热回收效率计算

热回收效率计算
热回收效率计算

热回收效率计算

1.设计参数

?

?

注:以上参数以节能院办公室为例。

节能院办公室空调面积107m2,共32人,人P员密度3.4 m2/人,按3.5 m2/人计算;

②新风量参数见新风量计算书;

2.

3.夏季显热回收量及回收效率

Q=ερC p(T w-T n)V=1.13Kg/m3×1.005KJ/Kg·℃×(35.8℃-26℃)×800 m3/h×75%=6678KJ/h

=1.86kW

则夏季热回收量为η=1.86/21.25=8.8%

4.

5.冬季显热回收量及回收效率

Q=ερC p(T w-T n)V=1.3Kg/m3×1.005KJ/Kg·℃×【20℃-(-3℃)】×800 m3/h×75%=18030KJ/h =5kW

则冬季热回收量为η=5/13=38.5%

6.经济性分析

节能院每年进行冷量回收省下的主机制冷费用为1.86kW×1430h×0.26元/kWh=692元

(油价按4.1元/kg计算,则制冷能源费约为0.26元/kWh)

节能院每年进行热量回收省下的主机制热费用为5kW×1070h×0.4元/kWh=2140元

(制热能源费为实验台提供,经核算为准确数值)

则节能院每年进行热回收省下的主机能源费用为y=692+2140=2832元

节能院每小时需要800m3的风量,选择两台SA400的热回收新风机,则热回收新风机初投资为8500×2=17000元,若选择两台TWAF400的新风机,则新风机初投资为4800×2=9600元

回收年限为n=(17000-9600)÷2832=2.6年

7.结论

考虑到长沙地区夏季热回收效率太低,冬季采暖季较短,建议不采用热回收新风机,采用新风机。

132KW空压机热回收

洛阳X X有限公司 空压机热水机回收60% 可产55℃热水40吨 132KW空压机 方 案 设 计 公司名称:东莞启邦机电设备有限公司 日期: 2016年06月23日

目录 一:空压机热水机节能效果统计表 (3) 二:空压机热水机10大技术特点 (5) 三:空压机散热及热水机回收原理 (8) 四:空压机热水机热水方案设计 (10) 五:热水工艺流程图.... . (13) 六:空压机热水系统运行描述 (14) 七:经济效益和运行费用计算. (15) 八:各种供热方式运行费用比较. (16) 九:输送热水系统工程 (17) 十:质量保证标准程序和维护保养. ............ (19) 十一:空压机热水机电控原理 (21) 十二:报价单 . (23) 十三:客户案例 . (23) 十四:现场设备和水垢照片 . ... . (24) 十五:专利证书和公司资料 ... . (30)

1、全方位除垢技术:全自动干烧除垢、酸洗除垢,可彻底清除水垢,还有除 垢提醒功能,解决你的后顾之忧。 干烧除垢是通过压缩气体把换热器的水吹出机体,在水和气混合时,有冲涮旋转功能,能有效的剥离附着在管路表面的水垢,之后没有水的机体受热后,由于金属和水垢的膨胀系数不一样,水垢会膨胀开裂脱离,再冲水进去,水垢就会被带走,可以设定除垢时间和间隔时间,水垢更多的原因是长时间不清洗越积越多,到最后无法清洗。本系统自动除垢,正常设置为每天清洗一次,每次5分钟,根据各地的水质情况可调整。 经过多年的实验总结,水垢即使采用以上除垢,时间久了,在水质硬度较高的地区特别是东北、华北、西北、西南、山东等地区,水垢还是会产生,会影响的换热器的换热效果,水垢的最终解决方案只有一个,就是酸洗除垢,所有锅炉系统除垢都是酸洗除垢,因此选择特殊的换热器,采用某种特殊酸性材料,其酸性不会腐蚀换热器,而只对水垢进行反应,这可以有效的保护换热器同时又把水垢清除。 通过PLC自控技术和参考各种参数进行复杂运算,可达成除垢提醒功能,热水机的水垢达到一定程度,触摸屏有水垢报警提醒,提示需酸洗除垢,此时酸性除垢,可以很简单清洗换热器内的水垢,而不至于等到结垢很严重时才发现,影响换热效果。 只有通过以上方式的除垢,才能保护换热器,使其寿命延长,使换热寿命达到8~10年。

电热效率的计算方法

电热效率的计算方法 1.小明家的电热水壶的铭牌如图所示,在一个标准大气压下,该水壶正常工作时,用l0min 能将 2kg、10℃的水烧开。水的比热容c=4.2×103J/(kg.℃)(1)计算水吸收的热量;(2)计算消耗的电能;(3)水增加的内能比消耗的电能小多少?请结合物理知识,从节能的角度提一个合理化的建议。在一次课外活动中,某同学对家用电磁炉进行了相关的观察和研究,并记录了电磁炉及她家电能表的有关数据,如下表:请你根据这位同学在活动中获得的有关资料,解决下列问题: (1)电磁炉的功率; (2)电磁炉的热效率;(3)请你将(1)(2)中的求解结果与这位同学在活动中的有关数据进行比较,发现了什么新问题?并解释其原因,提出解决问题的办法。 1、使用电热水壶烧水,具有便捷、环保等优点。如图是某电热水壶的铭牌,假设电热水壶的电阻保持不 3 变,已知水的比热容为 c 水=4.2×10 J/(kg·℃)。(1)电热水壶的额定电流和电阻分别是多少? (2)1 标准大气压,将一壶质量为 0.5kg、温度为 20℃的水烧开,需要吸收多少热量? (3)在额定电压下,要放出这些热量,该电热水壶理论上需要工作多长时间? (4)使用时发现:烧开这壶水实际加热时间大于计算出的理论值,请分析原因。 2、如图是研究电流热效应的实验装置图。两个相同的烧瓶中均装入 0.1kg 的煤油,烧瓶 A 中电阻丝的阻值为 4Ω,烧瓶 B 中的电阻丝标识已看不清楚。当闭合开关,经过210s 的时间,烧瓶 A 中的煤油温度由 20℃升高到 24℃,烧瓶 B 中的煤油温度由 20℃升高到 22℃。假设电阻丝产生的热量全部被煤油吸收,电 3 阻丝的阻值不随温度变化,电源电压保持不变。已知煤油的比热容 c=2.1×10 J/(kg·℃)。求:(1)在此过程中烧瓶 A 中煤油吸收的热量; (2)烧瓶 B 中电阻丝的阻值; (3)电源的电压及电路消耗的总功率。 3、如图是同学家新买的一台快速电水壶,这台电水壶的铭牌如下表. 为了测量该电水壶烧水时的实际功率,同学用所学知识和爸爸合作进行了如下实验:关掉家里所有用电器,将该电水壶装满水,接入家庭电路中,测得壶中水从 25℃上升到35℃所用的时间是 50s,同时观察到家中“220V 10A 3200imp/(kW·h)”的电子式电能表耗电指示灯闪烁了 80imp.请根据相关信息解答下列问题.[c 水=4.2×10 J/(kg.℃)] (1)电水壶中水的质量; (2)电水壶烧水时的实际功率; (3)电水壶加热的效率; (4)通过比较实际功率与额定功率大小关系,简要回答造成这种关系的一种可能原因. 4、某电热水瓶的铭牌如下表所示.若热水瓶内装满水,在额定电压下工作(外界大气压强为 1 个标准大气压)

2019年中考复习系列之热效率计算专题(附录答案)

中考复习系列之热效率计算专题 一、可能涉及到的相关知识点 (1)已知密度体积求质量表达式m=ρV,其中液体的体积通常以升(L)为单位,1L=1×10-3m3 (2)物质吸热放热的公式 A、物体吸热或者对外做功的公式Q吸=cm△t ,W=pt(发动机运转),W=Fs(牵引力做功) B、固体液体燃料放热公式Q放 C、气体燃料放热公式Q放=Vq ,注意气体燃料的单位,1L=1×10-3m3 D、电器放热公式Q放=Pt 若电器正常工作,则Q放=P额t 若电器非正常工作,Q放=P实t (3)热效率的计算公式η=Q吸÷Q放或η=W利用÷Q放(被利用的能量在释放的总能量中的占比) W利用=Pt=Fs,推导P=Fv (P为发动机功率)(发动机的做功冲程提供牵引力,对外做功)二、大体分析思路 (1)热效率是能量转化问题,须先找出有用能量和总能量分别所对应的物理量 (2)总能量大概分为几类: A、煤炭烧水Q放=mq , B、电器烧水Q放=Pt , C、机车问题Q放=mq(烧油) D、太阳能烧水Q放=P0st(P0为单位面积的功率) (3)有用能量Q吸=cm△t 机车发动机W利用=Pt=Fs (4)关注能量转化的过程中是否有热量损失,若没有Q放=Q吸,η=100%。若有η小于100%,Q放η=Q吸 【一讲一练】 完全吸收(不计热量损失) 例1、柳州鑫能生物发电项目是广西第一个新型环保清洁和可再生能源生物发电示范项目,以热值为l.2 x107 J/㎏的秸杆作燃料。完全燃烧__________㎏的秸杆得到8.4×107的热量;若这些热量全部被水吸收,可使_____㎏的水从30℃上升到70℃。[水的比热容为4.2×103 J/(㎏·℃)] 变式训练1、汽油的热值是4.6×107J/ kg,完全燃烧210g汽油能放出J的热量;若这些热量全部被水吸收,可使kg 水,从20℃升高到43℃(水的比热容为4.2×103 J/(kg·℃) )。 不完全吸收(有热量损失) 基础类型一、求效率 例2.用煤气灶把2kg,初温为30℃的水烧到80℃,消耗了20g煤气,已知水的比热容是4.2×103J/(kg·℃),煤气的热值为4.2×107J/kg,则水吸收的热量为J,煤气完全燃烧放出的热量为J,煤气灶烧水的效率为% 变式训练2.某家庭需要将50kg、20℃的水加热到60℃作为生活用热水,他们利用煤气灶烧水,需燃烧0.8kg 煤气。已知煤气的热值q=4.2×107J/kg,水的比热容c=4.2×103J/(kg·℃)。求:⑴50kg、20℃的水加热到60℃需吸收的热量;⑵完全燃烧0.8kg煤气放出的热量;⑶煤气灶烧水的效率。 基础类型二、求水质量 例3、在绵阳很多较偏远的农村还没有用上天然气,使用的是瓶装的液化气,每瓶中装入液化气的质量为20kg,液化气的热值取4.2×107J/kg,每瓶液化气全部燃烧放出的热量是J,若放出的热量有50%被利用,可把 3

静态投资回收期的计算公式

静态投资回收期的计算 公式 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

内部收益率、财务净现值、静态投资回收期的计算公式 (2010-09-20 10:58:10) 标签:分类: (1)财务净现值(FNPV)。财务净现值是按行业基准收闪率或设定的目标折现率(ic),将计算期(n)_内各年净现金流量折现到建设期初的现值 之和。可根据现金流量表计算得到。在多方案比选中,取财务净现值勤 大者为优,如果FNPV0,说明项目的获利能力达到或超过了基准收益率的要求,因而在财务上可以接受。 (2)财务内部收益率(FIRR)。财务内部收益率是指项目在整个计算期内各年净现金流量现值累计等于零时的折现率。它的经济合义是在项目终了 时,保证所有投资被完全收回的折现率。代表了项目占用预期可获得的 收益率,可以用来衡量投资历的回报水平。其表达式为财务内部收益率 的计算应先采用试算法,后采内插法求得。内插公式为:内部收益率愈 大,说明项目的获利能力越大;将所求出的内部收益率与行业的基准收 益率或目标收益率ic相比,当FIRRic时,则项目的盈利能力已满足最低要求,在财务上可以被接受。 内部收益率就是实际可望达到的收益率,它是能使项目的净现值等于零的折现率.一般采用逐步测试法 基本原理是利用普通年金现值的计算公式 P=A*(P/A,i,n),推理出(P/A,i,n)=P/A 把P看成是原始投资,A看成是每年等额的现金净流量,求i

使用内部收益率指标的前提条件是1、项目的投资于建设起点一次性投入,无建设期,2、投产后每年的现金流量相等 例 建设起点投资100万,每年等额的现金流量是20万,经营期10年 有 100=20*(P/A,i,10) (P/A,i,10)=100/20=5 查10年的年金系数表, 当i等于14%时,(P/A,14%,10)=,大于5 当i等于16%时,(P/A,16%,10)=,小于5 利用内插法 i=14%+()/()*(16%-14%)=% 现金流折现法就是把以后各年的现金流量折算成现在的价值,然后再于原始投资比较,大于原始投资(大于0),该方案可行,小于0,不可行 比如现在投资5万元,以后5年都有2万元的收入,同期银行存款利率是6%,问你是否进行投资 5年都有2万元的收入相当于现在的价值=2*(P/A,6%,5)=2*= 由于大于原始投资,故该方案可行 (3)动态投资回收期(Pt)。 动态投资回收期是指项目以净收益抵偿全部投资所需的时间,是反映投资回收期力的重要指标。动态回收期以年表示,一般自建设开始年算起表达公式为:动态投资收回收期=[累计折现值开始出现正值的年数-1]+上年累计折现值的绝对值/当年净现金流量的折现值在项目财务评价中,动态投资回收期愈小说明项

空调系统热回收技术简介

空调系统热回收技术简介 陈振乾施明恒 (东南大学能源与环境学院南京210096) 摘要:中央空调系统的热回收技术在建筑节能中具有重大的意义。本文分析了中央空调热回收技术原理和建筑中央空调排风及空气处理中的能量回收系统。 Brief Introduction to Heat Recovery in Air Conditioning System Chen Zhenqian and Shi Mingheng (School of Energy and Environment, Southeast University, Nanjing 210096) Abstract: Heat recovery technology in central air conditioning system is very important in building energy saving. The principle of heat recovery technology in central air conditioning system is analyzed. The energy recovery in exhaust air and air handling of building is introduced. 一、前言 随着我国空调普及率的逐年提高,其能耗不断增加,建筑能耗在总能耗中所占比重越来越大。在一些欧美国家,建筑能耗中的采暖、通风和空调的耗能占全国总能耗的30%;在我国也达到20%左右,而且在迅速增加。高级民用建筑的中央空调耗能占建筑总耗能的30%~60%。能源的高消耗对我国发展造成了很大的压力,根据发改委能源组提供的材料,从1980年到1985年我们国家GDP的年增长率是10.7%,能源消费的增长率是10.9%,1986—1990年GDP年增长是7.9%,能源消费的增长率9.2%。1991—1995年GDP的年增长率是12%,能源消费的增长率是5.9%。1995—2000 年,GDP开始时8.3%,后来调整为8.6%,能源消费增长率是0.6%。2001—2005年GDP年增长率是9.47%,能源的消费增长是9.93%。其中2003年GDP的增长率是10%,能源是15.3%,2004年GDP是10.1%,能源增长率是16.1%。从这个数字可以看出,我们国家从1980—2005年GDP的增长一直在7.8—12%之前,基本上是这个范围内波动,而能源消耗的波动很大,特别是2003、2004年,能源的消费增长远远高于GDP的增长。和发展国家相比我国每平方米的能耗是他们的3倍,这说明在能源的高消费上必须要引起全社会的重视。目前中国每年竣工建筑面积约为20亿m2,其中公共建筑约有4亿m2。在公共建筑(特别是大型商场、高档旅馆酒店、高档办公楼等)的全年能耗中,大约50%~60%消耗于空调制冷与采暖系统,20%~30%用于照明。而在空调采暖这部分能耗中,大约20%~50%由外围护结构传热所消耗(夏热冬暖地区大约20%,夏热冬冷地区大约35%,寒冷地区大约40%,严寒地区大约50%)。从目前情况分析,这些建筑在围护结构、采暖空调系统,以及照明方面,共有节约能源50%的潜力。采暖空调节能潜力最大,在暖通空调设计方面加以控制就能够有效的节能能源。而新风带来的潜热负荷可以占到空调总负荷的20%-40%,开发节能的新风系统是建筑节能领域的一项重大课题。因此降低空调系统的能耗对降低建筑物耗能、节约能源有重要意义。本文主要对空调系统的热回收技术原理进行分析介绍。 二、空调冷水机组余热回收 中央空调的冷水机组在夏天制冷时,一般机组的排热是通过冷却塔将热量排出。在夏天,利用热回收技术,将该排出的低品位热量有效地利用起来,结合蓄能技术,为用户提供生活热水,达到节约能源的目的。目前,酒店、医院、办公大楼的主要能耗是中央空调系统的耗电及热水锅炉的耗油消耗。利用中央空调的余热回收装置全部或部分取代锅炉供应热水,将会使中央空调系统能源得到全面的综合利用,从而使用户的能耗大幅下降。通常,该热回收一般有部分热回收和全部热回收。 1、部分热回收 部分热回收将中央空调在冷凝(水冷或风冷)时排放到大气中的热量,采用一套高效的热交换装置对热量进行回收,制成热水供需要使用热水的地方使用,如图1所示。由于回收的热量较大,它可以完全替

锅炉效率计算

单位时间内锅炉有效利用热量占锅炉输入热量的百分比,或相应于每千克燃料(固体和液体燃料),或每标准立方米(气体燃料)所对应的输入热量中有效利用热量所占百分比为锅炉热效率,是锅炉的重要技术经济指标,它表明锅炉设备的完善程度和运行管理水平。锅炉的热效率的测定和计算通常有以下两种方法: 1.正平衡法 用被锅炉利用的热量与燃料所能放出的全部热量之比来计算热效率的方法叫正平衡法,又叫直接测量法。正平衡热效率的计算公式可用下式表示: 热效率=有效利用热量/燃料所能放出的全部热量*100% =锅炉蒸发量*(蒸汽焓-给水焓)/燃料消耗量*燃料低位发热量*100% 式中锅炉蒸发量——实际测定,kg/h; 蒸汽焓——由表焓熵图查得,kJ/kg; 给水焓——由焓熵图查得,kJ/kg; 燃料消耗量——实际测出,kg/h; 燃料低位发热量——实际测出,kJ/kg。 上述热效率公式没有考虑蒸汽湿度、排污量及耗汽量的影响,适用于小型蒸汽锅炉热效率的粗略计算。 从上述热效率计算公式可以看出,正平衡试验只能求出锅炉的热效率,而不能得出各项热损失。因此,通过正平衡试验只能了解锅炉的蒸发量大小和热效率的高低,不能找出原因,无法提出改进的措施。 2.反平衡法 通过测定和计算锅炉各项热量损失,以求得热效率的方法叫反平衡法,又叫间接测量法。此法有利于对锅炉进行全面的分析,找出影响热效率的各种因素,提出提高热效率的途径。反平衡热效率可用下列公式计算。 热效率=100%-各项热损失的百分比之和 =100%-q2-q3-q4-q5-q6 式中q2——排烟热损失,%; q3——气体未完全燃烧热损失,%; q4——固体未完全燃烧热损失,%; q5——散热损失,%; q6——灰渣物理热损失,%。 大多时候采用反平衡计算,找出影响热效率的主因,予以解决。

转轮热回收与乙二醇热回收的比较分析

转轮热回收与乙二醇热回收对比分析 一、转轮热回收和乙二醇热回收工作原理 转轮热回收:以轮芯作为换热媒介,转轮使用定制的蜂窝状金属材料,表面涂有一层特殊等级的吸附材料分子筛干燥剂。将转轮置于风道之间,从而使其分成两部分。来自空调房间不新鲜空气从一半转轮排出,室外空气以相反的方向从另一半转轮进入。同时,轮子缓慢旋转(约20RPM)。金属层从较热(冷)空气流吸收存储热量(冷量),并释放到较冷(较热)部分,显热发生转移。附着干燥剂的金属片将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收(同时释放热量),再蒸发(吸热),将湿气释放到低湿度的气流里,这个过程将潜热转移。 乙二醇热回收:以换热器和乙二醇溶液作为换热媒介在排风侧将排风中的冷量(热量)通过换热器传递给乙二醇溶液,降低(提高)乙二醇溶液的温度,然后通过循环泵将被冷却(加热)的乙二醇溶液输送到新风侧的换热器中,降低(提高)新风温度,减少系统的负荷和整个空调系统的运行成本。 二、关键部件外形图 转轮热回收转轮:乙二醇热回收换热器 三、关键部件材质 转轮热回收转轮: 可选用进口优质产品美国百瑞(Bry-Air)热回收转轮,美国百瑞(Bry-Air)热回收转轮为能量回收领域的领先品牌。 其特点如下: 1、独有分子筛技术:百瑞热回收转轮的基材采用铝箔材料,在铝箔表面覆盖不可移动式

分子筛干燥剂;相比采用其他材料覆盖在铝箔上的其他热回收转轮,美国百瑞(Bry-Air)热回收转轮在铝箔表面覆盖低微孔尺寸佛石干燥剂,仅容许水分子通过,拒绝所有其他污染物,其结果是污染物只留在排风中。 2、百瑞转轮内置净化装置:消除了交叉污染,做到新风和排风气流的隔离,防止新风排风的交叉污染;净化装置具备严格的空气流隔离功能,以防止细菌、灰尘和污染物从排风侧携带到新风侧,净化装置和迷宫式密封系统把交叉污染的排风浓度限制在0.04%。 3、清洁扇:转轮采用可调整式内置清洁扇清洗部件;免除清洁烦恼,降低运行成本。 乙二醇热回收换热器: 排风侧的换热器和新风侧的换热器组成,两换热器直接通过乙二醇管道相连,通过循环泵循环。由于有载冷剂乙二醇的存在,乙二醇有一定的挥发性及有毒性,且是可燃性液体,存在泄露隐患。 四、与空调系统配套情况 转轮热回收: 由于转轮热回收整体结构简单,无连接件。则与空调系统配套较为方便,可作为空调箱的一个功能段可以上下安装也可以左右安装。可以承收5.5m/s的面风速,占用空间小。 乙二醇热回收: 由于连接部件较多,结构复杂,连接件较多。则与空调系统配套较复杂,连通管道的泄漏,换热媒介的质量,换热器的质量,管道循环泵的质量,均可形成空调整套系统隐患。可作为空调箱的一个功能段可以上下安装也可以左右安装。比较适用于送排风须完全隔离的(甚至是远距离的末端处理)送排风系统。可承受的最大面风速为2.8m/s,占用空间大。 五、换热效率 转轮热回收: 中间换热媒介单一,换热效率高,在高温高湿条件下显热效率和潜热效率到均可达到70%以上,最高可达90%(焓换效率)。 乙二醇热回收: 间接能量回收(显热)型,中间换热媒介较多,换热效率低,显热效率一般仅为30-40%,最高仅能达到45%基本上无潜热回收(温度交换效率)。 下面就本工程单台机组冬季运行时作经济分析: 转轮热回收换热效率按70%,乙二醇热回收换热效率按40%,其他参数暂定如下:

投资回收期计算教学总结

投资回收期计算 投资回收期就是使累计的经济效益等于最初的投资费用所需的时间。投资回收期就是指通过资金回流量来回收投资的年限。标准投资回收期是国家根据行业或部门的技术经济特点规定的平均先进的投资回收期。追加投资回收期指用追加资金回流量包括追加利税和追加固定资产折旧两项。 中文名投资回收期计算性质累计的经济效益等于投资费用分类追加利税和追加固定资产特点不考虑资金时间价值 分类 静态投资回收期 静态投资回收期是在不考虑资金时间价值的条件下,以项目的净收益回收其全部投资所需要的时间。投资回收期可以自项目建设开始年算起,也可以自项目投产年开始算起,但应予注明。 动态投资回收期 在采用投资回收期指标进行项目评价时,为克服静态投资回收期未考虑资金时间价值的缺点,就要采用动态投资回收期。 计算公式 静态投资回收期可根据现金流量表计算,其具体计算又分以下两种情况: 1)项目建成投产后各年的净收益(即净现金流量)均相同,则静态投资回收期的计算公式如下:P t =K/A 2)项目建成投产后各年的净收益不相同,则静态投资回收期可根据累计净现金流量求得,也就是在现金流量表中累计净现金流量由负值转向正值之间的年份。其计算公式为: P t =累计净现金流量开始出现正值的年份数-1+上一年累计净现金流量的绝对值/出现正值年份的净现金流量 评价准则 将计算出的静态投资回收期(P t )与所确定的基准投资回收期(Pc)进行比较: l)若P t ≤Pc ,表明项目投资能在规定的时间内收回,则方案可以考虑接受; 2)若P t >Pc,则方案是不可行的。 动态投资 计算公式 动态投资回收期是把投资项目各年的净现金流量按基准收益率折成现值之后,再来推算投资回收期,这就是它与静态投资回收期的根本区别。动态投资回收期就是净现金流量累计现值等于零时的年份。 动态投资回收期的计算在实际应用中根据项目的现金流量表,用下列近似公式计算: P't =(累计净现金流量现值出现正值的年数-1)+上一年累计净现金流量现值的绝对值/出现正值年份净现金流量的现值 评价准则 1)P't ≤Pc(基准投资回收期)时,说明项目(或方案)能在要求的时间内收回投资,是可行的; 2)P't >Pc时,则项目(或方案)不可行,应予拒绝。 按静态分析计算的投资回收期较短,决策者可能认为经济效果尚可以接受。但若考虑时间因素,用折现法计算出的动态投资回收期,要比用传统方法计算出的静态投资回收期长些,该方案未必能被接受。 优点缺点 优点

火力发电厂热效率计算

火力发电厂 火力发电厂简称火电厂,是利用煤、石油、天然气作为燃料生产电能的工厂,它的基本生产过程是:燃料在锅炉中燃烧加热水使成蒸汽,将燃料的化学能转变成热能,蒸汽压力推动汽轮机旋转,热能转换成机械能,然后汽轮机带动发电机旋转,将机械能转变成电能。 热电厂经济指标释义与计算 1.发电量:电能生产数量的指针。即发电机组产出的有功电能数量。计算单位:万千瓦时(1×104kwh) 2.供电量:发电厂实际向外供出电量的总和。即出线有功电量总和。计算单位:万千瓦时(1×104kwh) 3.厂用电量:厂用电量=发电量-供电量单位:万千瓦时(1×104kwh) 4.供热量:热电厂发电同时,对外供出的蒸汽或热水的热量。计量单位:GJ 5.平均负荷:计算期内瞬间负荷的平均值。计量单位:MW 6.燃料的发热量:单位量的燃料完全燃烧后所放出的热量成为燃料的发热量,亦称热值。计算单位:KJ/Kg。 7.燃料的低位发热量:单位量燃料的最大可能发热量(包括燃烧生成的水蒸气凝结成水所放出的汽化热)扣除水蒸汽的汽化热后的发热量。计量单位:KJ/Kg。 8.原煤与标准煤的折算总和能耗计算通则(GB2589-81)中规定:低位发热量等于29271kj (7000大卡)的固体燃料,称为1kg标准煤。标准煤是指低位发热量为29271kj/kg的煤。不同发热量下的耗煤量(原煤耗)均可以折算为标准耗煤量,计算公式如下:标准煤耗量(T)=原煤耗量x原煤平均低位发热量/标准煤低位发热量=原煤耗量x原煤平均低位发热量/29271 9.燃油与标准煤、原煤的换算低位发热量等于41816kj(10000大卡)的液体燃料,称为

热回收效率计算

热回收效率计算 1.设计参数 ? ? 注:以上参数以节能院办公室为例。 节能院办公室空调面积107m2,共32人,人P员密度3.4 m2/人,按3.5 m2/人计算; ②新风量参数见新风量计算书; 2. 3.夏季显热回收量及回收效率 Q=ερC p(T w-T n)V=1.13Kg/m3×1.005KJ/Kg·℃×(35.8℃-26℃)×800 m3/h×75%=6678KJ/h

=1.86kW 则夏季热回收量为η=1.86/21.25=8.8% 4. 5.冬季显热回收量及回收效率 Q=ερC p(T w-T n)V=1.3Kg/m3×1.005KJ/Kg·℃×【20℃-(-3℃)】×800 m3/h×75%=18030KJ/h =5kW 则冬季热回收量为η=5/13=38.5% 6.经济性分析 节能院每年进行冷量回收省下的主机制冷费用为1.86kW×1430h×0.26元/kWh=692元 (油价按4.1元/kg计算,则制冷能源费约为0.26元/kWh) 节能院每年进行热量回收省下的主机制热费用为5kW×1070h×0.4元/kWh=2140元 (制热能源费为实验台提供,经核算为准确数值) 则节能院每年进行热回收省下的主机能源费用为y=692+2140=2832元 节能院每小时需要800m3的风量,选择两台SA400的热回收新风机,则热回收新风机初投资为8500×2=17000元,若选择两台TWAF400的新风机,则新风机初投资为4800×2=9600元 回收年限为n=(17000-9600)÷2832=2.6年 7.结论 考虑到长沙地区夏季热回收效率太低,冬季采暖季较短,建议不采用热回收新风机,采用新风机。

热回收空调原理、特点及优势

热回收空调原理、特点及优势

热回收空调原理、特点及优势 简单地说,热回收空调是把制冷循环中制冷工质冷凝放热过程放出的热量利用起来制备热水。在如今能源紧张、资源匮乏的年代,节能、环保已成为持续发展的主题,空调作为建筑的主要能耗之一,怎么从空调上节约能源是迫切需要面对的问题。热回收空调显著的节能效果现受到越来越多行业学者的关注,这与其本身具备的特点和优势是密不可分的。 热回收空调原理 一、常规空调制冷系统中的能耗问题 业内人士都知道,“制冷”并不仅仅是一个简单的降温过程,与自然冷却相比,“制冷”的过程实际上是通过消耗一定的外界能量(如电能、热能、太阳能等),把热量从“低温热源”转移到“高温热源”的过程。因此,我们通过“制冷”把载冷剂的温度降低的同时,加上外功转化的热量,必然会产生比冷量更大的热量。目前绝大部分的空调设计,这部分热量不但没有利用,还要消耗水泵及风机动力,把热量通过冷凝器由冷却介质(水、空气等)带走。我们如果能够把这部

分热量利用起来,则可以实现单向能耗,双向输出,大大提高制冷机组的能源利用率,还可以节约冷却系统的能耗。 二、热回收原理 因此,基于以上系统能源再利用的出发点考虑,广州哈思空调有限公司研发生产的热回收空调技术,取得了很好的节能效果。其系统原理图及相关工作原理如下:

依上图(图3—1)所示,冷水水源直接进入热水器套管入水口,通过逆流循环吸收经过压缩后的高温高压的制冷剂释放出来的热量,不但可以提高冷凝系统的效率又达到加热冷水的目的。加热后的热水(55℃~60℃)直接进贮保温水箱,以备各项生活热水之用。整个空调系统是以电能来驱动工作,而非电能来制热。就节能方面同比之下,电资源虽丰富,但用电直接制热的方式不但耗电量大,运行成本高,而且电热管容易损坏;对于常规用燃油锅炉加热的方式,由于燃油的价格高,产生的效能并不高。因此,该热回收空调技术在节能方面的效果是相当显著的,而且该系统在夏季制冷时所产生的热水是完全免费的。 热回收空调特点及优势 简单地说,热回收空调是把制冷循环中制冷工质冷凝放热过程放出的热量利用起来制备热水。在如今能源紧张、资源匮乏的年代,节能、环保已成为持续发展的主题,空调作为建筑的主要能耗之一,怎么从空调上节约能源是迫切需要面对的问题。热回收空调显著的节能效果现受到越来越

沪科版九年级物理上册同步测试:专题训练(1) 热量、热值和热效率的综合计算

专题训练(一) 热量、热值和热效率的综合计算?类型一热量的计算 1.质量为500 g的金属块,温度从100 ℃降低到20 ℃共放出了3.52×104J的热量,金属块的比热容为( ) A.0.88×103 J/(kg·℃) B.0.44×103 J/(kg·℃) C.0.22×103 J/(kg·℃) D.0.11×103 J/(kg·℃) 2.甲、乙两金属块的质量之比是2∶1,比热容之比是3∶4,若它们吸收相同的热量,则它们升高的温度之比是( ) A.2∶3 B.3∶2 C.3∶8 D.8∶3 3.质量为1 kg、初温为20 ℃的水吸收4.2×105 J的热量后,它的温度在下列给出的四个温度中,最多有几个可能温度( ) ①80 ℃②100 ℃③120 ℃④130 ℃ A.1 B.2 C.3 D.4 4.向洗澡盆放水时,已知冷水为20 ℃,热水为80 ℃,想得到40 ℃的温水120 kg,应该分别放冷水和热水各多少千克?(不计热损失) ?类型二热值的计算 5.“可燃冰”作为新型能源,有着巨大的开发使用潜力.今年5月,我国已在世界上首次实现了可燃冰连续超过7天的稳定开采.若可燃冰的热值为 1.38×1010 J/m3,1 m3的可燃冰完全燃烧放出的热量相当于________kg汽油完全燃烧放出的热量.(q汽油=4.6×107 J/kg) 6.质量为5 kg、初温为15 ℃的水,吸热后温度升高到95 ℃,则需吸收的热量为________J;如果这些热量由天然气燃烧来提供,则至少需要燃烧热值为4.0×107J/m3的天然气________m3.[水的比热容为4.2×103 J/(kg·℃)] 7.天然气具有热值高、投资成本低、价格实惠、污染少、安全等优点.钦州市今年天然气用户预计达到6万户,年用气量将达到1350万立方米以上.小李家5月份使用天然气10 m3,已知天然气价格为3.27元/m3,热值为8.4×107 J/m3.求:

投资回收期-计算方法

静态投资回收期和动态投资回收期 1.静态投资回收期(简称回收期),是指投资项目收回原始总投资所需要的时间,即以投资项目经营净现金流量抵偿原始总投资所需要的全部时间。它有"包括建设期的投资回收期(PP)"和"不包括建设期的投资回收期(PP′)"两种形式。 确定静态投资回收期指标可分别采取公式法和列表法。 (1)公式法 如果某一项目的投资均集中发生在建设期内,投产后各年经营净现金流量相等,可按以下简化公式直接计算不包括建设期的投资回收期: 不包括建设期的回收期( PP′)=原始总投资/投产后若干年相等的净现金流量 包括建设期的回收期=不包括建设期的回收期+建设期 (2)列表法 所谓列表法是指通过列表计算"累计净现金流量"的方式,来确定包括建设期的投资回收期,进而再推算出不包括建设期的投资回收期的方法。因为不论在什么情况下,都可以通过这种方法来确定静态投资回收期,因此,此法又称为一般方法。该法的原理是:按照回收期的定义,包括建设期的投资回收期PP满足以下关系式,即: 这表明在财务现金流量表的"累计净现金流量"一栏中,包括建设期的投资回收期PP恰好是累计净现金流量为零的年限。 如果无法在"累计净现金流量"栏上找到零,必须按下式计算包括建设期的投资回收期PP: 包括建设期的投资回收期(PP) =最后一项为负值的累计净现金流量对应的年数+最后一项为负值的累计净现金流量绝对值÷下年净现金流量 或: 包括建设期的投资回收期(PP) =累计净现金流量第一次出现正值的年份-1+该年初尚未回收的投资÷该年净 现金流量 2.静态投资回收期的优点是能够直观地反映原始总投资的返本期限,便于理解,计算简单;可以直接利用回收期之前的净现金流量信息。缺点是没有考虑资金时间价值和回收期满后发生的现金流量;不能正确反映投资方式不同对项目的影响。只有静态投资回收期指标小于或等于基准投资回收期的投资项目才具有财务可行性。 而动态投资回收期弥补了静态投资回收期没有考虑资金的时间价值这一缺点,使其更符合实际情况。动态投资回收期是项目从投资开始起,到累计折现现金流量等于0时所需的时间。

一类是显热回收型一类是全热回收型显热回收型回收的能量体现在

一类是显热回收型,一类是全热回收型。显热回收型回收的能量体现在新风和排风的温差上所含的那部分能量;而全热回收型体现在新风和排风的焓差上所含的能量。单从这个角度来说,全热性回收的能量要大于显热回收型的能量,这里没有考虑回收效率的因素。因此全热回收型是更加节能的设备。 按结构分,热回收器分为以下几种: (1)回转型热交换器 (2)热回收环热交换器 (3)热管式热交换器

(4)静止型板翅式热交换器 在以上几种热交换器中,热回收环型和热管型一般只能回收显热。回转型是一种蓄热蓄湿型的全热交换器,但是它有转动机构,需要额外的提供动力。而静止型板翅式全热交换器属于一种空气与空气直接交换式全热回收器,它不需要通过中间媒质进行换热,也没有转动系统,因此,静止型板翅式全热交换器(也叫固定式全热交换器)是一种比较理想的能量回收设备。 2 固定式全热交换器的性能 2.1 固定式全热交换器 固定式全热交换器是在其隔板两侧的两股气流存在温差和水蒸气分压力差时,进行全热回收的。它是一种透过型的空气——空气全热交换器。 这种交换器大多采用板翅式结构,两股气流呈交叉型流过热交换器,其间的隔板是由经过处理的、具有较好传热透湿特性的材料构成。 2.2 三种效率的定义 全热交换器的性能主要通过显热、湿交换效率和全热交换效率来评价,它们的计算公式为: 显热交换效率: SE= 湿交换效率: ME= 全热交换效率: EE= 其中:Gmin——质量流量小的一侧的空气流量 i1、i2——分别为两侧空气入口的焓值 t1、t2——分别为两侧空气入口的温度 ——分别为两侧空气入口的焓值 cp ——质量流量小的一侧的空气的比热 对效率定义的表达式很多,但最本质的定义还是上述对效率的表达式。这三种效率最本质的定义都是:实际交换的量(热量或者湿量)与可能达到的理想的最大的交换量的比值。

热效率计算

1.“热得快”是一种插在保温瓶中烧开水的家用电器,你利用课内学过的仪器,设计一个测定“220V 1000W”“热得快”的热效率的方案,要求: (1)写出所需器材、测量步骤及操作中为了减小误差而需注意的事项; (2)用字母代表物理量,写计算“热得快”热效率的公式.(设测量时照明电路电压为220伏) 考点:能量利用效率.专题:实验题;简答题;设计与制作题.分析:要解决此题,需要知道“热得快”的热效率是热得快有效利用的热量与所消耗电能的比值. 有效利用的热量是水吸收的热量,要掌握热量的计算公式Q=cm△t,同时要知道消耗的电能的计算公式W=Pt.根据所需测量的物理量选择合适的工具.根据热效率的概念得出热效率的计算公式. 解答:解:(1)需要用热得快加热水,所以要用到水,为了减少热量的散热损失,需要用到保温瓶.根据公式Q=cm△t,要用温度计测量温度,用天平测量水的质量. 根据公式W=Pt,还要用手表测量加热所用的时间. 用到器材:水、保温瓶、湿度计、手表. 测量步骤:①用天平测出一质量为m的水,装入保温瓶;②用温度计测出水的初温t0;③开始加热,同时计时;④经过一定时间t1后,测出水的末温t;⑤利用效率的公式代入数据求出“热的快”的效率. 2.(2008?宜昌)电磁炉是一种新型灶具,如图所示是电磁炉的原理图:炉子的内部有一个金属线圈,当电流通过线圈时会产生磁场,这个变化的磁场又会引起电磁炉上面的铁质锅底内产生感应电流(即涡流),涡流使锅体铁分子高速无规则热运动,分子互相碰撞、摩擦而产生热能,从而迅速使锅体及食物的温度升高.所以电磁炉煮食的热源来自于锅具本身而不是电磁炉本身发热传导给锅具,它是完全区别于传统的靠热传导来加热食物的厨具.请问: (1)电磁炉与普通的电炉相比,谁的热效率更高?为什么? (2)某同学用功率为2000W的电磁炉,将1㎏初温为25℃的水加热到100℃,需要的时间为2分55秒,则消耗的电能是多少?电磁炉的热效率是多少?(水的比热容为4.2×103J/(kg?℃)) 考点:能量利用效率;热量的计算;电功的计算.专题:计算题;应用题;信息给予题;推理法. 分析:(1)电磁炉煮食的热源来自于锅具本身而不是电磁炉本身发热传导给锅具,它是完全区别于传统的靠热传导来加热食物的厨具,热散失少,电磁炉的热效率更高; (2)知道水的质量、水的比热容、水的初温和末温,利用吸热公式Q吸=cm△t求水吸收的热量(有用能量);知道电磁炉的电功率和加热时间,利用W=Pt求消耗的电能(总能量),再利用效率公式求电磁炉的热效率. 解:(1)因为电磁炉是利用锅体本身发热来加热食物,没有炉具向锅体传热的过程,热散失少,所以电磁炉的热效率更高; (2)加热水消耗的电能: 答:(1)电磁炉与普通的电炉相比,电磁炉的热效率更高; (2)消耗的电能是3.5×105J,电磁炉的热效率是90%. W=Pt=2000W×175s=3.5×105J, 水吸收的热量: Q吸=cm水△t =4.2×103J/(kg?℃)×1kg×(100℃-25℃) =3.15×105J, 3、电热沐浴器的额定电压为220V,水箱里装有50㎏的水,正常通电50min,观察到沐浴器上温度示数由20℃上升到46.4℃.求: (1)在加热过程中,水吸收的热量是多少?【C水=4.2×103J/(Kg·℃)】 (2)若沐浴器内的发热电阻产生的热量由84℅被水吸收,那么发热电阻的阻值多大?工作电路的电流多大? (3)请你说出热损失的一个原因,并提出减小热损失的相关建议.

中考热效率计算专题

热效率计算专题 效率计算主要分为三类:一、功和热量的效率问题 二、热量和电能的效率问题 三、功和电能的效率问题 计算效率的一般步骤:1.首先确定是什么能量转化为其他能量 2.找到题目中的有用能量和总能量 3.带入计算 知道效率计算有用能量或者总能量:1.确定能量转移的方向 2.找到本题中的有用能量和总能量分别是什么能量 3.公式变形求解 效率计算的通用式:η=有用的能量(或有用功) 总能量(或总功) ×100% 例一、热量效率计算 (14兰州)34.(2014年兰州市)水壶里装有2kg、20℃的水,用天然气炉具将其加热至沸腾,已知天然气的热值为,大气压强为1标准大气压,。求: ⑴烧开这壶水,水需要吸收多少热量? ⑵若烧开这壶水消耗的天然气是,则天然气炉具的效率是多少? 答案:⑴⑵40% 1.(14玉林)26.某团队在海拔3000多米高山上野营时,使用铁锅烧水,他们发现把体积为2L的水从10℃加热到85℃时,共消耗了5kg的干木柴,已知水的比热容为4.2×103J/(kg.℃),干木柴的热值为1.2×107J/kg)。求: (1)干木柴完全燃烧放出的热量。? (2)水吸收的热量。 (3)铁锅烧水的的效率。 (4)他们也发现在高山上用铁锅煮马铃薯时,尽管锅里的水哗哗地沸腾了很长时间。马铃薯还是煮不软,为什么? 答案:解:(1)干木柴完全燃烧放出的热量:Q放=qm= 1.2×107×5=6×107(J) 水的质量:m水=ρ水V水=1.0×103×2×10-3 =2(kg) 水吸收的热量:Q吸=cm(t-t0)=4.2×103×2×(85-10)=6.3×105(J) (3)铁锅烧水的的效率:η=Q吸/Q放=6.3×105(J)/6×107(J)=1.05% (4)因为沸点随气压的减小而降低,高山上气压小,所以水沸点降低,铁锅里的水尽管沸腾了,但是温度比较低,马铃薯还是煮不软。 2.(14聊城)26.(6分)煤、石油、天然气的过量开采使人类面临能源危机.某县在冬季利用地热能为用户取暖.县内有一口自喷状态地热井,出水温度为90℃,出水流量为150m3/h. (1)求每小时流出的地热水温度降低到50℃,所放出的热量. (2)这些热量如果用天然气蒸汽锅炉供热,且天然气蒸汽锅炉的热效率为90%,则利用上述地热能供暖一小时可以节约多少天然气? (ρ 水 =1.0×103kg/m3,c水=4.2×103J/(kg?℃),天然气的热值为4×107J/m3)

空压机热回收计算

空压机冷却器余热回收应用案例分析 作者:西安工程大学邓泽民 文章来源:本站原创 点击次数:44 时间:2014/12/24 14:01:50 摘要:在纺织厂中,由于无油螺杆空压机制得的压缩空气洁净无油,因此被大量应用,但是高温压缩空气中大量余热通过冷却塔被排放到大气中,不仅造成了能源的极大浪费而且产生了废热污染大气。为此,提出合理的改造方案来回收这部分余热,对其可行性和经济性进行分析,并对中间冷却器进行改造设计。此设计方案是在原有中间冷却器的基础上进行的合理改造,只需要投资4.75万元,每年就可以为该纺织厂节约洗浴用水所需要的8.03万元燃煤费,而且杜绝了燃煤产生的污染物。该方案可为空气压缩机余热回收利用技术在纺织厂的应用提供参考。 关键词:中间冷却器热回收改造节能 引言 纺织厂中,空压机作为动力源,用于气动加压、气动输送、气动引纬等方面。空压机将电动机的部分机械能转化成空气的压力能,在此过程中,会产生大量的热能。美国能源局的一项统计显示:压缩机运行过程中真正用于增加空气势能而消耗的电量仅占其总电耗的15%,其余的几乎都转化为热量[1]。为了保证空压机的正常运行,这部分热量主要通过空气冷却或水冷却排到大气中去,这样造成了能源的极大浪费而且产生了废热污染大气。当前,纺织工业“十二五”发展规划要求加快绿色环保、资源循环利用及节能减排等先进适用技术和装备的研发和推广应用。组织实施节能、降耗、减排的共性、关键技术开发和产业化应用示范[2]。为了响应国家节能减排的方针政策,对西安某纺织厂空压站提出可行的方法和合理的方案,对热量进行回收利用,达到节能减排的目的,提出了一种纺织厂余热回收的方案。 无油螺杆空压机工作原理 目前,该纺织厂采用的是AtlasZR5-53型无油螺杆空压机。冷却方式采用的是水冷却,

太阳能集热器月平均集热效率计算方法、热水系统热性能快速检测方法

附录E 太阳能集热器月平均集热效率计算方法 E.0.1 太阳能集热器月平均集热效率,应根据集热器瞬时效率方程(瞬时效率曲线)实际检测结果,按下式计算: η = η0-U ×(t i - t a ) / G 式中η—基于采光面积的集热器月平均集热效率(%)。 η0—基于采光面积的集热器瞬时效率曲线截距(%)。 (式E .0.1) U —基于采光面积的集热器瞬时效率曲线斜率[W/(m2·℃]。 t i —集热器工质进口温度(℃)。 t a —月平均环境空气温度(℃)。 G —月平均日总太阳辐照度(W/m2)。 (t i ?t a)/G—归一化温差[(℃·m2)/ W]。 E.0.2 归一化温差计算的参数选择,应符合下列原则: 1 月平均集热器工质进口温度应按下式计算: t i = t l/3+2 t i /3 式中:t i —集热器工质进口温度(℃)。 (式 E.0.2-1) t l —冷水计算温度(℃,取所在地统计数据)。 t r —热水设计温度(℃)。 2 月平均环境气温(应取项目所在地气象统计数据)。 3 月平均日总太阳辐照度应按下式计算: G =J T ×1000 /(S y ×3.6) (式E.0.2-2) 式中:G —月平均日集热器采光面上的总太阳辐照度(W/m2)。 J T—月平均日太阳辐照量[MJ/(m2·d)]。 Sy—月平均日照小时数(h/d)。

附录F 太阳能热水系统热性能快速检测方法 F.1 一般规定 F.1.1 本方法适用于晴天条件下对采用平板或真空管太阳能集热器构成的太阳能集中、以及分户储热水箱为闭式承压水箱的太阳能集中—分散和分散太阳能热水系统的日热水温升快速检测。 F.1.2 太阳能热水系统热性能快速检测内容应包括: 1 集热器类型,是否带反光板;总采光面积,总面积。 2 储热水箱规格,数量,有效水量。 3 无辅助热源补充条件下的太阳能热水系统日热水温升。 F.1.3 同一类型的太阳能热水系统,系统抽检量不应少于1%的该类型系统总数量,且不得少于1套。 F.1.4 对太阳能集中—分散供热水系统的检测,至少应含对集中供热水主管近端、远端和中间区域各1处分户储热水箱日热水温升的检测。 F.1.5 检测应在系统完成调试和试运行后进行。检测期间,太阳能热水系统平均供热负荷率不应小于50%,储热水箱有效容水量应大于等于设计日产水量的95%。 F.1.6 检测期间,不得有冷水注入系统;辅助加热设备不得启用;系统中的防冻用自限式电热带和其它常规热源补热设备不得启用。 F.1.7 温度测量仪表最大允许误差应小于等于0.2℃,分辨率应小于等于 0.1℃。 F.1.8 检测应在晴好天气下进行。检测时长冬季宜不少于6 小时,夏季宜不少于8 小时。 F.2 检测步骤 F.2.1 太阳能集中供热水系统的检测应按以下步骤进行: 1 在水箱水位有效高度的1/6H、1/2H、5/6H 处,布置水温测点(应注意避免使测量水温的温度传感器与水箱壁接触)。

相关文档
最新文档