(完整版)七年级尖子班讲义第1讲平行线四大模型

(完整版)七年级尖子班讲义第1讲平行线四大模型
(完整版)七年级尖子班讲义第1讲平行线四大模型

平行线四大模型

平行线的判定与性质

l、平行线的判定

根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.

判定方法l:

两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.

简称:同位角相等,两直线平行.

判定方法2:

两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.

简称:内错角相等,两直线平行,

判定方法3:

两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.

简称:同旁内角互补,两直线平行,

如上图:

若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);

若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);

若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).

另有平行公理推论也能证明两直线平行:

平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.

2、平行线的性质

利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同

旁内角也有相应的数量关系,这就是平行线的性质.

性质1:

两条平行线被第三条直线所截,同位角相等.

简称:两直线平行,同位角相等

性质2:

两条平行线被第三条直线所截,内错角相等.

简称:两直线平行,内错角相等

性质3:

两条平行线被第三条直线所截,同旁内角互补.

简称:两直线平行,同旁内角互补

本讲进阶平行线四大模型

模型一“铅笔”模型

点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;

结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.

模型二“猪蹄”模型(M模型)

点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;

结论2:若∠P=∠AEP+∠CFP,则AB∥CD.

模型三“臭脚”模型

点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若∥,则∠=∠-∠或∠=∠-∠;

结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.

模型四“骨折”模型

点P在EF左侧,在AB、CD外部“骨折”模型结论1:若∥,则∠=∠-∠或∠=∠-∠;

结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.

(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°

.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.

(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.

(4)已知∠P= ∠CFP -∠AEP ,求证AE //CF .

例1

(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .

(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.

(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .

(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .

(1)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为.

(2) (七一中学2015-2016七下3月月考)

如图,AB∥CD,∠B=30°,∠O=∠C.则∠C= .

例2

如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.

如图,已知AB ∥DE ,∠FBC =

n 1∠ABF ,∠FDC =n

1

∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;

(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).

例3

如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .

如图,己知AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE ,求∠C 、∠F 的关系.

例4

如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.

(武昌七校 2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().

A. 120°

B. 135°

C. 145°

D. 150°

模块二平行线四大模型构造

例5

如图,直线AB∥CD,∠EFA= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则

∠GHM= .

如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .

例6

已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.

已知AB∥EF,求∠l-∠2+∠3+∠4的度数.

(1)如图(l),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的

关系.

(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.

(3)如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.

如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.

挑战压轴题

(粮道街2015—2016 七下期中)

如图1,直线AB ∥CD ,P 是截线MN 上的一点,MN 与CD 、AB 分别交于E 、F . (1) 若∠EFB =55°,∠EDP = 30°,求∠MPD 的度数;

(2) 当点P 在线段EF 上运动时,∠CPD 与∠ABP 的平分线交于Q ,问:DPB

Q

∠∠是否为定值?若是定值,请求出定值;若不是,说明其范围;

(3) 当点P 在线段EF 的延长线上运动时,∠CDP 与∠ABP 的平分线交于Q ,问DPB

Q

∠∠的值足否定值,请在图2中将图形补充完整并说明理由.

第一讲 平行线四大模型(课后作业)

1.如图,AB // CD // EF , EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ).

A . 180°

B . 270°

C . 360°

D . 450° 2.(武昌七校2015-2016七下期中) 若AB ∥CD ,∠CDF =

32∠CDE ,∠ABF =3

2

∠ABE ,则∠E :∠F =( ).

A .2:1

B .3:1

C .4:3

D .3:2

3.如图3,己知AE ∥BD ,∠1=130°,∠2=30°,则∠C = .

4.如图,已知直线AB ∥CD ,∠C =115°,∠A = 25°,则∠E = .

5.如阁所示,AB ∥CD ,∠l =l l 0°,∠2=120°,则∠α= .

6.如图所示,AB ∥DF ,∠D =116°,∠DCB =93°,则∠B = .

7.如图,将三角尺的直角顶点放在直线a上,a∥b.∠1=50°,∠2 =60°,则∠3的度数为 .

8.如图,AB∥CD,EP⊥FP, 已知∠1=30°,∠2=20°.则∠F的度数为.

9.如图,若AB∥CD,∠BEF=70°,求∠B+∠F+∠C的度数.

10.已知,直线AB∥CD.

(1)如图l,∠A、∠C、∠AEC之间有什么关系?请说明理由;

(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明理由;

(3)如图3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是 .

三角形计算四大模型

D C B A G F E D C B A “铅笔头模型” 例(1)如图①,AB ∥CD,则∠A+∠C= 。 如图②,AB ∥CD,则∠A+∠E +∠C= 。 如图③,A B∥CD,则∠A +∠E +∠F +∠C= 。 如图④,AB ∥C D,则∠A+∠E+∠F+∠G+∠C = 。 (2)如图⑤,AB ∥CD,则∠A +∠E+∠F+…+∠C= 。 (3)利用上述结论解决问题:如图已知AB ∥CD,∠B AE 和∠DCE 的平分线相交于F ,∠E=140°,求∠AFC 的度数。 图① 图② 图③ 图 ④ “锯齿模型” 例3.如图,AB ∥CD ,猜想∠BED 与∠B 、∠D 的大小关系,并说明理由。 E D C B A 如图,已知AB ∥E F,BC ⊥CD于点C,若∠A BC =30°,∠D EF =45°,则∠C DE 等于( ) E D C B A F E D C B A n 个点 F E B

如图,直线AB 平行CD, ∠EFA=30,∠F GH =90,∠H MN=30,∠CN P=50,则∠GH M的大小是多少( ) 2.如图,已知AB∥CD ,∠EAF = 41∠E AB,∠ECF =4 1 ∠ECD ,试∠AEC 与∠AF C之间的关系式。 “8字型” 如图,俩直线AB ,CD 平行,则,∠1+∠2+∠3+∠4+∠5+∠6= “飞镖模型” 例1.如图 2,40,15,35,B C A B C D ∠=?∠=?∠=?∠=则_______ __; F E D C B A C A B D

变式训练: 1.如图,已知?=∠27A ,?=∠96CBE ,?=∠30C . 求:ADE ∠的大小. 2.如图,五角星AB CDE ,求E D C B A ∠+∠+∠+∠+∠的度数. 变式训练: 1.探索三角形的内角和外角角平分线(平分三角形外角的射线角外角角平分线,如图(2),AEC ∠是ABC ?的外角,C O平分ACE ∠,那么射线CO 就是外角平分线) (1)如图(1),在ABC ?中,两内角角平分线BO,C O相交于点O,若 50=∠A ,则=∠BOC ___________;此时A ∠与BOC ∠有怎样的关系? (2)如图(2),在ABC ?中,一内角平分线BO 与一外角平分线CO 相交于点O , 50=∠A ,则=∠BOC ___________;此时A ∠与BOC ∠有怎样的关系? (3)如图(3),在ABC ?中,两外角EBC ∠、FCB ∠的平分线,B O,CO 相交于点O,若 50=∠A ,则=∠BOC ___________;此时A ∠与BOC ∠有怎样的关系?

小高奥数几何-三角形五大模型及例题解析 (1)

三角形五大模型 【专题知识点概述】 本讲复习以前所学过的有关平面几何方面的知识,旨在提高学生对该部分知识的综合运用能力。 重点模型重温 一、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b = ③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、等分点结论(“鸟头定理”) 如图,三角形AED 占三角形ABC 面积的 23×14=16 三、任意四边形中的比例关系 (“蝴蝶定理”) ① S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ② ②AO ︰OC=(S 1+S 2)︰(S 4+S 3) D C B A b

梯形中比例关系(“梯形蝴蝶定理”) ① S 1︰S 3=a 2︰b 2 ②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为(a+b )2 模型四:相似三角形性质 如何判断相似 (1)相似的基本概念: 两个三角形对应边城比例,对应角相等。 (2)判断相似的方法: ①两个三角形若有两个角对应相等则这两个三角形相似; ②两个三角形若有两条边对应成比例,且这两组对应边所夹的角相等则两个 三角形相似。 h h H c b a C B A a c b H C B A ① a b c h A B C H === ; ② S 1︰S 2=a 2︰A 2 模型五:燕尾定理

平行线有关模型汇总

直线平行的条件和性质 1. 猪蹄模型 已知:如图,AB ∥CD ,求证:∠B+∠D=∠BED 。 2. 铅笔模型 如图,已知: CD AB ∥,求证: ∠+B ∠D +∠=BED 360°. (至少用三种方法) 3. 其他 4. 角平分线 如图1,在ABC ?中,BE 平分,ABC CE ∠平分ACB ∠.若80A ∠=?,则BEC ∠= ;若A n ∠=?,求BEC ∠用含n 的代数式表示)

如图3,在ABC ?中,BO 平分外角,CBD CO ∠平分外角BCE ∠.若A n ∠=?,求BOC ∠. 如图5,在ABC ?中,BE 平分ABC ∠, CE 平分外角ACM ∠.若A n ∠=?,求BEC ∠. 5. “8”字形 如图b 所示的“ ”字型,其也存在着一个等式:1+2=3+4∠∠∠∠,请证明; 6. “A ”字型 如图a 所示的“”字型,我们可称其为“A 字型”或“塔形”,其存在一个等式: 1+2=3+4∠∠∠∠,请证明;

7. 燕尾形 如图c所示,其也存在着如下等式:D A B C ∠=∠+∠+∠,请证明 一.考点:平行线的性质,角度的计算与证明. 二.重难点:常见的几种两条直线平行的结论 1.两条平行线被第三条直线所截,一组同位角的角平分线平行; 2.两条平行线被第三条直线所截,一组内错角的角平分线平行; 3.两条平行线被第三条直线所截,一组同旁内角的角平分线垂直. 三.易错点: 1.性质是由图形的“位置关系”决定“数量关系”; 2.两条平行线之间的距离其实可看成点到直线的距离. 题型一:猪蹄模型 例1. 如图,直线a∥b,直角三角形ABC的顶点B在直线a上,∠C=90°,∠β=55°,则∠α的度数为() A. 15° B. 25° C. 35° D. 55° 题型二:铅笔模型 ∠+∠+∠+∠=() 例2. 如图,AB∥CD,A E F C

五年级下册数学竞赛试题- 14讲 图形-五大模型 全国通用(含答案)

五年下册奥数试题-图形-五大模型(一) 姓名 得分 【名师解析】 一、等积变换模型 1、等底等高的两个三角形面积相等。 2、两个三角形高相等,面积比等于它们的底之比。 3、两个三角形底相等,面积比等于它的的高之比。 二、共角定理模型(共角定理) 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。 共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。如: 依次称之为A 字型鸟头、X 字型鸟头、歪脖型鸟头、直脖型鸟头。 如图在ABC △中,,D E 分别是,AB AC 上的点如图(或D 、E 分别在BA 、CA 延长线上。 则有:ADE ABC S AD AE AD AE S AB AC AB AC ?=?=?△△ 三、蝴蝶定理模型(风筝模型) (说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。) 四、相似三角形模型(沙漏模型) 五、燕尾定理模型 【例题精讲】 例1、三角形ABC 中,BD 是DC 的2倍,AE 是EC 的3倍。三角形DEC 的面积为3平方厘米,求三角形ABC 的面积是多少平方厘米? E A D C B 练习、在下图中,已知CF=2DF ,DE=EA ,△BCF 的面积为2,四边形BFDE 的面积为4,求△ABE 的面积。

F E D C B A 例2、(1)在下图中,2AB BD AC CE ==,,如果29ADE S cm D =,求ABC S D ? E D C B A 练习、如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =, :3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积. D E A B C 例3、正方形ABCD 边长为6 厘米,BC CF AC AE 3131 == ,.三角形DEF 的面积为 多少平方厘米? A B C D E F 练习、如图,1ABC S =△,5BC BD =,4AC EC =,DG GS SE ==,AF FG =.求F G S S .

平行线知识点+四大模型

平行线四大模型 平行线的判定与性质 l 、平行线的判定根据平行线的定义,如果平面的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行. 判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行. 判定方法2:两条直线被第三条直线所截,如果错角相等,那么这两条直线平行.简称:错角相等,两直线平行, 判定方法3:两条直线被第三条直线所截,如果同旁角互补,那么这两条直线平行.简称:同旁角互补,两直线平行, 如上图: 若已知/ 1 = / 2,贝U AB// CD (同位角相等,两直线平行); 若已知/仁/3,贝U AB / CD (错角相等,两直线平行); 若已知/ 1+ / 4= 180。,则AB // CD (同旁角互补,两直线平行). 另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 2、平行线的性质 利用同位角相等,或者错角相等,或者同旁角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、错角、同旁角也有相应的数量关系,这就是平行线的性质. 性质1 : 两条平行线被第三条直线所截,同位角相等. 简称:两直线平行,同位角相等 性质2:两条平行线被第三条直线所截,错角相等. 简称:两直线平行,错角相等 性质3: 两条平行线被第三条直线所截,同旁角互补. 简称:两直线平行,同旁角互补 本讲进阶平行线四大模型

三角形四大模型

三角形的四大模型 一、三角形的重要概念和性质 1、三角形的内角和定理:三角形的内角和等于180° 2、三角形的外角和定理:三角形的一个外角等于和它不相邻的两个内角的和 3、三角形角平分线(角分线)中线(分面积等)高(直角三角形两锐角互余) 二、八字模型: 证明结论:∠A+∠B=∠C+∠D 三、飞镖模型: 证明结论:1.∠BOC=∠A+∠B+∠C 四、角分线模型: 如图,BD、CD分别是∠ABC和∠ACB的角平分线,BD、CD相交于点D, 之间的数量关系,并证明你的结论. 试探索∠A与∠D

n 如图,△ABC 两个外角(∠CAD 、∠ACE )的平分线相交于点P .探索∠P 与∠B 有怎样的数量关系,并证明你的结论. 题型一、三角形性质等应用 1.如图,小亮从A 点出发前进10m ,向右转15°,再前进10m ,又向右转15°,这样一直走下去,他第一次回到出发点A 时,一共走了米数是( )A .120 B .150 C .240 D .360 2.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC 方向平移得到△DEF . 如果AB=8cm ,BE=4cm ,DH=3cm ,则图中阴影部分面积为 cm 2 . 3.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点, 且S △ABC =4cm 2,则S 阴影= cm 2. 4. A 、B 、C 是线段A 1B ,B 1C ,C 1A 的中点,S △ABC 的面积是1,则S △A 1B 1C 1的面积 . 5.一个四边形截去一个角后,剩下的部分可能是什么图形?画出所有可能的图形,并分别 说出内角和和外角和变化情况. 6.如图,直线AC ∥BD ,连接AB ,直线AC ,BD 及线段AB 把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P 落在某个部分时,连接PA ,PB ,构成∠PAC ,∠APB ,∠PBD 三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角) (1)当动点P 落在第①部分时,求证:∠APB=∠PAC+∠PBD ; (2)当动点P 落在第②部分时,∠APB=∠PAC+∠PBD 是否成立?(直接回答)(3)当动点P 在第③部分时,全面探究∠PAC ,∠APB ,∠PBD 之间的关系,并写出

小学思维数学讲义:平面五大模型之三角形等高模型与鸟头模型(二)-带详解

三角形等高模型与鸟头模型(二) 板块一 三角形等高模型 我们已经知道三角形面积的计算公式:三角形面积=底?高2÷ 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生 变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1 3 ,则三角形面积与原来的一 样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b = s 2s 1b a D C B A ③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 板块二 鸟头模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =??△△ E D C B A D E C B A 图⑴ 图⑵ 【例 1】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平 方厘米,求ABC △的面积. 例题精讲

专题四 平行线模型归纳

专题四平行线模型归纳基本模型归纳: 基本模型的运用: 基础过关: 1.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸 片的一边上,求∠1+∠2的度数。

2. 如图,直线a//b ,求∠A 的度数。 3. 如图,已知AB//CD,∠1=100°,∠2=120°,求∠3的度数。 4. 如图,已知AB//CD,∠ABC=80°,∠CDE=140°,求∠BCD 的度数。 5. 如图,已知l//m ,∠1=115°,∠2=95°,求∠3的度数。 6. 如图,已知直线AB//CD ,∠C=115°,∠A=25°,求∠E 的度数。 7. 如图,已知FC//AB//DE ,∠1:∠D:∠B=2:3:4,求∠1,∠D ,∠B 的度数。 E A D B

8. 如图,已知∠BFM=∠1+∠2,求证:AB//CD 。 能力提升 1.已知AB//CD,∠AEC=90°。 (1)如图1,当CE 平分∠ACD 时,求证:AE 平分∠BAC (2)如图2,移动直角顶点E ,使∠MCE=∠ECD,求证:2∠BAE=∠MCG G A B A 2.如图,已知CD//EF ,∠ 1+∠2=∠ABC ,求证:AB//GF 。 F A 3.如图已知AB//CD ,∠ABE 和∠CDE 的平分线相交于F ,∠E=140°,求∠BFD 的度数。 E D C E B

4.如图,直线AB//CD,∠1=30°,∠2=90°,∠3=30°,∠4=50°求∠5的度数。 D C B A 5.如图,已知 AD//CE ,∠BCF=∠BCG ,CF 与∠BAH 的平分线交于点F ,若∠F 的余角等于2∠B 的补角,求∠BAH 的度数。 D C E G 6.如图,直线AC ∥BD ,连接AB ,直线AC 、BD 及线段AB 把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P 落在某个部分时,连接PA 、PB ,构成∠PAC 、∠APB 、∠PBD 三个角. (提示:有公共端点的两条重合的射线所组成的角是0°) (1)当动点P 落在第①部分时,有∠ APB=∠PAC+∠PBD ,请说明理由; (2)当动点P 落在第②部分时,∠APB=∠PAC+∠PBD 是否成立?若不成立,试写出∠PAC 、∠APB 、∠PBD 三个角的等量关系(无需说明理由); (3)当动点P 在第③④部分时,探究∠PAC 、∠APB 、∠PBD 之间的关系,写出你发现的结论并加以说明.

七年级三角形四大模型

2016年01月07日liwei的初中数学组卷 一.选择题(共5小题) 1.(2015春?扬中市校级期末)如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O 点逆时针旋转α°(0°<α<180° ) (1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则 ∠AOC=; (2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值; (3)若90°<α<180°,问题(2)中的结论还成立吗?说明理由;(4)将△AOB绕点O逆时针旋转α度(0°<α<180°),问当α为多少度时,两个三角形至少有一组边所在直线垂直?(请直接写出所有答案). 2.(2014?赤峰)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.

(1)探究猜想: ①若∠A=30°,∠D=40°,则∠AED等于多少度? ②若∠A=20°,∠D=60°,则∠AED等于多少度? ③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用: 如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明). 3.(2013秋?微山县期中)如图,若∠DBC=∠D,BD平分∠ABC,∠ABC=50°,则∠BCD的大小为() A.50°B.100° C.130°D.150°

4.(2013春?连云区校级月考)如图,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,这样一直走下去,他第一次回到出发点A时,一共走了米数是() A.120 B.150 C.240 D.360 5.如图,在△ABC中,∠A=42°,∠ABC和∠ACB的三等分线分别交于点D,E,则∠BDC的度数是() A.67°B.84°C.88°D.110° 二.填空题(共3小题) 6.(2007?遵义)如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为cm2.

几何五大模型汇总

小学平面几何五大模型 一、 共角定理 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E分别是, AB AC上的点如图⑴(或D在BA的延长线上,E在AC上),则:():() S S AB AC AD AE =?? △△ 证明:由三角形面积公式S=1/2*a*b*sinC可推导出 若△ABC和△ADE中, ∠BAC=∠DAE 或∠BAC+∠DAE=180°, 则 ADE ABC S S ? ? = AE AD AC AB ? ? 二、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如下图 12 :: S S a b = ③夹在一组平行线之间的等积变形,如右图 ACD BCD S S= △△ ; 反之,如果 ACD BCD S S = △△ ,则可知直线AB平行于CD. ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. b a S2 S1 D C B A

三、蝶形定理 1、任意四边形中的比例关系(“蝶形定理”): ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 速记:上×下=左×右 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面 可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 2、梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +. 四、相似模型 (一)金字塔模型 (二) 沙漏模型 G F E A B C D A B C D E F G ①AD AE DE AF AB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:. 相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; A B C D O b a S 3 S 2 S 1S 4 S 4 S 3 S 2 S 1O D C B A

最新五大模型——三角形等积变形、共角模型教学文案

小升初几何重点考查内容 (★★★) 已知三角形DEF的面积为18,AD∶BD=2∶3,AE∶CE=1∶2,BF∶CF=3∶2,则三角形ABC的面积为?

(★★★) 如图,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。 (★★★★) 如图将四边形ABCD四条边AB、CB、CD、AD分别延长两倍至点E、F、G、H,若四边形ABCD的面积为5cm2,则四边形EFGH的面积是多少? (★★★) 图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍,EF的长是BF长的3倍。那么三角形AEF的面积是多少平方厘米 (★★★★) 如图,大长方形由面积是12平方厘米、24平方厘米、36平方厘米、48平方厘米的四个小长方形组合而成。求阴影部分的面积。

(★★★★★) (2009年“学而思杯”六年级) 如图BC=45,AC=21,△ABC被分成9个面积相等的小三角形,那么DI+FK=_____。 在线测试题 温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。 1.★★★★设 111 ,,, 345 AD AB BE BC FC AC ===如果三角形DEF的面积为19平方厘米, 那么三角形ABC的面积是多少平方厘米? A.46.7 B.45.3 C.45.6 D.46.5 F E D C B A

2.★★★如下图,将三角形ABC 的BA 边延长1倍到D ,CB 的边延长2倍到E ,AC 边延长1倍到F 。如果三角形ABC 的面积等于1,那么三角形DEF 的面积是多少? A .10 B .8 C .9 D .11 E F D C B A 3.★★★★★如图,把四边形ABCD 的各边都延长3倍,得到一个新四边形EFGH ,如果ABCD 的面积是6,则EFGH 的面积是( )? A .130 B .145 C .160 D .150 4.★★★★如图, D 是BC 的中点,AD 的长是AE 长的3倍,EF 的长是BF 长的3倍.三角形AEF 的面积是18平方厘米,三角形ABC 的面积是( )平方厘米? A .144 B .168 C .72 D .100 5.★★图中的E 、F 、G 分别是正方形ABCD 三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是( ) A .50 B .48 C .56 D .45 E G C B 6.★★★如图,1ABC S =△,5BC BD =,4AC EC =,DG GS SE ==,AF FG =。三角形FGS 的面积是( )。 A .413 B .25 C .23 D . 1 10 S G F E D C B A

小学奥数-几何五大模型(等高模型)

模型一 三角形等高模型 已经知道三角形面积的计算公式: 三角形面积=底?高2÷ 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时 发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1 3 ,则三角形面积与原来 的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如图 12::S S a b = b a S 2S 1 D C B A ③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比; 两个平行四边形底相等,面积比等于它们的高之比. 三角形等高模型与鸟头模型

【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶ 6个面积相等的三角形。 【解析】 ⑴ 如下图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点,答案不唯一: C E D B A F C D B A G D B A ⑵ 如下图,答案不唯一,以下仅供参考: ⑸ ⑷⑶⑵⑴ ⑶如下图,答案不唯一,以下仅供参考: 【例 2】 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上。 ⑴ 求三角形ABC 的面积是三角形ABD 面积的多少倍? ⑵ 求三角形ABD 的面积是三角形ADC 面积的多少倍? 【解析】 因为三角形ABD 、三角形ABC 和三角形ADC 在分别以BD 、BC 和DC 为底时,它们的高都是从A 点向BC 边上所作的垂线,也就是说三个三角形的高相等。 于是:三角形ABD 的面积12=?高26÷=?高 三角形ABC 的面积124=+?()高28÷=?高 三角形ADC 的面积4=?高22÷=?高 所以,三角形ABC 的面积是三角形ABD 面积的 4 3 倍; 三角形ABD 的面积是三角形ADC 面积的3倍。 【例 3】 如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面 积是 平方厘米。 【解析】 图中阴影部分的面积等于长方形ABCD 面积的一半,即4326?÷=(平方厘米)。 【巩固】(2009年四中小升初入学测试题)如图所示,平行四边形的面积是50平方厘米,则阴影部分的面积 是 平方厘米。 C D B A

苏版七年级平行线和全等三角形模型(拓展提优)

平面图形(二)&全等三角形模型汇编 平行线四大模型: 结论1 结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD. 结论1 结论2:若∠P=∠AEP+∠CFP,则AB∥CD. 结论1:若∥,则∠=∠-∠或∠=∠-∠; 结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD. 结论1 结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD. 巩固练习平行线四大模型证明 (1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360° . (2)已知∠P=∠AEP+∠CFP,求证AE∥CF. (3)已知AE∥CF,求证∠P=∠AEP-∠CFP. (4)已知∠P= ∠CFP -∠AEP ,求证AE //CF . 模块一平行线四大模型应用 例1 (1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .

(2)如图,AB ∥CD ,且∠A =25°,∠C =45°,则∠E 的度数是 . (3)如图,已知AB ∥DE ,∠ABC =80°,∠CDE =140°,则∠BCD = . (4) 如图,射线AC ∥BD ,∠A = 70°,∠B = 40°,则∠P = . 练如图所示,AB ∥CD ,∠E =37°,∠C = 20°,则∠EAB 的度数为 . (七一中学2015-2016七下3月月考) 如图,AB ∥CD ,∠B =30°,∠O =∠C .则∠C = . 例2如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系. 练如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n 1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系; (3)直接写出∠C 、∠F 的关系 (用含n 的等式表示). 例3 如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) . 练 如图,己知AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE ,求∠C 、∠F 的关系. 例4如图,∠3==∠1+∠2,求证:∠A +∠B +∠C +∠D = 180° 练(武昌七校 2015-2016 七下期中)如图,AB ⊥BC ,AE 平分∠BAD 交BC 于E ,AE ⊥DE ,∠l +∠2= 90°,M 、N 分别是BA 、 CD 的延长线上的点,∠EAM 和∠EDN 的平分线相交于点 F 则∠F 的度数为( ). A . 120° B . 135° C . 145° D . 150° 模块二 平行线四大模型构造

小学奥数-几何五大模型(蝴蝶模型)知识讲解

小学奥数-几何五大模型(蝴蝶模型)

模型三 蝴蝶模型(任意四边形模型) 任意四边形中的比例关系(“蝴蝶定理”): S 4 S 3 S 2 S 1O D C B A ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四 个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米? O D C B A 【分析】 根据蝴蝶定理求得312 1.5AOD S =?÷=△平方千米,公园四边形ABCD 的面积是 123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC =? 任意四边形、梯形与相似模 型

B 【解析】 ⑴根据蝴蝶定理,123BGC S ?=?V ,那么6BGC S =V ; ⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???) 【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。如果三角形ABD 的面积等于三角 形BCD 的面积的1 3 ,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。 A B C D O H G A B C D O 【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方 法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件:1:3ABD BCD S S =V V ,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:∵::1:3ABD BDC AO OC S S ??==, ∴236OC =?=, ∴:6:32:1OC OD ==. 解法二:作AH BD ⊥于H ,CG BD ⊥于G . ∵1 3 ABD BCD S S ??=, ∴13 AH CG =, ∴13 AOD DOC S S ??=, ∴13 AO CO =, ∴236OC =?=, ∴:6:32:1OC OD ==. 【例 3】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积 依次是2、4、4和6。求:⑴求OCF △的面积;⑵求GCE △的面积。

奥数几何三角形五大模型带解析

三角形五大模型 【专题知识点概述】 本讲复习以前所学过的有关平面几何方面的知识,旨在提高学生对该部分知识的综合运用能力。 重点模型重温 一、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b = ③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线 平行于CD . ④等底等高的两个平行四边形面积相等( 长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、等分点结论(“鸟头定理”) D C B A b a s 2 s 1

如图,三角形AED 占三角形ABC 面积的23×14=1 6 三、任意四边形中的比例关系 (“蝴蝶定理”) ① S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ② ②AO ︰OC=(S 1+S 2)︰(S 4+S 3) 梯形中比例关系(“梯形蝴蝶定理”) ① S 1︰S 3=a 2︰b 2 ②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为(a+b )2 模型四:相似三角形性质 如何判断相似 (1)相似的基本概念: 两个三角形对应边城比例,对应角相等。 (2)判断相似的方法: ①两个三角形若有两个角对应相等则这两个三角形相似; ②两个三角形若有两条边对应成比例, 且这两组对应边所夹的角相等则两个 S 4 S 3 s 2 s 1O D C B A S 4 S 3s 2 s 1 b a

三角形的四大模型

三角形的四大模型 令狐采学 一、三角形的重要概念和性质 1、三角形的内角和定理:三角形的内角和等于180° 2、三角形的外角和定理:三角形的一个外角等于和它不相邻的两个内角的和 3、三角形角平分线(角分线)中线(分面积等)高(直角三角形两锐角互余) 二、八字模型: 证明结论:∠A+∠B=∠C+∠D 三、飞镖模型: 证明结论:1.∠BOC=∠A+∠B+∠C 四、角分线模型: 如图,BD、CD分别是∠ABC和∠ACB的角平分线,BD、CD相交于点D, 试探索∠A与∠D之间的数量关系,并证明你的结论. 如图,△ABC两个外角(∠CAD、∠ACE)的平分线相交于点P. 探索∠P与∠B有怎样的数量关系,并证明你的结论. 题型一、三角形性质等应用

1.如图,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,这样一直走下去,他第一次回到出发点A时,一共走了米数是() A.120 B.150 C.240 D.360 2.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF. 如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为cm2. 3.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点, 且S△ABC=4cm2,则S阴影=cm2. 4.A、B、C是线段A1B,B1C,C1A的中点,S△ABC的面积是1,则S△A1B1C1的面积. 5.一个四边形截去一个角后,剩下的部分可能是什么图形?画出所有可能的图形,并分别说出内角和和外角和变化情况.6.如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角) (1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;

七年级:三角形三线合一性质专题

F E D C B A E D C B A B ' C B A 专题四(第九讲):三角形三线性质 金牌数学专题系列 导入 知识要点 知识点1 : 三角形的 重要线段 意义 图形 > 表示法 三角形 的高线 从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段 D C B A 是△ABC 的BC 上的高线. ⊥BC 于D. 3.∠ADB=∠ADC=90°. 三角形 的中线 / 三角形中,连结一个顶点和它对边中的 线段 D C B A 是△ABC 的BC 上的中线. =EC= 12 BC. 三角形的 角平分线 三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 21 D C B A 是△ABC 的∠BAC 的平分线. · 2.∠1=∠2=1 2 ∠BAC. 双基练习 一、选择题: 1.如图1所示,在△ABC 中,∠ACB=90°,把△ABC 沿直线AC 翻折180°,使点B 落在点B ′的位置,则线段AC 具有性质( ) A.是边BB ′上的中线 B.是边BB ′上的高 C.是∠BAB ′的角平分线 D.以上三种性质合一 ) (1) (2) (3) 2.如图2所示,D,E 分别是△ABC 的边AC,BC 的中点,则下列说法正确的是( ) 是△BCD 的中线 是△ABC 的中线 =DC,BD=EC D.∠C 的对边是DE 3.如图3所示,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( ) A.2cm 2 .1cm 2 C 12 14 小学时上课爱睡觉。一次语文课老师布置作业写一篇作文,题目是《假如我是蜘蛛》。 下课了问了同学 ,晚上在家绞尽脑汁,写了一篇轰动全校 的《假如我是只猪》

相似三角形模型分析大全(非常全面经典)

相似三角形模型分析大全 一、相似三角形判定的基本模型认识 (一)A字型、反A字型(斜A字型) B (平行) B (不平行) (二)8字型、反8字型 B C B C (蝴蝶型) (平行)(不平行) (三)母子型 B

(四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景 (五)一线三直角型: (六)双垂型:

二、相似三角形判定的变化模型 旋转型:由A 字型旋转得到。 8字型拓展 C B E D A 共享性 G A B C E F 一线三等角的变形 一线三直角的变形 第二部分 相似三角形典型例题讲解

母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . A C D E B

相关练习: 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。 求证:(1)△AME ∽△NMD; (2)ND 2 =NC ·NB 3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。 求证:EB ·DF=AE ·DB

学而思寒假七年级尖子班讲义第1讲平行线四大模型

目录 Contents 第1讲平行线四大模型 (1) 第2讲实数三大概念 (17) 第3讲平面直角坐标系 (33) 第4讲坐标系与面积初步 (51) 第5讲二元—次方程组进阶 (67) 第6讲含参不等式(组) (79)

1平行线四大模型 知识目标 目标一熟练掌握平行线四大模型的证明 目标二熟练掌握平行线四大模型的应用 目标三掌握辅助线的构造方法,熟悉平行线四大模型的构造 秋季回顾平行线的判定与性质 l、平行线的判定 根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行. 判定方法l: 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简称:同位角相等,两直线平行. 判定方法2: 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简称:内错角相等,两直线平行, 判定方法3: 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 简称:同旁内角互补,两直线平行, 如上图: 若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行); 若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行); 若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行). 另有平行公理推论也能证明两直线平行: 平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 2、平行线的性质 利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同 旁内角也有相应的数量关系,这就是平行线的性质. 性质1:

相关文档
最新文档