工共有40人,选择A。

【例3】某单位共有ABC三个部门,三部门人员平均年龄分别为38岁、24岁、42岁。A和B两部门人员平均年龄为30岁,B和C两部门人员平均年龄为34岁。该单位全体人员的平均年龄为多少岁?( ) A34 B36 C35 D37 解析:运用“十字交叉法”,易知 所以ABC三个部门的人数比为3:4:5,假设ABC三个部门的人数分别为3、4、5人,总平均=(3×38+4×24+5×42)÷(3+4+5)=35岁,选C。 以上就是我们的十字交叉法在平均数相关题型中的应用,做题中遇到类似这样的题目,解答起来就比直接列方程要省时省力一些。

浓度问题完整讲义

浓度问题完整讲义集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

第一讲浓度问题 (一)数量关系: 以盐水为例,盐溶于水得到盐水,其中盐叫溶质,水叫溶剂,,盐水叫溶液,盐占盐水的百分比就是盐水的浓度。 (1)浓度=溶质÷溶液;(2)溶剂=溶液-溶质; (3)溶液=溶质质量÷浓度;(4)溶质=溶液×浓度。 常见溶液:盐水、酒精溶液、糖水;其它:农药、硫酸溶液、果汁等。 (二)解决溶液配制的主要方法 1.抓不变量:(1)加水则盐不变,新盐水=盐的质量÷新盐水浓度; (2)加盐则水不变,新盐水=水的质量÷水占新盐水的百分比。 2.十字交叉法 浓度低的溶液+浓度高的溶液,混合形成新的溶液,新溶液浓度在两种溶液浓度中间。 3.方程法 预热题: 1.一杯盐水的浓度是30%,含盐60克,这杯盐水有多少克?含水多少克? 2.一种盐水含盐20%,这样的盐水150克中,盐有多少克?水有多少克? 3.往100克水中加入20糖,这种糖水的浓度是多少? 4.有浓度为20%的糖水30克,如何可以得到40%的糖水? 例题精讲 例1有8%的食盐水600克,要蒸发多少克水,才能得到15%的食盐水? 演练1现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需要加多少克糖?

例2有甲、乙两种酒精溶液,甲种溶液的浓度为95%,乙种溶液的浓度为80%,要想得到浓度为85%的酒精溶液270克,应从甲、乙两种酒精溶液中各取多少克? 演练2配制浓度为25%的糖水1000克,需用浓度为22%和27%的糖水各多少克? 例3一容器内盛有浓度为45%的硫酸,若再加入16千克的水,则浓度变为25%,这个容器内原来含有纯硫酸多少千克? 演练3一容器内有浓度15%的盐水,若再加入20千克的水,则盐水的浓度变为10%,问这个容器内原来含水多少千克? 例4两个杯中分别装有浓度为40%与20%的食盐水,倒在一起后混合盐水浓度为25%,若再加入200克35%的食盐水,则浓度变为30%,那么原有40%的食盐水有多少克? 演练4一容器内装有50升纯酒精,倒出5升后,用水加满,再倒出5升,再用水加满;然后再倒出5升,用水加满,这时容器内的酒精浓度为多少? 例5已知甲种酒精含纯酒精40%,乙种酒含酒精36%,丙种酒含酒精35%,现在将这三种酒混合在一起得到含纯酒精38.5%的酒11千克,乙种酒比丙种酒多3千克,问:甲种酒有多少千克? 演练5大容器内装有浓度为50%的酒精溶液400克。现在往里面分别倒入A、B两种溶液,将其配成浓度为25%的酒精溶液1000克。已知A、B两种溶液浓度之比是2:1,用量之比也是2:1,求A溶液的浓度。 2012大联盟附加题: 一个容器正好装满10升纯酒精,倒出3升后用水加满,再倒出4.5升后,再用水加满,这时容器中溶液的浓度是多少?(6分) 2011大联盟附加题:20分 实验室里有盐和水: (1)请你配只含盐率5%的盐水500克,你需要取盐和水各多少千克进行配制?

公务员考试数学运算秒杀技:十字交叉法

公务员考试数学运算秒杀技:十字交叉法 十字交叉法是数学运算及资料分析中经常用到的一种解题方法,熟练运用可以大大提高各位考生在考场上的解题速度。在平时的复习过程中应作为一个专题加以强化练习,以期达到行测考场上的“秒杀”。 十字交叉法最先是从溶液混合问题衍生而来的。若有两种质量分别为A与B的溶液,其浓度分别为a与b,混合后浓度为r,则由溶质质量不变可列出下式Aa+Bb=(A+B)r,对上式进行变形可得A/B=r-b/a-r,在解题过程中一般将此式转换成如下形式: 注意在交叉相减时始终是大的值减去小的值,以避免发生错误。 十字交叉法不仅仅可用于溶液混合问题,也可以应用于两部分混合增长率问题、平均分数、平均年龄等问题。只要能符合Aa+Bb=(A+B)r 这个式子的问题均可应用十字交叉法,交叉相减后的比值为对应原式中的A和B的比值。 例1 甲容器中有浓度为4%的盐水150克,乙容器中有某种浓度的盐水若干,从乙中取出450克盐水,放入甲中混合成浓度为8.2%的盐水。问乙容器中盐水的浓度是多少? A.9.6% B.9.8% C.9.9% D.10% 【解析】A。 【例2】某市现有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口( )。 A.30万 B.31.2万 C.40万 D.41.6万 【解析】A。

【例3】(2011国考-76)某单位共有A.B.C.三个部门,三部门人员平均年龄分别为38岁,24岁,42岁,A和B两部门人员平均年龄为30岁,B和C两部门人员平均年龄为34岁,该单位全体人员的平均年龄为多少岁? A.34 B.36 C.35 D.37 【解析】C。 除了在数学运算中可以用到十字交叉法,在一些资料分析的题目中也可以运用十字交叉法,例如: 【例4】(2011年917联考)2010年1~6月,全国电信业务收入总量累计完成14860.7亿元,比上年同期增长21.4%;电信主营业务收入累计完成4345.5亿元,比上年同期增长5.9%。其中,移动通信收入累计完成2979亿元,比上年同期增长11.2%,比重提升到68.55%,增加了3.24%,固定通信收入累计完成1366.5亿元,比重下降到31.45%. 119. 2010年1~6月,我国固定通信收入比上年同期减少约: A.3% B.11% C.4% D.31% 【解析】C。电信主营业务由移动通信和固定通信两部分组成,2009年1~6月移动通信的收入乘以其增长率加上2009年1~6月固定通信的收入乘以其增长率等于总的电信主营业务收入的增长量,符合Aa+Bb=(A+B)r,故可以运用十字交叉法。2009年1~6月移动通信收入的比重为68.55%-3.24%=65.31%,固定通信收入的比重为31.45%+3.24%=34.69%。

十字交叉法在化学中的应用.

十字交叉法的原理及其在化学计算中的应用 十字交叉法又称对角线法,也叫混合规则.作为一种简化的解题方法,是实际计算方程式图解形式,应用于二元混合体系具有平均值的计算问题,它具有简化思路、简便运算、计算速度快等显著优点.近年来,十字交叉法在中学化学计算中广泛使用,通过十字交叉得到差值的比值的含义如何确定,如果没有真正理解十字交叉法含义,在使用该方法时将没有真正达到简化思路、快速准确求解的目的,从而限制了该方法的推广和应用.“十字交叉法”是通常中学化学计算必需掌握的一种计算方法,因为用此法解题实用性强、速度快.学生若能掌握此方法解题,将会起到事半功倍的效果.以下是笔者几年来对“十字交叉法”理解及体会. 1 十字交叉法的原理:A×a%+B×b%=(A+B×c% 整理变形得: A/B=(c-b/(a-c ① 如果我们以100 g溶液所含的溶质为基准 上式表示溶液混合时它们的质量比与有关质量分数比的关系. 可得如下十字交叉形式 a c-b c ② b a-c 对比①,②两式不难看出:十字交叉关系中(c-b/(a-c为组分A和组分B混合时的质量比.推广到二组分混合体系中,当以一定质量的混合体系为基准所得十字交叉关系,其比值为质量比(例如,质量分数是以质量为基准;若有c-b比a-c的化学意义由平均值c

决定,则比值就表示组分A中c-b和组分B中a-c所表示的量的比值.如c为质量或质量分数,则(c-b/(a-c表示组分A和组分B溶液的质量之比.若c为密度,则(c-b/(a-c 就表示组分A和组分B的溶液体积之比.若c为摩尔质量,则(c-b/(a-c 就表示组分A 和组分B的物质的量比;此时可用十字交叉法求混合物中各组分的含量. 2 十字交叉法的应用例析: 2.1 用于混合物中质量比的计算 例1 将铝铁合金18.5克溶于足量的盐酸中产生标准状况下的氢气11.2升,求合金中铝铁的质量之比是多少? 解:在标准状况下,求出氢气的质量M=1g,以混合物总质量18.5g作为基准物再根据镁铝与盐酸的关系列出十字交叉式如下: Al 37 / 18 19/56 1 Fe 37/56 19/18 求得铝与铁质量的比是9/28 例2 镁和铝的混合物10g,与足量的稀硫酸充分反应,生成1.0g氢气,混合物中镁和铝的质量比为多少? 解:在标准状况下,以混合物总质量10g作为基准物再根据镁铝与盐酸的关交叉式如下: Mg 5/6 1/9

相关文档
最新文档