33_UG热固耦合基础案例_沈春根

流固热固耦合分析软件

MpCCI 1.3.2 for MPICHNT 1.2.5 1CD 流固热固耦合分析软件MpCCI v3.0.6 WinALL 1CD 流固热固耦合分析软件MpCCI v3.03 Linux64 1CD 流固热固耦合分析软件MpCCI v3.0.6 Documentation 1CD MPI Fusion Meshing Details 1CD Moldflow 系列教程 Moldflow MPI 3.0 培训教程 MoldFlow 4.0 最新培训教材 Moldflow公司出的塑件设计原理 B14 模流分析中文教程(即B14仪表板上本体流动分析) 模流分析基础入门(中文版) HydroAnalysis Inc产品: EnviroInsite.v5.5.0.2 1CD(对地下水进行可视化建模的工具) SCHOUENBERG产品: Calcmaster.v6.1 1CD(最复杂的注塑模型计算工具,可以快速计算出模型造价,建造工时,注模数据) SIMCON产品: Simcon CADMould 3D-F v2.0 1CD(塑料注塑成型模拟软件)

华塑CAE: 华塑注塑成形流动分析系统HsCAE3DRF5.5 smart 1CD(企业版) 华塑塑料注射成型过程仿真集成系统HsCAE3D 6.1 中文帮助 塑料模具设计手册(软件版V1.0) 1CD Accuform产品: Accuform.B-SIM v2.32.WinNT2K 1CD(模拟吹塑成型加工的软件包) Accuform.T-SIM v4.32.WinNT2k 1CD(模拟塑料热成型加工的软件包) ▲★○●。。。▲★○●。。。。▲★○●。。。。▲★○●。。。▲★○● 做软件行业多年,用诚信节约企业成本,本站所有软件亲测,完整无限制 可以联系王小姐 电话早九点到晚六点有人接听 QQ早九点到晚六点在线:394623568 ▲★○●。。。▲★○●。。。。▲★○●。。。。▲★○●。。。▲★○● PACSYS INC.产品: PAFEC-FE.v8.8-ISO 1CD(提供完美的有限元分析设计技术,面向初级、高级技术人员,可用于静态、 动态、非线性、热力学、空气动力学的模型创建) INFRAGISTICS产品: Ultra Grid V2.0 1CD GetSolar产品: GetSolar Billing v9.0 Multilingual 1CD(太阳能热能系统的仿真软件)

某电机多物理场耦合分析

某电机多物理场耦合分析 1、概述 为了验证ANSYS耦合场分析功能在电机设计中的应用,采用ANSYS的多物理场耦合分析功能,对某机车牵引电机(包括定子、转子)的耦合场分析作了如下工作: 1建立起电机用于电磁、流体、热、结构分析的统一的几何模型和有限元计算模型; 2首先进行电机磁场分析,计算获取了电机设计中所关心的磁场和磁密分布、矩角特性、电感等参数,并获得电机的电磁发热、电磁力和电磁力矩分布; 3利用电机磁场分析得到的热生成,进行电机的流体-热耦合分析,考核电机的通风冷却性能,得到电机的温度分布; 4使用电机磁场分析得到的电磁力和电磁力矩分布、以及温度分布,进行结构分析,得到考虑温度和电磁影响下的电机的应力和变形情况。同时对电机定子、以及定转子耦合情况进行振动模态分析。 所有分析相互间的载荷和边界条件的传递均由程序自动完成。 2、引言 众所周知,在电机设计与研究中,要涉及到电磁、绝缘、发热、通风冷却和力学等多种多样的问题,是一个典型的综合性研究学科,各学科之间是相互关联、相互影响的,是典型的多场耦合问题学科。由于多场耦合问题的研究十分复杂和困难,传统的电机分析研究方法,是把这些相互关联的问题分离,按各学科分类进行独立的研究。ANSYS是世界上唯一真正能够在同一个界面下,使用统一的数据库进行完善的电磁场、流场、温度场、结构(应力场)耦合分析的商业软件。应用ANSYS的这种多场耦合能力可以很方便地研究电机的多场耦合问题。 为了实际考核ANSYS的电磁、热、流体(通风冷却)、结构这些多物理场及其耦合分析在电机设计和研究中的应用能力,ANSYS公司成都办事处对某牵引电机进行了多物理场耦合研究分析。研究分析的内容为: 运用ANSYS软件建立起电机(包括定子和转子)用于电磁、流体、热、结构分析的统一的几何模型和有限元计算模型;首先进行电机磁场分析,计算获取电机设计中所关心的磁场和磁密分布、矩角特性、电感等参数,并获得电机的电

2-07 航发热固耦合分析

Simcenter3D: Gas-Turbine Engine Performance Scott Tucker, Siemens PLM Restricted ? Siemens AG 2018 Realize innovation.

Simcenter Portfolio Engineer innovation for aircraft performance Simcenter ? Engineer innovation. Simulate. Explore. Test.

Driving innovation through Simulation Thermo-Mechanical Performance Engineering Thermal management and aerodynamics Structural Analysis and Thermal Fatigue Engine Operating Efficiency Whole Engine Vibration

Driving innovation through Simulation Thermo-Mechanical Performance Engineering Thermal management and aerodynamics Structural Analysis and Thermal Fatigue Engine Operating Efficiency Whole Engine Vibration

Multiphysics Simulation Simcenter solutions Engines are governed by physics of aerodynamics, thermal, and structural Need scalability to analyze for single physics or multiple physics. Challenge Single Physics Solutions Best-in-class solvers. Accurate, robust, consistent, high performance, scalable. One-Way Coupling Chain single physics solvers Simcenter Pre/Post. Map response from one physics to load on another. Co-simulation Co-simulate two or more physics solvers. Efficient data exchange. CFD Solution Thermal Solution Structural Solution Flow Definitions Stress and Deflections Heat transfer dependence on structural contact

耦合场分析

ANSYS非线形分析指南基本过程 第四章耦合场分析 耦合场分析的定义 耦合场分析是指在有限元分析的过程中考虑了两种或者多种工程学科(物理场)的交叉作用和相互影响(耦合)。例如压电分析考虑了结构和电场的相互作用:它主要解决由于所施加的位移载荷引起的电压分布问题,反之亦然。其他的耦合场分析还有热-应力耦合分析,热-电耦合分析,流体-结构耦合分析,磁-热耦合分析和磁-结构耦合分析等等。 耦合场分析的类型 耦合场分析的过程取决于所需解决的问题是由哪些场的耦合作用,但是,耦合场的分析最终可归结为两种不同的方法:序贯耦合方法和直接耦合方法。 序贯耦合解法 序贯耦合解法是按照顺序进行两次或更多次的相关场分析。它是通过把第一次场分析的结果作为第二次场分析的载荷来实现两种场的耦合的。例如序贯热-应力耦合分析是将热分析得到的节点温度作为“体力”载荷施加在后序的应力分析中来实现耦合的。 直接耦合解法 直接耦合解法利用包含所有必须自由度的耦合单元类型,仅仅通过一次求解就能得出耦合场分析结果。在这种情形下,耦合是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的。例如利用单元SOLID5,PLANE13,或SOLID98可直接进行压电分析。 何时运用直接耦合解法或序贯耦合解法 对于不存在高度非线性相互作用的情形,序贯耦合解法更为有效和方便,因为我们可以独立的进行两种场的分析。例如,对于序贯热-应力耦合分析,可以先进行非线性瞬态热分析,再进行线性静态应力分析。而后我们可以用热分析中任意载荷步或时间点的节点温度作为载荷进行应力分析。这里耦合是一个循环过程,其中迭代在两个物理场之间进行直到结果收敛到所需要的精度。 直接耦合解法在解决耦合场相互作用具有高度非线性时更具优势,并且可利用耦合公式一次性得到最好的计算结果。直接耦合解法的例子包括压电分析,伴随流体流动的热传导问题,以及电路-电磁场耦合分析。求解这类耦合场相互作用问题都有专门的单元供直接选用。 第1页

Samcef 热烧蚀及热固耦合分析

Samcef Mecano 客户和应用案例 EADS Astrium 公司曾作为协助方之一与LMS SAMTECH 公司合作开发了Amaryllis 软件,而后不断帮助Amaryllis 软件在整个欧洲航天领域中的推广和使用,并且极其欣赏Amaryllis 软件分析结果的精确性给EADS Astrium 宇航研究带来的便利。如今Amaryllis 软件已在其热防护领域被大范围使用,而最初时EADS 集团利用Amaryllis 软件进行仿真实验相关性分析时就已经对软件的计算能力和精确性赞叹不已。 在AURORA 返回舱烧蚀热防护设计项目中,AURORA 返回舱结构呈倒置的伞状,返回舱在中心的球罐结构中被保护起来,再入大气层速度高达13km/s ,热流达6~9MW/m2 。 EADS ASTRIUM 采用SAMCEF Amaryllis 和BOSS Quattro 相结合的方式,进行了热防护材料的优化选择和厚度设计,在考虑重量、温度和烧蚀厚度等约束的情况下,实现了返回舱不同部位分布采用不同材料的优化设计方案 图中所示,样件在等离子束喷射的环境下进行试验,样件为轴对称结构,另外就是需要考虑等离子束的偏离入射。实验进行之后,用户测量了样件的几何尺寸变化、残渣、气体量及能量,并从中评估了此烧蚀材料的各项主要性能指标。 烧蚀样件实验示意图 而后开始在Amaryllis 环境下建模并完成热解烧蚀计算,下图中是建模时输入的烧蚀材料密度分布,以及计算结果烧蚀结束时的温度和材料密度分布。

样件 2D 轴对称初始模型 样件2D轴对称模型(网格已退化)计算结果温度分布(左)及密度分布(右) 而后,EADS Astrium使用Amaryllis软件负责欧洲AURORA返回舱项目中对烧蚀热防护结构的分析。AURORA返回舱结构呈倒置的伞状,返回舱在中心的球罐里被保护起来。 瞬态过程中随驻点压力变化的温度历程曲线及物质消耗率曲线与实验结果的对比 AURORA返回舱热防护结构示意图

【ANSYS分析】耦合场分析

第四章耦合场分析 耦合场分析的定义 耦合场分析是指在有限元分析的过程中考虑了两种或者多种工程(物理场)的交叉作用和相互影响(耦合)。例如压电分析考虑了结构和电场的相互作用:它主要解决由于所施加的位移载荷引起的电压分布问题,反之亦然。其他的耦合场分析还有热-应力耦合分析,热-电耦合分析,流体-结构耦合分析,磁-热耦合分析和磁-结构耦合分析等等。 耦合场分析的类型 耦合场分析的过程取决于所需解决的问题是由哪些场的耦合作用,但是,耦合场的分析最终可归结为两种不同的方法:序贯耦合方法和直接耦合方法。 序贯耦合解法 序贯耦合解法是按照顺序进行两次或更多次的相关场分析。它是通过把第一次场分析的结果作为第二次场分析的载荷来实现两种场的耦合的。例如序贯热-应力耦合分析是将热分析得到的节点温度作为“体力”载荷施加在后序的应力分析中来实现耦合的。 直接耦合解法 1

直接耦合解法利用包含所有必须自由度的耦合单元类型,仅仅通过一次求解就能得出耦合场分析结果。在这种情形下,耦合是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的。例如利用单元SOLID5,PLANE13,或SOLID98可直接进行压电分析。 何时运用直接耦合解法或序贯耦合解法 对于不存在高度非线性相互作用的情形,序贯耦合解法更为有效和方便,因为我们可以独立的进行两种场的分析。例如,对于序贯热-应力耦合分析,可以先进行非线性瞬态热分析,再进行线性静态应力分析。而后我们可以用热分析中任意载荷步或时间点的节点温度作为载荷进行应力分析。这里耦合是一个循环过程,其中迭代在两个物理场之间进行直到结果收敛到所需要的精度。 直接耦合解法在解决耦合场相互作用具有高度非线性时更具优势,并且可利用耦合公式一次性得到最好的计算结果。直接耦合解法的例子包括压电分析,伴随流体流动的热传导问题,以及电路-电磁场耦合分析。求解这类耦合场相互作用问题都有专门的单元供直接选用。 1

Ansys软体使用_热固耦合之降温分析_20091124

分類 Ansys軟體使用 題目 熱固耦合之降溫分析 撰寫者 日期 2009/11/24 參考資料 https://www.360docs.net/doc/1316335481.html,/customer/default.asp ANSYS workbench 基礎訓練課程 附錄列表 內容 本次介紹的為,在一高溫鑄造成形之金屬元件,於降溫過程中及降到室溫後熱應力的變化,因涉及時間歷程本應屬於暫態分析,但實際是求取每一溫度下的穩態解,而於ansys workbench 中的分類於transient structure模組中,如下圖所示。此分析假設整個元件均元散熱,並不考慮幾何熱阻之效應。

Step1、邊界描述 延續上次使用bonded constrain 的分析,目前之幾何配置於16000C 下,並未加載任何邊界條件,其應力皆為零,要計算在10秒內溫度降至250C 後的應力分佈。 Step2、材料設定 於ansys 中已有設定材料之熱膨脹係數,但其預設之參考溫度為250C ,而其判斷熱應力的方式為,現在之溫度與參考溫度之差,再乘上熱膨脹係數,而本分析中之參考溫度為尚無熱應力存在之成形溫度16000C ,故將參考溫度改成此值。依序點選engineering data →s tructure steel →reference temperature 16000C 250 C 10s σ=?

Step3、Model 模組 將幾何之iges 檔匯入geometry 模組,於model 模組中設定溫度變化 點選analysis setting ,於step control →step end time 設定分析結束時間,10秒 於load 中點選thermal condition ,回到transient 下,設定溫度變化 (1)._______ (2).______ (3).____________ (1).

ANSYS耦合场分析指南

ANSYS非线形分析指南基本过程 耦合场分析 耦合场分析的定义 耦合场分析是指在有限元分析的过程中考虑了两种或者多种工程学科(物理场)的交叉作用和相互影响(耦合)。例如压电分析考虑了结构和电场的相互作用:它主要解决由于所施加的位移载荷引起的电压分布问题,反之亦然。其他的耦合场分析还有热-应力耦合分析,热-电耦合分析,流体-结构耦合分析,磁-热耦合分析和磁-结构耦合分析等等。 耦合场分析的类型 耦合场分析的过程取决于所需解决的问题是由哪些场的耦合作用,但是,耦合场的分析最终可归结为两种不同的方法:序贯耦合方法和直接耦合方法。 序贯耦合解法 序贯耦合解法是按照顺序进行两次或更多次的相关场分析。它是通过把第一次场分析的结果作为第二次场分析的载荷来实现两种场的耦合的。例如序贯热-应力耦合分析是将热分析得到的节点温度作为“体力”载荷施加在后序的应力分析中来实现耦合的。 直接耦合解法 直接耦合解法利用包含所有必须自由度的耦合单元类型,仅仅通过一次求解就能得出耦合场分析结果。在这种情形下,耦合是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的。例如利用单元SOLID5,PLANE13,或SOLID98可直接进行压电分析。 何时运用直接耦合解法或序贯耦合解法 对于不存在高度非线性相互作用的情形,序贯耦合解法更为有效和方便,因为我们可以独立的进行两种场的分析。例如,对于序贯热-应力耦合分析,可以先进行非线性瞬态热分析,再进行线性静态应力分析。而后我们可以用热分析中任意载荷步或时间点的节点温度作为载荷进行应力分析。这里耦合是一个循环过程,其中迭代在两个物理场之间进行直到结果收敛到所需要的精度。 直接耦合解法在解决耦合场相互作用具有高度非线性时更具优势,并且可利用耦合公式一次性得到最好的计算结果。直接耦合解法的例子包括压电分析,伴随流体流动的热传导问题,以及电路-电磁场耦合分析。求解这类耦合场相互作用问题都有专门的单元供直接选用。 第1页

13第十三章 热分析与热固耦合分析

211 第十三章 热分析和热固耦合分析 LS-DYNA 除了强大的结构动力分析功能外,还可以进行稳态或瞬态的热分析,和热固 耦合分析,可以处理热传导、对流和辐射各种热问题,在焊接、冲压、锻压及碰撞等过程中 方便的考虑热问题(如塑性能转化为热能的问题)及热应力问题。 13.1 LS-DYNA 求解热问题所涉及到的关键字求解热问题所涉及到的关键字:: *CONTROL_SOLUTION *CONTROL_THERMAL_SOLVER *CONTROL_THERMAL_TIMESTEP *CONTROL_THERMAL_NONLINEAR *CONTACT_SURFACE_TO_SURFACE_THERMAL *CONTACT_2D_AUTOMATIC_SINGLE_SURFACE_THERMAL *CONTACT_2D_AUTOMATIC_NODE_TO_SURFACE_THERMAL *CONTACT_2D_AUTOMATIC_SURFACE_TO_SURFACE_THERMAL *BOUNDARY_CONVECTION_OPTION *BOUNDARY__FLUX_OPTION *BOUNDARY_RADIATION_OPTION *BOUNDARY_TEMPERATURE_OPTION *BOUNDARY_THERMAL_WELD *INITIAL_TEMPERATURE_OPTION *LOAD_HEAT_GENERATION_OPTION *PART *MAT_THERMAL_OPTION 13.2 13.2 进行热分析和热固耦合分析的步骤进行热分析和热固耦合分析的步骤进行热分析和热固耦合分析的步骤:: 13.2.1 LS 13.2.1 LS--DYNA 激活热分析的关键字激活热分析的关键字 *CONTROL_SOLUTION :

第19章 热-结构耦合分析

第19章热-结构耦合分析 热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题。由于结构温度场的分布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素。为此需要先进行相应的热分析,然后在进行结构分析。热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量)等。本章主要介绍在ANSYS中进行稳态、瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析。 19.1 热-结构耦合分析简介 热-结构耦合分析是指求解温度场对结构中应力、应变和位移等物理量影响的分析类型。对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即先进行热分析求得结构中的温度场,然后再进行结构分析,且将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布。为此,我们需要先了解热分析的基本知识,然后在学习耦合分析方法。 19.1.1 热分析基本知识 ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热对流是指固体的表面与它周围接触的流体之间,由于温差的存在引起的热量的交换。热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换过程。 如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:q流入+q生成-q流出=0,则系统处于热稳态。在稳态热分析中任一节点的温度不随时间变化。 瞬态传热过程是指一个系统的加热或冷却过程。在这个过程中系统的温度、热流率、热边界条件以及系统内能随时间都有明显变化。

基于adina热-流-固耦合建模过程

基于adina热-流-固耦合建模过程 2010-10-17 00:32:09 作者:党旭光,朱庆杰,刘峰,程雨来源:互联网 分享到 https://www.360docs.net/doc/1316335481.html,/CAE/Article81109_1.htm https://www.360docs.net/doc/1316335481.html,/article/2010/1017/article_63695.html 热-流-固耦合作用是存在高度非线性的复杂耦合作用。有关这三场的耦合作用研究在地石油工程、热资源开发、地下核废料存储安全、采矿工程等很多领域有着非常重要的应用价值。 由于研究对象的不同,热流固耦合模型的形式存在差异,建立符合实际问题的三场耦合模型十分困难,文中在国内外学者对三场耦合模型理论研究的进展状况的基础上,通过一个例子,介绍了用adina 建立模型的过程。 1三场耦合理论模式介绍 在三场耦合尤其是三场耦合机制的研究过程中,人们根据各自对三场耦合的认识提出了不同的三场耦合作用模式。1995年前有关三场耦合作用模式的研究在场与场之间的联系关系上主要是以速度等变量为桥梁,如HART、Jing提出的作用模式,其中Jing主要描述的核储存库三场耦合模式,后来作用模式发展为主体为物理现象,它们之间的相互联系是以场作用或物理作用为桥梁的,如Guvanas en、柴军瑞的作用模式,前者同样以核废料储库库围岩三场耦合作用研究为主,后者为一般模式。 Jing等描述了核废料贮库围岩裂隙岩体中的热-液-力耦合过程,如图1所示。Hart等提出了如图2所示的三场耦合作用模式。柴军瑞从岩体渗流-应力-温度三者两两之间的相互关系出发,建立了如图3的作用模式。图中:口渗透水流对岩体固相的力学作用,一般应用有效应力原理来反映;a’为应力引起裂隙岩体空隙率和渗透特性变化,目前有经验关系式(如Lours负指数关系式)和理论关系式(包括各种概化情况下和各种概化模型下的理论关系式)两大类表示方法;b为温度引起热应变(力)及与温度有关的岩体固相力学特性变化;b’为岩体固相力学变形引起热力学特性变化及岩体固相内部热耗散;c 为水流的热对流及与岩体固相的热交换;c’为温度势梯度引起水份运动及与温度有关的水特性变化。 图1裂隙岩体中的热液力耦合过程(据Jing等。1995年) 图2三场耦合模式(Hart)

功能强大的多物理场耦合分析软件

功能强大的多物理场耦合分析软件 COMSOL Multiphysics(原FEMLAB)COMSOL Multiphysics是一个专业有限元数值分析软件包,是对基于偏微分方程的多物理场模型进行建模和仿真计算的交互式开发环境系统。它为所有科学和工程领域内物理过程的建模和仿真提供了一种崭新的技术! COMSOL Multiphysics的多物理场问题一次轻松解决,让您一次就能轻松拥有超强功能、超低价格的CAE 软件。 结构力学模块 (Structural Mechanics Module) 化学工程模块 ( Chemical Engineering Module) 热传递模块 ( Heat Transfer Module) AC/DC模块( AC/DC Module) 射频模块(RF Module) 微机电模块 ( MEMS Module) 地球科学模块(Earth Science Module) 声学模块 (Acoustics Module) CAD导入模块( CAD Import Module) 二次开发模块( COMSOL ScriptTM) 最优化实验室(Optimization LAB) 反应工程实验室( COMSOL Reaction Engineering LAB) COMSOL Multiphysics是专为描述和模拟各种物理现象而开发的基于有限元分析的软件包,它使得建立各种物理现象的数学模型并进行数值模拟计算变得更为容易和可能。在使用COMSOL Multiphysics软件的过程中,您可以自己建立普通的偏微分方程形式,也可以使用COMSOL Multiphysics提供的特定的物理应用模型。这些特定的物理应用模型包括预先设定好的模块和在一些特殊应用领域内已经通过微分方程和变量建立起来的用 户界面。此外,COMSOL Multiphysics软件通过把任意数目的这种物理应用模块整合成对一个单一问题的描述,使得建立耦合问题变得更为容易。

基于ANSYS的制动盘热固耦合分析

第5章基于ANSYS的制动盘热固耦合分析 5.1 ANSYS软件简介 ANSYS是美国ANSYS公司设计开发的大型通用有限元计算软件,是一个融结构、热、流体、电、磁。声学于一体的大型通用有限元软件。作为目前最流行的有限元软件之一,它具备功能强大、兼容性好、使用方便、计算速度快等优点,成为了工程师们开发设计的首选,并广泛应用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、生物医学、水利、日用家电等一般工业及科学研究领域。其特点如下: 1)能实现多场及多场耦合分析 2)能实现统一前处理、求解、后处理及多场分析数据库的大型FEA软件3)具有多物理场优化功能的FEA软件 4)较为强大的非线性分析功能 5)多种求解器分别适用于不同的问题及不同的硬件配置 6)支持异种、异构平台的网络浮动,在异种、异构平台上用户界面统一、数据文件全部兼容 7)强大的并行计算功能支持分布式并行及共享内存式并行 8)多种自动网格划分技术 9)良好的用户开发环境 5.2 制动盘有限元模型的建立 本课题设计的制动盘为双摩擦面带中间散热筋板的自通式制动盘。在有限元计算分析时为提高计算效率,在计算过程中对模型做了必要的简化处理,最后选为单摩擦面施加对称约束并进行有限元计算。制动盘和制动片单元类型选用实体单元SOLID5。该问题属于摩擦生热为题,选择CONTA173接触单元和TARGE170目标单元生成接触对。模型材料特性参数见表5-1。制动盘的几何三维模型见图5-1。对其进行网格划分,划分网格后的有限元模型见图5-2所示。 表5-1 制动器模型材料的特性参数

图5-1 制动盘的几何三维模型图 5-2 划分网格后的有限元模型图 5.3 施加边界约束及制动盘温度场计算分析 热分析模型边界条件的确定是温度场分析的关键所在,本文采用理论推导与实际分析相结合的方法,制动盘施加轴向转动,制动片施加轴向的移动。制动前,制动盘温度等于环境温度,计算制动盘所在的工作环境温度确定,这里取工作环境平均温度为25℃。制动初速度为100Km/h,施加到制动片上的力为890N,依次进行温度场-应力场计算分析。图5-3分别给出了制动过程中10s、16.4s(最高温度时刻)、30s(制动结束时刻)及60s(停车后30s)时制动盘温度场的分布云图,图5-4为制动盘表面最高温度随时间变化曲线。 a) 升温过程中,t=10s b) 最高温度时刻,t=16.4s

Ansys热固耦合分析及参数化设计

Ansys Workbench热固耦合分析及参数化设计 机械安装或者发热的零件经常需要知道受热后变形及热应力,常规的计算很难满足要求,目前可以利用有限元软件进行热固耦合计算,查看所需的结果 问题描述:内轴直径?50mm,外环与内圈最大有0.025mm的一个过盈量,采用热套的方式进行装配,试确定外环需加热到多少温度? 1、打开软件,建立所需模型(可直接在CAD软件中建立导入) 2、双击Steady-State Thermal,右键Geometry---Import Geometry---Browse导入建好的模型

右键Solution---Transfer Date To New---Static Structural 建立稳态热和结构场的耦合关系

2、双击进入Steady-State Thermal模块下的Gometry,检查模型,退出;再双击Model,进入载荷和边界条件设置,材料默认为structural steel(注意:需确定材料的热膨胀系数),设置网格大小,点击生成网格(只需导入外环模型即可) 3、Steady-State Thermal模块下插入Temperature,选择圆环内表面配合面,Magnitude处输 入70℃,并勾选前面框(参数化);

再插入Convection,选择所有与空气接触的表面,输入对流换热系数,如下图所示 4、建立局部柱坐标系,插入Static Structural---solution---Directional Deformation,将坐标改为刚才建议的柱坐标系,方向设为X方向(柱坐标径向),再勾选参数化,如下图所示:

ANSYS耦合场分析指南

ANSYS耦合场分析指南 第一章耦合场分析 1.1耦合场分析的定义 耦合场分析是指考虑了两个或多个工程物理场之间相互作用的分析。例如压电分析,考虑结构和电场间的相互作用:求解由施加位移造成的电压分布或相反过程。其它耦合场分析的例子有热-应力分析,热-电分析,流体-结构分析。 需要进行耦合场分析的工程应用有压力容器(热-应力分析),流体流动的压缩(流体结构分析),感应加热(磁-热分析),超声波换能器(压电分析)以及磁体成形(磁-结构分析),以及微电机械系统(MEMS)等。 1.2耦合场分析的类型 耦合场分析的过程依赖于所耦合的物理场,但明显可以可分为两类:顺序耦合和直接耦合。 1.2.1 顺序耦合方法 顺序耦合方法包括两个或多个按一定顺序排列的分析,每一种属于不同物理场的分析。通过将前一个分析的结果作为载荷施加到第二个分析中的方式进行耦合。典型的例子是热-应力顺序耦合分析,热分析中得到节点温度作为“体载荷”施加到随后的应力分析中去。 1.2.2 直接耦合方法 直接耦合方法一般只涉及到一次分析,利用包括所有必要自由度的耦合场类型单元。通过计算包含所需物理量的单元矩阵或载荷向量的方式进行耦合。例如使用了SOLID5、PLANE13或SOLID98单元的压电分析。另外的例子如利用TRANS126单元的MEMS分析。 1.2.3 直接法与顺序法的应用场合 对于耦合情况的相互作用非线性程度不是很高的情况,顺序耦合法更有效,也更灵活。因为两个分析之间是相对独立的。例如在热应力顺序耦合分析中,可以先进行非线性瞬态热分析,然后再进行线性静力分析。可以将瞬态热分析中任一载荷步或时间点的节点温度作为载荷施加到应力分析中。顺序耦合可以是不同物理场之间交替进行执行,直到收敛到一定精度为止。 当耦合场之间的相互作用是高度非线性的,直接耦合具有优势。它使用耦合变量一次求解得到结果。直接耦合的例子有压电分析,流体流动的共轭传热分析,电路-电磁分析。这些分析中使用了特殊的耦合单元直接求解耦合场间的相互作用。 参见本手册中第五章关于声学的更多信息。 参见《ANSYS Basic Analysis Guide》中关于加载的更多信息。 1.3单位制 在ANSYS中应确保你所输入所有数据单位制的统一。可以使用任何单位制。对电磁场分析,参见《ANSYS Commands Reference》中EMUNIT命令对于自由空间中磁导率和介电常数设定的更多信息。 对微电机械系统(MEMS),用更合适的单位制建立模型会更加方便,因为MEMS部件通常大小为几微米。为方便,表1-1到1-8列出从标准的MKS转换到μMKSV 及μMSVfA及的转换系数。

相关文档
最新文档