矩阵的逆的研究及应用

矩阵的逆的研究及应用
矩阵的逆的研究及应用

矩阵的逆的研究及应用

摘要

本文主要是对高等代数中的矩阵的逆进行研究,更深一步地了解矩阵的逆在数学领域中的重要地位和各方面的应用。首先总结阐述矩阵的逆的相关定义、定理和性质,并且对其给出相应的证明,然后归纳了矩阵的逆的几种常见求法,最后讲述了矩阵的逆在以下两个方面的应用:解线性方程组和保密通信,而且例举了具体的应用实例。

关键词:矩阵矩阵的逆线性方程组保密通信

Research and application of inverse matrix

Summary:This paper mainly research on the inverse of the matrix in higher algebra, deeper understanding of the inverse of the matrix in all aspects of the important position in the field of mathematics and application. First summarized in this paper, the related definitions, theorems and properties of the inverse of the matrix, and the corresponding proofs are given, and then sums up several kinds of common method of inverse of the matrix, and finally tells the inverse of the matrix in the application of the following two aspects: solving system of linear equations and secure communications, and illustrates the concrete application examples.

Key Words: matrix , inverse of a matrix ,linear system of equaton, secure

communication.

一 矩阵的逆的一些背景

在以往线性方程组的讨论中我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的也表现为变换这些矩阵的过程。除线性方程组之外,还有大量的各种各样的问题也都提出矩阵的概念,并且这些问题的研究常常反映为有关矩阵的某些方面的研究,甚至于有些性质是完全不同的、表面上完全没有联系的问题,归结成矩阵的问题以后却是相同的。这就使矩阵成为数学中一个极其重要的应用广泛的概念,因而也就使矩阵成为代数特别是线性代数的一个主要研究对象。

而矩阵的逆正是矩阵理论中一个很重要的概念,也是极难理解的一部分,在矩阵理论中占有非常重要的地位,对矩阵的逆的研究自然也就成为高等代数研究的主要内容之一。然而在很多线性代数教科书中矩阵的逆的应用知识点几乎没有涉及到,以至于很多学生错误的认为所学东西没有多大的用处。为了矩阵的逆在解决矩阵问题中起着很重要的作用,不能只停留在抽象的概念结论中,而应对所学知识进一步认识,深刻理解,掌握矩阵的逆的本质,本文总结了矩阵的逆相关定义、定理、性质和它的几种常见的求法,进而更进一步提供了实际应用例子,体现出矩阵的逆的重要性和应用性。

二 矩阵的逆的定义、定理及性质

2.1 矩阵的逆的定义

利用矩阵的乘法和矩阵相等的含义,可以把线性方程组写成矩阵形式。对于线性方程组

1111221121122222

1122n n n n n n nn n n

a x a x a x

b a x a x a x b a x a x a x b +++=??+++=????+++=? (1)

111212122212n n n n nn a a a a a a A a a a ??

????=??

??

?? 12

n x x X x ??????=??????

12n b b B b ??????=??????

则方程组可写成AX B =。

方程AX B =是线性方程组的矩阵表达形式,称为矩阵方程。其中A 称为方程组的系数矩阵,X 称为未知矩阵,B 称为常数项矩阵。

这样,解线性方程组的问题就变成求矩阵方程中未知矩阵X 的问题。类似于一元一次方程()0ax b a =≠的解可以写成1x a b -=,矩阵方程AX B =的解是否也可以表示为1X A B -=的形式?如果可以,则X 可求出,但1A -的含义和存在的条件是什么呢?下面来讨论这些问题。

定义1 n 级方阵A 称为可逆的,如果有n 级方阵B ,使得

AB BA E == (2) 这里E 是n 级单位矩阵。

首先我们指出,由于矩阵的乘法规则,只有方阵才能满足(2);其次,对于任意的矩阵A ,适合等式(2)的矩阵B 是唯一的(如果有的话)。事实上,假设12,B B 是两个适合(2)的矩阵,就有

()()11121222B B E B AB B A B EB B =====

定义2 如果矩阵B 适合(2),那么B 就称为A 的逆矩阵,记为1A -。 定义3 设ij A 是矩阵

111212122212n n n n nn a a a a a a A a a a ??

????=??????

中元素ij a 的代数余子式,矩阵

1112121

222*

1

2

n n n n nn A A A A A A A A A A ??????=????

??

称为A 的伴随矩阵。

由行列式按一行(列)展开的公式立即得出:

**

000

0==0

0d d AA A A dE d ?????

?=??

??

??

(3) 其中d A =

如果0d A =≠,那么由(3)得

**11A A A A E d d ????

==

? ?????

(4)

2.2 矩阵的逆的定理和性质

定理1 矩阵A 是可逆的充分必要条件是A 非退化,而

()1*

10A A d A d

-=

=≠ 证明:当0d A =≠,由(4)可知A 可逆,且 1

*

1A

A d

-=

(5) 反过来,如果A 可逆,那么有1A -使1AA E -=,两边取行列式,得 1

1A A E -== (6)

因而0A ≠,即A 非退化。

由以上定理,我们可得出逆矩阵的一些性质,如下: 1、1

1

A

A

-=

2、设A 是n 级矩阵,则A 可逆的充要条件是存在n 级矩阵B ,使AB E =

3、()

1

1A

A --=

4、设A 和B 都是n 级矩阵且可逆,则AB 也可逆,且()1

11AB B A ---=

5、若0k ≠,A 可逆,则kA 也可逆,且()

1

11kA A k

--=

6、如果A 可逆,则T A 也可逆,且()

()1

1T

T

A

A --=

7、如果A 可逆,则*A 也可逆,且()1*1A A A

-= 定理 2 A 是一个s n ?矩阵,如果P 是s s ?可逆矩阵,Q 是n n ?可逆矩阵,那么

()()()=A PA AQ =秩秩秩

证明:令B PA =,则

()()B A ≤秩秩

但是由

1A P B -=

又有

()()A B ≤秩秩

所以

()()()=A B PA =秩秩秩

另一个等式可以同样地证明。

三 矩阵的逆的求法

3.1 定义法

例1.设方阵A 满足方程2

3100A A E --=,证明:,4A A E -都可逆,并求它们的逆矩阵。

证明:由2

3100A A E --=,得到()1

310A A E E ??-=?

???

故A 可逆,而且()11

310

A A E -=

-。 又由2

3100A A E --=,得到()()46A E A E E +-=,即()()1

46

A E A E E +-=。

故4A E -可逆,而且()()1

1

46

A E A E --=

+。

3.2 公式法

定理3 n 阶方阵A 可逆的充分必要条件是A 非奇异矩阵,而且

21211122221*1211n n n

n

nn A A A A

A A A A A A A A A -??

????==????

??

.

例2.已知101020305A -????=????-??

,求1

A -

解:由题可解得

40A =≠

所以A 可逆,且

*1002020602A ??

??=??

????

*

152012012032012A A A

-????==??????

经检验

1AA E -=

3.3 初等变换法

定义4 一个矩阵的行(列)初等变换是指矩阵施行的下列变换: (1)交换矩阵的某两行(列);

(2)用一个非零的数乘矩阵的某一行(列),即用非零的数乘矩阵的某一行(列)的每一个元素;

(3)给矩阵的某一行(列)乘以一个数后加到另一行(列)上,即用某一个数乘矩阵某一行(列)的每一个元素后加到另一行(列)上的对应元素上。

定义5 由单位矩阵E 经过一次初等变换得到的矩阵称为初等矩阵。 (1)初等行变换

如果n 阶方阵A 可逆,作一个2n n ?的矩阵(),A E ,然后对此矩阵进行初等行变换,使矩阵A 化为单位矩阵E ,则同时E 就化为1

A -了,即(),A E 经过初等行变换变为

()1

,E A -。

例 用初等行变换求矩阵111210110A -????=??

??-??

的逆矩阵。

解:

()1

111001

111

00,2

100100-12-210110001021-1011

01-1101

00013130

-12-210010013-230

0-33-210

1-123-13A E --????

????=→???

?????--????

????????→→???

?????????

所以

101313=013-23-123-13A -??????

????

(2)初等列变换

如果n 阶方阵A 可逆,作一个2n n ?的矩阵A E ??

???

,然后对此矩阵进行初等列变换,使矩阵A 化为单位矩阵E ,则同时E 就化为1

A -了,即A E ??

???经过初等行变换变为-1E A ?? ???

例 用初等列变换求矩阵111210110A -????=??

??-??

的逆矩阵。

解:

1111012100101103210100120001011000110110110001001001320010012013130110132310112313A E --????????????????

--??=→?

??? ???????

????-????-????

-????????????????-→→????

????????--????---????

所以

101313=013-23-123-13A -??

????

????

3.4 分块矩阵法

分块对角矩阵求逆:对于分块对角(或次对角)矩阵求逆可套用公式

1

11

11

2

21S S A A A A A A ----??

??

????

?

???=????????

???

??

?

1

1111

221S S

A A A A A A ----?

??

??????

???=????????

??????

其中()1,2,,i A i s = 均为可逆矩阵。

例:已知0052002

1=1-200110

0A ?????

????

???

,求-1A 解:将A 分块如下:

1200520021==1-2001100O A A A O ????????

????????

??????

其中12521-2==2111A A ????

????????

, 而

-1

*-1*

1

12212

1212111=,=2511det det 3A A A A A A -????==????--????

从而

1-1211

1

001323001313=12002500O A A A O --????

-?

?????=????

??-????-??

四 矩阵的逆的应用

无论是矩阵的逆的性质还是矩阵的逆的求法,都是数学领域中的一个研究方向。接下来我们将分析矩阵的逆的应用,探索矩阵的逆的巨大作用。

4.1 在解线性方程组的应用

求解线性方程组是数学中的一大热点,也是难点。

给定方程组

11112211211222221122n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++=? (7)

把给定的线性方程组的系数按n 行n 列排成数表,称为n n ?矩阵,记作:

111212122212

n n n n nn a a a a a a A a a a ??

????=?????? 为了利用矩阵乘积的性质,我们把线性方程组()7式中的系数项、变量项、常数项以矩阵的形式表示出来:

111212122212n n n n nn a a a a a a A a a a ??

????=??

??

??

12n x x X x ??????

=?????? 12n b b B b ??????=??????

矩阵方程AX B =在形式上与最简单的代数方程ax b =非常类似,分析代数方程

ax b =的求解过程,对于求解矩阵方程会有很大的帮助。

当0a ≠时,存在着a 的倒数()1

1

1a

a a a

--=

也可以叫做的逆元素,以1a -乘方程ax b =的两端。由于111aa a a --==,所以得到方程的解:1x a b -=。

如果对n 阶方阵A 也定义它的逆方阵1

A -,使之满足1

1

AA A A E --==,那么,用1

A -乘矩阵方程AX

B =的两端就得到方程的解1

X A B -=。

那么,只要求出系数矩阵A 的逆方阵1

A -,线性方程组()7的解也就出来了。根据逆矩

阵的性质,得到逆矩阵的条件及表达式。

n 阶方阵A 可逆的充分必要条件是0A ≠,并且A 可逆时,A 的逆矩阵可表

示为1

*

1A

A A

-=

。 4.2 在保密通信中的应用

4.2.1 加密保密通信模型

保密通信是新时代一个非常重要的话题,越来越多的科学研究者为此做了大量的工作,先后提出了许多较为有效的保密通信模型。其中,基于加密技术的保密通信模型是其中最为基本而且最具活力的一种。

基于加密技术的保密通信模型如下:

()

→→ 密钥 明文串加密盒密文串 发送方

()

→→ 密钥 密文串加密盒明文串 接收方

发送方采用某种算法将明文数据加密转换成密文数据后发送给接收方,接收方则可以采用对应的某种算法将密文数据解密转换成明文数据。

4.2.2 在保密通信中的应用

从模型中可以看出,一种加密技术是否有效,关键在于密文能否还原成明文。 设有矩阵方程C AB =,其中B 为未知矩阵。我们知道,如果A 为可逆矩阵,则方程

有唯一解-1

B A

C =,其中-1

A 是A 的逆矩阵。因此,可逆矩阵可以有效地应用于加密技术。

设A 为可逆矩阵,B 为明文矩阵,C 为密文矩阵。

()1加密算法

加密时,采用下面的矩阵乘法:

C AB C BA ==或

例如,设加密密钥矩阵A 为3-20-102211-2-320121A ??

??

?

?=??????

,明文矩阵B 为

32114252154-34-2612337B ????

?

?=??????

,则密文矩阵C 等于 3-20-13211446-4-2-502212521513615129=1-2-324-34-26-15-3-21-1012112337111130????????????????????????????????????

38 24 ()2解密算法

解密时,采用下面的矩阵乘法:

-1-1B CA B A C ==或

其中,-1A 是A 的逆矩阵。

例如,针对上面的加密密钥矩阵A ,解密密钥矩阵-1

A 为1

1-2

-4010-1-1-13621-6-10??

???

???

??

??

如果密文矩阵C 为778965

7669132121

2111?????

???

??

??

,则相应的明文矩阵B 应等于 11

-2

-47

789660697010-157********=-1-1361

3212-37-2-6-32

1-6-101

21113-1708-1??????

?????????

?????????

???

???

??????

()3加密矩阵的生成

初等矩阵是可逆的,而且初等矩阵的矩阵也是可逆的。因此,通信中可以考虑利用若干个初等矩阵的成绩乘积作为编码矩阵。它的生成方法如下:从单位矩阵出发,反复利用第一类和第三类初等变换去乘它,而其中的乘数必须取整数。这样得到的矩阵将满足

1A =+,而1A -也将具有整数元素。

()4应用实例

例:小明的朋友给小强发来一封密信,他有一个三阶矩阵:207210125231318135244161175??????????

,他们约定:消息的每一个英文字母用一个整数来表示:

1,2,,25,26a b y z →→→→

约好的密码矩阵是:4379010076??

????????

,试求小明的朋友发来的密信的内容。 解:试求密信内容,先假设密信内容矩阵为X ,则:

4372072101259010231318135076244161175X ????????=????????????

4372072101259010231318135076244161175X ????

????=????????????

1

4372072101259010231318135076244161175X -????

????=????

????????

1

2072101254372313181359010244161175076X -????

????=????

????????

然后利用Matlab 软件求解此题,容易得到满足题意的只有一个矩阵:

912152252515210X ??

??=??

????

由英文字母与整数间的对应可得到密信内容为“I LOVE YOU ”。

参考文献

[1]高等代数/北京大学数学系几何与代数教研室前代数小组编.-3版.-北京:高等教育出版社,2003,9(2011.5重印)

[2]张禾瑞,郝炳新.高等代数[M].北京:高等教育出版社.

[3]张贤科等.高等代数.清华大学出版社.

[4]王丽霞.逆矩阵的几种求法[J].雁北师范学院学报,2007,23(2):82-84.

[5]郭亚梅.可逆矩阵的几种案例分析[J].安阳工学院学报,2006,3(21):55-59.

分块矩阵在行列式计算中的应用(1)

矩阵与行列式的关系 矩阵是一个有力的数学工具,有着广泛的应用,同时矩阵也是代数特别是线性代数的一个主要研究对象.矩阵的概念和性质都较易掌握,但是对于阶数较大的矩阵的运算则会是一个很繁琐的过程,甚至仅仅依靠矩阵的基本性质很难计算,为了更好的处理这个问题矩阵分块的思想应运而生[]1. 行列式在代数学中是一个非常重要、又应用广泛的概念.对行列式的研究重在计算,但由于行列式的计算灵活、技巧性强,尤其是计算高阶行列式往往较为困难.行列式的计算通常要根据行列式的具体特点采用相应的计算方法,有时甚至需要将几种方法交叉运用,而且一题多种解法的情况很多,好的方法能极大降低计算量,因此行列式计算方法往往灵活多变.在解决行列式的某些问题时,对于级数较高的行列式,常采用分块的方法,将行列式分成若干子块,往往可以使行列式的结构清晰,计算简化.本文在广泛阅读文献的基础上,从温习分块矩阵的定义和性质出发,给出了分块矩阵的一些重要结论并予以证明,在此基础上讨论利用分块矩阵计算行列式的方法,并与其他方法相互比较,以此说明分块矩阵在行列式计算中的优势. 1.1 矩阵的定义 有时候,我们将一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的一样[]1.特别在运算中,把这些小矩阵当做数一样来处理.这就是所谓的矩阵的分块.把原矩阵分别按照横竖需要分割成若干小块,每一小块称为矩阵的一个子块或子矩阵,则原矩阵是以这些子块为元素的分块矩阵.这是处理级数较高的矩阵时常用的方法. 定义1[]2 设A 是n m ?矩阵,将A 的行分割为r 段,每段分别包含r m m m 21行,将 A 的列分割为s 段,每段包含s m m m 21列,则 ?? ? ? ? ? ? ??=rs r r s s A A A A A A A A A A 21 2222111211 , 就称为分块矩阵,其中ij A 是j i m m ?矩阵(,,,2,1r i =s j ,,2,1 =). 注:分块矩阵的每一行(列)的小矩阵有相同的行(列)数. 例如,对矩阵A 分块, = ?? ? ? ? ? ? ? ?-=21010301012102102301A ??? ? ??22211211 A A A A , 其中

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的?就如矩阵的元素(数)一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,- 般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法?比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A、C都是n阶矩阵, A B 其中A 0,并且AC CA,则可求得AD BC ;分块矩阵也可以在求解线性 C D 方程组应用? 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利

1 分块矩阵的定义及相关运算性质 1.1 分块矩阵的定义 矩阵分块 , 就是把一个大矩阵看成是由一些小矩阵组成的 . 就如矩阵的元素 ( 数) 一 样,特别是在运算中 , 把这些小矩阵当作数一样来处理 . 定义1设A 是一个m n 矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 A 11 ... 分成s 块,于是有rs 块的分块矩阵,即A .... A r1 . 1.2 分块矩阵的相关运算性质 1. 2.1 加法 A A ij r s , B B ij r s , 其中 A ij , B ij 的级数相同, A B A ij B ij r s 1.2.2 数乘 kA 1.2.3 乘法 1.2.4 转置 A A ji s r 1.2.5 分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换: A 1s ... ,其中 A ij 表示的是一个矩阵 . A rs 设 A a ij B mn b ij m n ,用同样的方法对 A,B 进行分块 设是任 A a ij mn A ij r s ,k 为任意数, 定义分块矩阵 A A ij r s 与 k 的数乘为 设 A a ij ,B sn n m 分块为 A A ij nm r l ,B B ij l r ,其中 A ij 是 s i n j 矩阵, B ij 是 n i m j 矩阵, 定义分块矩阵A A j rl 和B B ij l r 的乘积为 r C ij A i1 B 1j A i2 B 2j ... A il B lj , i 1,2,...t; j 1,2,3,..., l a ij s n 分块为 A sn A ij r s ,定义分块矩阵 A A ij r s 的转置为 rs

矩阵的逆的研究及应用

矩阵的逆的研究及应用 摘要 本文主要是对高等代数中的矩阵的逆进行研究,更深一步地了解矩阵的逆在数学领域中的重要地位和各方面的应用。首先总结阐述矩阵的逆的相关定义、定理和性质,并且对其给出相应的证明,然后归纳了矩阵的逆的几种常见求法,最后讲述了矩阵的逆在以下两个方面的应用:解线性方程组和保密通信,而且例举了具体的应用实例。 关键词:矩阵矩阵的逆线性方程组保密通信 Research and application of inverse matrix Summary:This paper mainly research on the inverse of the matrix in higher algebra, deeper understanding of the inverse of the matrix in all aspects of the important position in the field of mathematics and application. First summarized in this paper, the related definitions, theorems and properties of the inverse of the matrix, and the corresponding proofs are given, and then sums up several kinds of common method of inverse of the matrix, and finally tells the inverse of the matrix in the application of the following two aspects: solving system of linear equations and secure communications, and illustrates the concrete application examples. Key Words: matrix , inverse of a matrix ,linear system of equaton, secure

矩阵的分块及应用

矩阵的分块及应用 武夷学院毕业设计(论文) 矩阵的分块及应用院系:专业:姓名:学号: 指导教师:职称:完成日期:数学与计算机系计算机科学与技术陈航20073011014 魏耀华教授年月日武夷学院教务处制摘要矩阵分块,就是把一个大矩阵按照一定规则分成小矩阵,它是矩阵运算的一种常用技巧与方法。分块矩阵的理论不但在工程技术和实际生产中有着广泛的应用,而且在线性代数中求矩阵乘积、行列式的值、逆矩阵、矩阵的秩和矩阵的特征根的过程中也起到重要作用。分块矩阵的初等变换则是处理分块矩阵有关问题的重要工具,它在线性代数中有非常广泛的应用。讨论了分块矩阵的概念、分块矩阵的运算、分块矩阵的性质以及分块矩阵的广义初等矩

阵,归纳并提出了分块矩阵的一些应用,这些应用主要涉及到矩阵的秩,逆矩阵,行列式以及矩阵正定和半正定等方面。通过引用了大量的实例说明了对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解。关键词: 分块矩阵;初等变换;计算;逆矩阵;证明。I Abstract Partitioned matrices mean dividing a big matrix into the small matrices according to the certain rule. It is a common technique and method in matrix operation. The theories of partitioned matrices have not only a wide range of applications in engineering and production, but also play an important role to the process for seeking matrix product and the value of determinant and inverse matrix and rank of matrix and the characteristic in linear algebra. Elementary transformation of partitioned matrices is an important tool to deal with the partition matrix. Also, it is

分块矩阵求逆

一、分4块的矩阵求逆 对于分块矩阵A B 求其逆在计量经济学,马尔科夫链等科目中常常遇到,本文综合了 C D,格林等文件,提供一个一般的汇总性文件,方便查阅。 本文采用初等变化法求逆,假设先对矩阵进行了合适的分块并且灰色部分的逆存在: A B | I 0 C D | 0 I 第1行左乘-CA-1并加到第2行有: A B | I 0 0D-CA-1B | -CA-1I 第2行左乘-B(D-CA-1B)-1并加到第1行有: A 0 | I+ B(D-CA-1B)-1 CA-1-B(D-CA-1B)-1 0 D-CA-1B|-CA-1I 第1行左乘A-1,第2行左乘(D-CA-1B)-1后,右边的矩阵为原始矩阵的逆:

注意是左乘,右乘不行,因为右乘副对角线上的矩阵可能没法做矩阵乘法。 二、分9块的矩阵求逆 对于分9块的矩阵A=[A B C;D E F;G H K]求逆,可先把矩阵进行适当划分,使得以下各灰色部分可逆,然后分别左乘矩阵P和右乘矩阵Q,P、Q如下所示,易见P、Q均可逆。 P A Q I 0 0 | A B C | I -A-1B -A-1C -DA-1 I 0 | D E F | 0 I 0 = B(具体见下三行) -GA-10 I | G H K| 0 0 I A 0 0 0 E-DA-1B F-DA-1C [(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)] 0 H-GA-1B K-GA-1C 要求各灰色部分可逆

可见大矩阵B的逆主要是求其右下角的逆,而这是个分四块矩阵,用第一部分方法即可求得。因为PAQ=B,所以A=P-1BQ-1,A-1=QB-1P,经过最终计算,A-1表示如下: 其中: M=(E-DA-1B)-1+(E-DA-1B)-1(F-DA-1C)[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 (H-GA-1B)(E-DA-1B)-1 N=-(E-DA-1B)-1(F-DA-1C)[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 R=-[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 (H-GA-1B)(E-DA-1B)-1 S=[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 此方法原则上还可依此递推至分为n2块矩阵求逆。

广义逆矩阵及其应用

题目广义逆矩阵及其应用学院 专业通信与信息系统学生 学号

目录 第一章前言 (1) 第二章广义逆矩阵 (2) §2.1 广义逆矩阵的定义 (2) §2.2 广义逆矩阵的性质 (3) 第三章广义逆矩阵的计算 (12) §3.1 一般广义逆求解 (12) §3.2 Moore-Penrose 广义逆 (16) 结论 (19)

第一章前言 线性方程组的逆矩阵求解方法只适用于系数矩阵为可逆方阵,但是对于一般线性方程组,其系数矩阵可能不是方阵或是不可逆的方阵,这种利用逆矩阵求解线性方程组的方法将不适用。为解决这种系数矩阵不是可逆矩阵或不是方阵的线性方程组,我们对逆矩阵进行推广,研究广义逆矩阵,利用广义逆矩阵求解线性方程组。 广义逆矩阵在数据分析、多元分析、信号处理、系统理论、现代控制理论、网络理论等许多领域中有着重要的应用,本文针对广义逆矩阵的定义、性质、计算及其在线性方程组中的应用进行研究,利用广义逆矩阵求解线性方程组的通解及极小数解。 逆矩阵的概念只对非奇异矩阵才有意义,但在实际问题中,遇到的矩阵不一定是方阵,即使是方阵也不一定非奇异,这就需要将逆矩阵的概念进行推广。为此,人们提出了下述关于逆矩阵的推广: (1)该矩阵对于奇异矩阵甚至长方矩阵都存在; (2)它具有通常逆矩阵的一些性质; (3)当矩阵非奇异时,它即为原来的逆矩阵。 满足上面三点的矩阵称之为广义逆矩阵。 1903年,瑞典数学家弗雷德霍姆开始了对广义逆矩阵的研究,他讨论了关于积分算子的一种广义逆。1904年,德国数学家希尔伯特在广义格林函数的讨论中,含蓄地提出了微分算子的广义逆。美国芝加哥的穆尔(Moore)教授在1920年提出了任意矩阵广义逆的定义,他以抽象的形式发表在美国数学会会刊上。我国数学家曾远荣和美籍匈牙利数学家·诺伊曼及其弟子默里分别在1933年和1936年对希尔伯特空间中线性算子的广义逆也作过讨论和研究。1951年瑞典人布耶尔哈梅尔重新给出了穆尔(Moore)广义逆矩阵的定义,并注意到广义逆矩阵与线性方程组的关系。1955年,英国数学物理学家罗斯(Penrose)以更明确的形式给出了与穆尔(Moore)等价的广义逆矩阵定义,因此通称为Moore-Penrose广义逆矩阵,从此广义逆矩阵的研究进入了一个新阶段。现如今,Moore-Penrose广义逆矩阵在数据分析、多元分析、信号处理、系统理论、现代控制理论、网络理论等许多领域中有着重要的应用,使这一学科得到迅速发展,并成为矩阵论的一个重要分支。 第二章广义逆矩阵

分块矩阵的应用研究文献综述

毕业论文文献综述 数学与应用数学 分块矩阵的应用研究 一、前言部分(说明写作的目的,介绍有关概念、综述范围,扼要说明有关 主题争论焦点) 本论文的重要目的是通过查阅各种相关文献,寻找各种相关信息,来研究分块矩阵的计算方法和分块矩阵在化简行列式、行列式运算、求矩阵的特征值等方面的应用,首先我们先来介绍一些概念: 分块矩阵的概念[] 1: 当矩阵的行数与列数较大时, 为便于运算, 有时把它分成若干个小块, 每个小块是行数与列数较小的矩阵.把一个矩阵看作是由一些小块矩阵所构成, 这就是矩阵的分块.构成分块矩阵的每个小矩阵, 称为子块. 如对矩阵A 分块如下 ? ? ??? ???? ???-=1011 012100100001A 其中记? ? ? ???-=??????=???? ??=1121,0000,10011A O E ,则A 可表示为分块矩阵??????=E A O E A 1 矩阵的分块可以有各种不同的分法.如矩阵A 也可分块如下: ? ? ??? ???? ???-=1011012100100001 A 通过分块矩阵的定义和概念,我们将探讨分块矩阵的计算,并利用分块矩阵的思想把分块矩阵的应用联系到其它问题中.

二、主题部分(阐明有关主题的历史背景、现状和发展方向,以及对这些问 题的评述) 作为解决线性方程的工具,矩阵已有不短的历史.拉丁方阵和幻方在史前年代已有人研究.矩阵这一具体概念是由19世纪英国数学家凯利首先提出并形成矩阵代数这一系统理论的. 但是追根溯源,矩阵最早出现在我国的<九章算术>中,在<九章算术>方程一章中,就提出了解线性方程各项的系数、常数按顺序排列成一个长方形的形状.随后移动处筹,就可以求出这个方程的解.在欧洲,运用这种方法来解线性方程组,比我国要晚2000多年. 1693年,微积分的发现者之一戈特弗里德?威廉?莱布尼茨建立了行列式论(theory of determinants).1750年,加布里尔?克拉默其后又定下了克拉默法则.1800年,高斯和威廉?若尔当建立了高斯—若尔当消去法. 1848年詹姆斯?约瑟夫?西尔维斯特首先创出matrix 一词.研究过矩阵论的著名数学家有凯莱、威廉?卢云?哈密顿、格拉斯曼、弗罗贝尼乌斯和冯?诺伊曼. 分块矩阵的引进使得矩阵这一工具的使用更加便利,解决问题的作用更强有力,其应用也就更广泛.在矩阵的某些运算中,对于级数比较高的矩阵,常采用分块的方法将一个矩阵分割成若干个小矩阵,在运算过程中将小矩阵看成元素来处理,对问题的解决往往起到简化的作用.本文通过一些例子来说明分块矩阵的一些应用. 预备知识[][]32- 分块矩阵的运算: 矩阵的分块技巧性较强,要根据不通的问题进行不同的分块,常见的方法有四种: (1)列向量分法 ),,2,1(),,,,(21n i a a a a A i n ΛΛ==为A 的列向量. (2)行向量分发 ),,2,1(21n i A i n ΛM =???? ? ? ??????=ββββ为A 的行向量. (3)分成两块 ),,(21A A A =其中21,A A 分别为B 的若干行.

分块矩阵求逆公式及证明

分块矩阵求逆公式及证明 A 12 ,如果A ii (i=1,2)的逆存在,则 A 22 A 11 B 12 * A 12B 22 A 21B 11 A 22B 21 A 21 B 12 A 22B 22 将B 22代入方程(2)可以得到: B q 厂-A -1|A 12F 2 将B/弋入方程(1)可以得到: B qi = A ;;(I iq + A 12F 2A 21A ;1) 证毕。 同理可得,A ;1的另外一种表达形式为: F -F -1A A -1 1 A I ;;; ;; 1 12 22 ,其中 F 广(A ii-A i2A 22;;A 2i ) A - -1 -1 -1 化 1 A 11 (I + A 12F 2A 21A 11 ) _A 11A 12F 2 ; -F 2A 21A 11 F 2 其中 F 2= (A 2^A 21A 11A 12 F 1 证明: 设A 的逆为B 二 B 11 _B 21 B B :,其中B 与A 分块形式相同'则: A 11 A 12 B 11 A 22 _ -B 21 B q? I 11 B 22H 22 - A 11B 11 A 12B 21 111 (1 ) 定理: A= A 11 A 21 ⑷- A 21A -?⑵二 A 22 B 22 -1 - A 21A 11B 22 -1 1 1 22 = B 22 二(A 22 一 A 21A 11A 12) F 2 (3) - A 21A 11 (1) — A 22B 21 - A 21A 11A 12B 21 =-A 21A -1 二 B 21 二一 B 22A 21A 11

矩阵的逆及其应用教学内容

矩阵的逆及其应用

矩阵的逆及其应用 姓名:刘欣 班级:14级数计1班 专业:数学与应用数学 学号:1408020129 一、矩阵的逆的概念 对于n阶矩阵A,如果有一个n阶矩阵B,使得 AB=BA=E,则说矩阵A是可逆的,并把矩阵B称为 A的逆矩阵,A的逆矩阵记作。 二、逆矩阵的性质和定理 ㈠逆矩阵的性质 1、若矩阵A、B均可逆,则矩阵AB可逆,其逆矩阵为 ,当然这一性质可以推广到多个矩阵相乘的逆。 若都是n阶可逆矩阵,则 也可逆,且= . 2、若A可逆,则也可逆,且=A; 3、若A可逆,实数λ≠0,则λA可逆,且 =; 4、若A可逆,则也可逆,且=; 5、=;

6、矩阵的逆是唯一的; 证明:运用反证法,如果A是可逆矩阵,假设B,C都 是A的逆,则有AB=BA=E=AC=CA,B=B E=B(AC)=(BA)C=EC=C(与B≠C 矛盾),所以是唯一的。 ㈡逆矩阵的定理 1、初等变换不改变矩阵的可逆性。 2、n阶矩阵可逆的充分必要条件是A与n阶单位阵等价。 3、n阶矩阵A可逆的充分必要条件是A可以表成一些初等矩阵的乘积。 4、n阶矩阵可逆的充分必要条件是A只经过一系列初等行变换便可化成单位矩阵。 5、n阶矩阵A可逆的充分必要条件是|A|≠0。 三、逆矩阵的计算方法 ㈠定义法 定义:设A是n阶方阵,如果存在n阶方阵B使得AB=E,那么A称为可逆矩阵,B称为A的逆矩阵,记为。 例1、求矩阵A=的逆矩阵。 解:∵|A|≠0 ∴存在

设=,由定义知,∴ 由矩阵乘法得 由矩阵相乘可解得;; 故 ㈡、伴随矩阵法 n阶矩阵A=()可逆的充要条件|A|≠0,而且当 n(n>=2)阶矩阵A有逆矩阵, 注释:①对于阶数较低(一般不超过3阶)或元素的代数余 子式易于计算的矩阵可用此法求其逆矩阵,注意 元素的位置及符号。特别对于2阶方阵A=,其伴随矩阵 ,即伴随矩阵具有“主对角元素互换,次对角元素变号”的规律。

浅谈分块矩阵的性质及应用

浅谈分块矩阵的性质及应用 摘要:本文主要谈及分快矩阵的思想在线性代数的证明。解线性方程组,矩阵得知 逆及矩阵的逆,和初等变换中的应用。 关键词:分块矩阵;线性方程组;矩阵的秩及矩阵的逆;初等变换 On the nature of block matrix and its application Abstract: this thesis uses the blocking matrix method into proving and applying the linear algebra, tries to solve the linear equations, and the proof of other relative matrix rank and elementary matrix. Key word s: Block matrix; Linear algebra; rank of matrix; elementary matrix.前言: 矩阵得分快是处理问题的一重要方法,把一个告诫矩阵分成若干个地界矩阵,在运算中把低阶矩阵当作数一样处理,这样高阶矩阵就化作低阶矩阵,长能使我们迅速接近问题的本质,从而达到解决问题的目的,使解题更简洁,思路更开阔,因此本文主要谈及分块矩阵再求行列式的值,解线性方程组,求矩阵的秩及逆等方面的应用。 1.预备知识: 分块矩阵的定义:将分块矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为 A的子块,一子块为元素的形式上的矩阵成为分块矩阵。 分块矩阵的运算:

1.2.1分块矩阵的加法: 设分块矩阵 A 与 B 的行数相同,列数相同,采用相同的得分块法,有 A=1111n m mn A A A A ?? ? ? ???K M O M L ,1111n m mn B B B B B ?? ?= ? ??? K M O M L 其中ij A 与ij B 的行数相同,列数相同,那么A+B=111111111n n m m n mn A B A B A B A B ++?? ? ? ?++?? K M O M L 1.2.2分块矩阵与数的乘法: A=1111n m mn A A A A ?? ? ? ???K M O M L ,1111n m mn A A A A A λλλλλ?? ? = ? ??? K M O M L 1.2.3设A 为m l ?矩阵,B 为l n ?矩阵,分块成 1111111 1 t r s st t tr A A B B A B A A B B ???? ? ?== ? ? ? ????? K K M O M M O M L L 其中1i A ,2i A ……,it A 的列数分别等于1j B ,2j B ……,tj B 的行数,那么 1111 r s sr C C AB C C ?? ? = ? ??? K M O M L ,其中1 t ij ik ik k C A B ==∑(i=1……s ;j=1,……,r) 1.2.4设1111 t s st A A A A A ?? ? = ? ???K M O M L ,则1111T T t T T T s st A A A A A ?? ?= ? ?? ? K M O M L 2. 分块矩阵的性质及应用: 分块矩阵的性质: 设A 为n 阶矩阵,若A 的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生. 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处.因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,一般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法.比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A 、C 都是n 阶矩阵,其中0A ≠,并且AC CA =,则可求得A B AD BC C D =-;分块矩阵也可以在求解线性 方程组应用. 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利.

1 分块矩阵的定义及相关运算性质 1.1分块矩阵的定义 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理. 定义1设A 是一个m n ?矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 分成s 块,于是有rs 块的分块矩阵,即1111...............s r rs A A A A A ???? =?????? ,其中ij A 表示的是一个矩阵. 1.2分块矩阵的相关运算性质 1. 2.1加法 设() ij m n A a ?=() ij m n B b ?=,用同样的方法对,A B 进行分块 () ij r s A A ?=,() ij r s B B ?=, 其中ij A ,ij B 的级数相同, 则 ()ij ij r s A B A B ?+=+. 1.2.2数乘 设是任() () ,ij ij m n r s A a A k ??==为任意数,定义分块矩阵() ij r s A A ?=与k 的数乘为 () ij r s kA kA ?= 1.2.3乘法 设() () ,ij ij s n n m A a B b ??==分块为()(),ij ij r l l r A A B B ??==,其中ij A 是i j s n ?矩阵,ij B 是 i j n m ?矩阵,定义分块矩阵() ij r l A A ?=和()ij l r B B ?=的乘积为 () 1122...,1,2,...;1,2,3,...,ij i j i j il lj C A B A B A B i t j l =+++==.、 1.2.4转置 设() ij s n A a ?=分块为() ij r s A A ?=,定义分块矩阵() ij r s A A ?=的转置为 () ji s r A A ?''= 1.2.5分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换:

矩阵的分块求逆及解线性方程组

实验3 矩阵的分块求逆及解线性方程组 一、 问题 化已知矩阵为上三角矩阵,构作范德蒙矩阵,高阶非奇异矩阵的分块求逆,求非齐次线性方程组的通解。 二、 实验目的 学会用Matlab 语言编程,实施矩阵的初等变换将已知矩阵化为上三角矩阵;掌握 用循环语句由已知向量构造范德蒙矩阵;了解高阶非奇异矩阵用不同分块法求逆矩阵的误差分析;能根据由软件求得的非齐次线性方程组增广矩阵的阶梯型的最简形式写出线性方程组的通解。 三、 预备知识 1. 线性代数知识: (1) 向量},,,{21n x x x X =作出的 n 阶范德蒙矩阵为 ??? ?? ??? ??---112112222 1 21111 n n n n n n x x x x x x x x x (2)分块矩阵???? ??=2221 1211A A A A A ,其中11A 为方的可逆子块,求逆矩阵有如下公式: 设??? ? ??=-2221 1211 1 B B B B A ,则2212111121 12111212222,)(B A A B A A A A B ----=-=, 1 11211211111111212221,----=-=A A B A B A A B B (3)常用的矩阵范数为Frobenius 范数;2 1112||||||??? ? ??=∑∑==n i n j ij F a A 2. 本实验所用Matlab 命令提示: (1)输入语句:input('输入提示'); (2)循环语句:for 循环变量=初始值 :步长 :终值 循环语句组 end (3)条件语句: if(条件式1) 条件块语句组1 elseif(条件式2) 条件块语句组2 else 条件块语句组3 end (4)矩阵和向量的范数:norm(A); (5)求矩阵A 的秩:rank (A ); (6)求矩阵A 的阶梯型的行最简形式:rref(A)。

分块矩阵在高等代数中的应用

本科生毕业设计(论文) 题目:分块矩阵在高等代数中的应用 Title: Block Matrix Of Application in Advanced Algebra 学号 0508060357 姓名邹维喜 学院数信学院 专业数学与应用数学 指导教师甘爱萍 完成时间 2008.4.15

分块矩阵在高等代数中的应用 【摘要】高等代数以其独特的理论体系而引人入胜,其基础知识抽象,解题方法技巧性强,稍有不慎就会陷入困境。作为高等代数中的一个工具——分块矩阵,分块矩阵是高等代数中的一个重要内容,在高等代数中有着很重要的应用,本文详细且全面论述了分块矩阵阵的概念和其的初等变换以及证明了矩阵的分块在高等代数中的应用,包括用分块矩阵来算矩阵的乘积,利用分块矩阵求逆矩阵的问题,用分块矩阵求矩阵的行列式问题. 【关键词】:分块矩阵;矩阵乘积得秩;逆矩阵;行列式

Block Matrix in Advanced Algebra Application 【Abstract】 Higher Algebra for its unique and fascinating theoretical system based on abstract knowledge, skills and strong problem-solving approach, a little carelessness will be in trouble. Advanced Algebra as a tool - sub-block matrix, block matrix is of higher algebra an important share in higher algebra very important applications, this paper discusses the detailed and comprehensive array block matrix of the concept and its elementary transformation matrix, as well as the sub-block in the application of higher algebra, including matrices to count the product matrix, the use of sub-block matrix inverse matrix problem, with sub-block matrix of the determinant of the matrix problem. 【Key words】: sub-block matrix; matrix product of a rank; inverse matrix; determinant

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

矩阵及逆矩阵的求法

矩阵的可逆性与逆矩阵的求法 目录 摘要 (1) 第1章.矩阵 (2) 1.1矩阵的定义 (2) 1.2矩阵的运算 (2) 第2章.矩阵的可逆性及逆矩阵 (5) 2.1矩阵的基本概念 (5) 2.2矩阵可逆的判断方法 (6) 2.3矩阵可逆性的求法 (10) 第3章.逆矩阵的拓展 (17) 3.1广义逆矩阵的引入 (17) 3.2广义逆矩阵的定义及存在 (17) 第4章.总结 (21) 参考文献 (22) 致谢 (23) 附件:论文英文简介

矩阵的可逆性与逆矩阵的求法 [摘要]:矩阵理论是现代代数学的重要分支理论之一,它也为现代科技及现代经济理论研究提供不可或缺的数学支持。在线性代数研究中引入矩阵的目的之一就是为了研究线性方程组B AX 求解及更一般的矩阵方程求解提供数学工具,其中矩阵的可逆性及逆矩阵的求法是最主要的内容。本文从矩阵的基本概念及运算入手,主要探讨和归纳矩阵可逆性的四种判定方法和求逆矩阵的五种方法,并引进Matlab这一数学软件求逆矩阵的程序,同时关注广义逆矩阵意义及求法。 [关键词]:矩阵可逆性逆矩阵广义逆求法

矩阵可逆性的判断和可逆矩阵的求法是矩阵理论学习的重点与难点,也是研究矩阵性质及运算中必不可少的一部分。本文在分析和归纳判断矩阵的可逆性和逆矩阵的求法,给出了四种判断矩阵可逆的方法,其中有初等矩阵的应用,有行列式的应用,还有向量的线性无关和线性方程组的应用。逆矩阵的求法给出了五种方法:分别是行变换、列变换、伴随矩阵、分块矩阵法以及Matlab 软件的解法,同时也讨论了广义逆矩阵的求法。对矩阵可逆性的判断与逆矩阵的求法将会给矩阵的学习带来很大的帮助。 第1章 矩 阵 1.1矩阵的定义 定义1 由st 个数ij c 排成一个s 行t 列的表 ???? ?? ? ??st s s t t c c c c c c c c c 2 1 2222111211 叫作一个s 行t 列(或t s ?)矩阵,ij c 叫作这个矩阵的元素。 定义2 矩阵的行(列)初等变换指的是对一个矩阵施行的下列变换: )(i 交换矩阵的两行(列); )(ii 用一个不等于零的数乘矩阵的某一行(列),即用一个不等于零的数乘矩阵的某一行(列)的元素; )(iii 用某一数乘矩阵的某一行(列)后加到另一行(列),即用某一数乘矩阵的某一行(列)的每一元素后加到另一行(列)的对应元素上。 矩阵的初等变换在线性方程组求解,求矩阵的秩及求矩阵的逆矩阵方面都有重要的作用。 1.2矩阵运算 定义1 数域F 的数a 与F 上一个n m ?矩阵)(ij a A =的乘积aA 指的是n m ?矩阵 )(ij aa ,求数与矩阵的乘积的运算叫作数与矩阵的乘法。 定义2 两个n m ?矩阵)(),(ij ij b B a A ==的和B A +指的是n m ?矩阵)(ij ij b a +,求两

分块矩阵的若干应用

分块矩阵的若干应用 摘要:本文归纳了分块矩阵的一些应用,这些应用主要涉及到用分块矩阵计算行列式,求解逆矩阵,解线性方程组以及证明矩阵秩的不等式. 关键词:分块矩阵,行列式,可逆矩阵,线性方程组,秩

Abstract: This article summarizes the number of block matrix applications mainly related to the use of block matrix determinant calculation, solving the inverse matrix, solution of linear equations, as well as proof of the inequality rank matrix. Key words: block matrix,determinant,invertible matrix,linear equations,rank

目录 1 引言 (4) 2 分块矩阵的应用 (4) 2.1 利用分块矩阵求n阶行列式 (4) 2.2 利用分块矩阵求矩阵的逆 (6) 2.3 利用分块矩阵解非齐次线性方程组 (10) 2.4 利用分块矩阵证明矩阵的秩的性质 (11) 结论 (13) 参考文献 (14) 致谢 (15)

1 引言 矩阵的分块是处理级数较高的矩阵时常用的方法.有时候,我们把一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的一样.特别是在运算中,把这些小矩阵当作数一样来处理,这就是所谓矩阵的分块[]1 .分块矩阵是矩阵论中重要内容之一.在线性代数中,分块矩 阵也是一个十分重要的概念,它可以使矩阵的表示简单明了,使矩阵的运算得以简化,而且还可以利用分块矩阵解决某些行列式的计算问题.事实上,利用分块矩阵方法计算行列式,时常会使行列式的计算变得简单,并能收到意想不到的效果. 矩阵是一种新的运算对象,我们应该充分注意矩阵运算的一些特殊规律.为了研究问题的需要,适当对矩阵进行分块,把一个大矩阵看成是由一些小矩阵为元素组成的,这样可使矩阵的结构看的更清楚.运用矩阵分块的思想,可使解题更简洁,思路更开阔,在教学中有着非常广泛的应用,一些复杂的问题,经分块矩阵处理就显得非常简单.而在高等代数和线性代数教材中,这部分内容比较少,本文归纳并讨论了分块矩阵在行列式,矩阵的逆及解非齐次线性方程组等方面的一些应用. 2 分块矩阵的应用 行列式的计算是一个重要的问题,也是一个很麻烦的问题.n 级行列式一共有!n 项,计算它就需要做()!1n n -个乘法.当n 较大时,!n 是一个相当大的数字,直接从定义来计算行列式几乎是不可能的事,因此我们有必要进一步讨论解行列式的方法.利用分块矩阵的方法]2[求行列式的值是行列式求值常用的方法.但通常教材中介绍的方法,多数为计算特殊形式的行列式,本文将在教材的基础上给出另外一些行列式的分块矩阵的解法. 2.1 利用分块矩阵求n 阶行列式 各高等代数教材主要介绍了用定义,性质,展开定理计算n 阶行列式.常用的技巧有递推 法,加边法等.但有些行列式计算起来仍很麻烦,下面给出运用分块矩阵计算n 级行列式的一种方法,该方法使n 阶行列式的求值更加简便易行.本文我们主要以?22分块矩阵为例. 命题1 设n 阶行列式W 分块为A B W C D ?? = ???,则 (1) 当A 为r 阶可逆矩阵时, 1 A B W A D C A B C D -==-;

相关文档
最新文档