抽象函数经典习题

抽象函数经典习题
抽象函数经典习题

经典习题1

1. 若函数

(21)f x +的定义域为31,2?

?- ??

?,则函数2(log )f x 的定义域为

( ) A.

1

,22??

???

B.

1,22??????

C.

12? ? D.12

???

2. 若*(1)()1(f n f n n N +=+∈),且f(1)=2,则f(100)的值是( )

A .102

B .99

C .101

D .100 3. 定义R 上的函数

()f x 满足:()()(),(9)8,f xy f x f y f f =

+==

且则( ) A

B .2

C .4

D .6

4. 定义在区间(-1,1)上的减函数()f x 满足:()()f x f x -=-。若

2(1)(1)0

f a f a -+-<恒成立,则实数a 的取值范围是

___________________. 5. 已知函数()f x 是定义在(0,+∞)上的增函数,对正实数,x y ,都

有:

()()()

f xy f x f y =+成立.则不等式

2(log )0

f x <的解集是

_____________________. 6. 已知函数

()

f x 是定义在(-∞,3]上的减函数,已知

22(sin )(1cos )f a x f a x -≤++对x R ∈恒成立,求实数a 的取值范围。

7. 已知()f x 是定义在R 上的不恒为零的函数,且对于任意的

,,a b R ∈都满足: ()()()f a b af b bf a ?=+.

(1)求(0),(1),(1)f f f -的值;

(2)判断()f x 的奇偶性,并证明你的结论;

(3)若

(2)2f =,*(2)

()n n f u n N n

-=∈,求数列{n u }的前n 项和n s . 8. 定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1) 求证:f(0)=1;

(2) 求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数;

(4)若f(x)·f(2x-x 2

)>1,求x 的取值范围。 9. 已知函数

()

f x 的定义域为R,对任意实数,m n 都有

1()()()2f m n f m f n +=

+

+,且1()02f =,当1

2

x >时, ()f x >0. (1)求(1)f ;

(2)求和(1)(2)(3)...()f f f f n ++++*()n N ∈; (3)判断函数()f x 的单调性,并证明. 10.

函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有

()f x >0;②对任意,x y R ∈,有()[()]y f xy f x =;③1

()13

f >.

(1)求(0)f 的值; (2)求证:

()f x 在

R 上是单调减函数;

(3)若0a b c >>>且2b ac =,求证:()()2()f a f c f b +>. 11. 已知函数

()

f x 的定义域为R,对任意实数,m n 都有()()(f m n f m f n +=

?

,且当0x >时,0()1f x <<.

(1)证明:(0)1,0f x =<且时,f(x)>1; (2)证明:

()f x 在

R 上单调递减;

(3)设A=22{(,)()()(1)}x y f x f y f ?>,B={(,)(2)1,x y f ax y a R -+=∈},若

A B =Φ,试确定a 的取值范围.

12. 已知函数

()f x 是定义域为R 的奇函数,且它的图象关于直线

1x =对称.

(1)求(0)f 的值;

(2)证明: 函数()f x 是周期函数;

(3)若()(01),f x x x =<≤求当x R ∈时,函数()f x 的解析式,并画出满足 条件的函数()f x 至少一个周期的图象. 13. 函数

()

f x 对于x>0有意义,且满足条件

(2)1,()()(),()f f xy f x f y f x ==+是减函数。

(1)证明:(1)0f =;

(2)若()(3)2f x f x +-≥成立,求x 的取值范围。 14. 设函数()f x 在(,)-∞+∞上满足(2)(2)f x f x -=

+,(7)(7)f x f x -=+,且在闭区间[0,7]上,只有(1)(3)0f f ==.

(1)试判断函数()y f x =

的奇偶性;

(2)试求方程()f x =0在闭区间[-2005,2005]上的根的个数, 并证明你的结论

1. B

2. A

3. A

4.

0a <<,解:由2(1)(1)0f a f a -+-<得,

2(1)(1)f a f a -<-,得22111

11111

a a a a -<-

-<--?

?02021a a a a <

?0a <<5. {}12x x <<;解:令

1x y ==,则

(1)2(1f f =(1)

0f ?=,则

2(l o g )(1)f x f

l o g 1

l o g l o g 22x x x <

?<

?<………..①

∵函数()f x 是定义在(0,+∞)上的增函数 ∴

2og 01l x x >?>,……………………………………………………②

由①②得,不等式的解集为{}12x x <<。 6.

a ≤

;解:22(sin )(1cos )f a x f a x -≤

++等价于

2

2

22222222sin 33sin 311cos 32cos 205sin 1cos 1cos sin 14

a x a x a a x a x a a x a x a a x x a a ?

??-≤-≤?-≤-???++≤?-≤-?-≤??????-≥++--≥+???--≥

??

1221122

a a a a a ?

?≤≤?-?≤?≤≤?

?

-?≤≥??

7. (1)解:令0a b ==,则(0)0f = 令1a b ==,则(1)2(1)(1)0f f f =?= (2)证明:令1a b ==-,则(1)

2(1)

f f =-,∵(1)0f =,∴(1)

f -=

令,1a x b ==-,则()(1)()()f x xf f x f x -=--=- ∴()f x 是奇函数。 (3)当0ab ≠时,

()()()

f a b f b f a ab b a ?=+

,令()()f x g x x

=,则()()()g a b g a g b ?=+

故()()n g a ng a =,所以1()()()()n n n n n f a a g a na g a na f a -=?==

∴1

(2)11

()22

n n n f u f n --??

==? ???

∵()111

(2)2,(1)(2)220222

f f f f f ??==?=+= ???

111(2)242f f ??

=-=- ???

,故()1

1122n n u n N -????=-?∈* ? ?

????

∴()11122111212

n

n n s n N ????--?? ?????????=

=-∈* ???

- 8. (1)令a=b=0,则f(0)=[f(0)]2

∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴)

(1)(x f x f =

-

由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0)

(1

)(>-=

x f x f 又x=0时,f(0)=1>0

∴对任意x ∈R ,f(x)>0

(3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴

1)()()()

()

(121212>-=-?=x x f x f x f x f x f

∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数

(4)f(x)·f(2x-x 2

)=f[x+(2x-x 2

)]=f(-x 2

+3x)又1=f(0), f(x)在R 上递增

∴由f(3x-x 2)>f(0)得:3x-x 2

>0 ∴ 0

9. 8.(1)解:令12

m n ==,则1111

()2()2

2

2

2

f f +=+1(1)2

f ?=

(2)∵1(1),

2

f =111

(1)(1)()()()1222

f n f f n f n f n +=++

=++=+ ∴(1)()1f n f n +-=

∴数列{}()f n 是以12

为首项,1为公差的等差数列,故

(1)(2)(3)...()f f f f n ++++=(1)

22

n n n -+

=22n =

(3)任取1212,,x x R x x ∈<且,则

21211121112111

()()[()]()()()()()22

f x f x f x x x f x f x x f x f x f x x -=-+-=-++-=-+

=211

()02

f x x -+>

∴12()()f x f x <

∴函数()f x 是R 上的单调增函数. 10.

9.(1)解: ∵对任意x R ∈,有

()

f x >0, ∴令

0,2

x y ==得,2(0)[(0)](0)1f f f =?

=

(2)任取任取1212,,x x R x x ∈<且,则令112211

,33

x p x p =

=,故12p p < ∵函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有

()f x >0;②对任意,x y R ∈,有()[()]y f xy f x =;③1

()13

f >

∴1212121111

()()()()[()][()]3333

p p f x f x f p f p f f -=-=-0>

∴12()()f x f x >

∴函数()f x 是R 上的单调减函数. (3) 由(1)(2)知,()(0)1f b f >

=,∴()1f b >

[][]()()(),()()a c

b b a

c f a f b f b f c b f b b b ??

=?==?= ???

∴[][]

()()()()a c b

b

f a f c f b f b +=+>,而2a c b +>==

∴2()f b >=

∴()()2()f a f c f b +>

11. (1)证明:令0,1m n ==,则(01)(0)(1)f f f +=?

∵当0x >时,0()1f x <<,故(1)0f >,∴(0)1f =,∵当0x >

时,0()1f x <

<

∴当0x <时,0x ->,则(0)1

()()()()1()()

f f x x f x f x f x f x f x -+=

-??=

=>-- (2)证明: 任取1212,,x x R x x ∈<且,则

2121112111()()[()]()()()()f x f x f x x x f x f x x f x f x -=-+-=-?-211[()1]()f x x f x =--

∵210x x ->,∴0<210()1f x x <-<,故21()1f x x --<0,又∵1()0,f x >

∴211[()1]()0f x x f x -->,故12()()f x f x >

∴函数()f x 是R 上的单调减函数. (3) ∵{}{}2222(,)

()()(1)(,)()(1)

A x y f x f y f x y f x y f =?>?+>

由(2)知,()f x 是R 上的减函数,∴221x y +< ∵B={(,)

(2)1,x y f ax y a R -+=∈}=(){},20,x y ax y a R -+=∈

又∵A B = ?,

∴方程组221

20

x y ax y ?+

部无公共点

1≥?23a ≤?-a ≤≤a 的取值范围是a ≤≤12. (1)解:∵

()

f x 为R 上的奇函数, ∴对任意,x R ∈都有

()()f x f x -=-,令0,x =则(0)(0)f f -=- ∴(0)f =0

(2)证明: ∵()f x 为R 上的奇函数, ∴对任意,x R ∈都有

()()f x f x -=-,

∵()f x 的图象关于直线1x =对称, ∴对任意,x R ∈都有

(1)(1)f x f x +=-,

∴ 用1x +代x 得,(2)[1(1)]()()f x f x f x f x +=-+=-=-

∴[2(2)](2)[()]()f x f x f x f x ++=-+=--=

,即(4)()f x f x +=

∴()f x 是周期函数,4是其周期. (3)当[)1,3x ∈-时,(11)

()2(13)x x f x x x -≤≤?=?

-+<

当4141k x k -≤≤+时,()4f x x k =-,k Z ∈ 当4143k x k +<<+时,()24f x x k =-+-,k Z ∈ ∴4(4141)

(),24(4143)x k k x k f x z R x k k x k --≤≤+?=∈?

-+-+<<+?

图象如下:

y

x

13. (1)证明:令1x y ==,则(11)(1)(1)f f f ?=+,故(1)0f = (2)∵(2)1f =,令2x y ==,则(22)

(2)(2)2f f f

?=+=

, ∴(4)2f =

()(3)2f x f x +-≥?

22[(3)](4)(3)(4)3414f x x f f x x f x x x -≥?-≥?-≤?-≤≤

∴()(3)2f x f x +-≥成立的x 的取值范围是13x -≤≤。 14. 解:(1)由f(2-x)=f(2+x),f(7-x)=f(7+x)得函数)(x f y =

的对称轴

为72==x x 和, 从而知函数)(x f y =不是奇函数,

由)14()4()14()()

4()()7()7()2()2(x f x f x f x f x f x f x f x f x f x f -=-??

??-=-=???

?+=-+=-

)10()(+=?x f x f ,从而知函数)(x f y =的周期为10=T

又0)7(,0)0()3(≠==f f f 而,故函数)(x f y =是非奇非偶函数;

(2)

)14()4()

14()()

4()()7()7()2()2(x f x f x f x f x f x f x f x f x f x f -=-????-=-=???

?+=-+=-)10()(+=?x f x f

又0)9()7()13()11(,0)0()3(=-=-====f f f f f f

故f(x)在[0,10]和[-10,0]上均有有两个解,从而可知函数)(x f y =

在[0,2005]上有402个解,在[-2005.0]上有400个解,所以函数)

(x f y =

在[-2005,2005]上有802个解.

经典习题2

1. 定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有

f(a+b)=f(a)f(b), (3)求证:f(0)=1;

(4)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数;

(4)若f(x)·f(2x-x 2

)>1,求x 的取值范围。

解 (1)令a=b=0,则f(0)=[f(0)]2

∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴)

(1

)(x f x f =

- 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0)

(1

)(>-=

x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0

(3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴

1)()()()

()

(121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数

(4)f(x)·f(2x-x 2

)=f[x+(2x-x 2

)]=f(-x 2

+3x)又1=f(0), f(x)在R 上递增

∴由f(3x-x 2

)>f(0)得:3x-x 2

>0 ∴ 0

R

上有定义,对任意的,x y R

有()()()()()f x y f x g y g x f y -=- 且(1)0f ≠

(1)求证:()f x 为奇函数

(2)若(1)(2)f f =, 求(1)(1)g g +-的值

解(1)对x R ∈,令x=u-v 则有f(-x)=f(v-u)=f(v)g(u)-g(v)f(u)=f(u-v)=-[f(u)g(v)-

g(u)f(v)]=-f(x)

(2)f(2)=f{1-(-1)}=f(1)g(-1)-g(1)f(-1)=f(1)g(-1)+g(1)f(1)=f(1){g(-1)+g(1)} ∵f(2)=f(1)≠0

∴g(-1)+g(1)=1

3. 已知函数)(x f 对任意实数y x ,恒有)()()(y f x f y x f +=+且当x >0,

.2)1(.0)(-=

(1)判断)(x f 的奇偶性;

(2)求)(x f 在区间[-3,3]上的最大值; (3)解关于x 的不等式.4)()(2)(2+<-ax f x f ax f

解(1)取,0==y x 则0)0()

0(2)00(=∴=+f f f

取)()()(,x f x f x x f x y -+=--=则

)()(x f x f -=-∴对任意R x ∈恒成立 ∴)(x f 为奇函数. (2)任取2121),(,x x x x <+∞-∞∈且, 则012>-x x

)()()(1212<-=-+∴x x f x f x f ),()(12x f x f --<∴ 又)(x f 为奇函数 )()(21x f x f >∴ ∴)(x f 在(-∞,+∞)上是减函数. ∴对任意]3,3[-∈x ,恒有)3()(-≤f x f

而632)1(3)1()2()12()3(-=?-==+=+=f f f f f

6

)3()3(=-=-∴f f ∴)(x f 在[-3,3]上的最大值为6 (3)∵)(x f 为奇函数,∴整理原式得 )2()()2()(2

-+<-+f ax f x f ax f

进一步可得)2()2(2

-<-ax f x ax f

而)(x f 在(-∞,+∞)上是减函数,222

->-∴ax x ax

.0)1)(2(>--∴x ax

∴当0=a 时,)1,(-∞∈x

当2=a 时,}1|{R x x x x ∈≠∈且

当0

|{<<∈x a

x x

当20<

|{<>∈x a x x x 或 当a>2时,}12

|{><∈x a

x x x 或

4. 已知f (x )在(-1,1)上有定义,f (

21

)=-1,且满足x ,y ∈(-1,1)有f (x )+f (y )=f (xy

y x ++1) ⑴证明:f (x )在(-1,1)上为奇函数; ⑵对数列x 1=

21

,x n +1=212n

n x x +,求f (x n ); ⑶求证

25

2)(1)(1)(121++-

>+++n n x f x f x f n

(Ⅰ)证明:令x =y =0,∴2f (0)=f (0),∴f (0)=0

令y =-x ,则f (x )+f (-x )=f (0)=0 ∴f (x )+f (-x )=0 ∴f (-x )=-f (x )

∴f (x )为奇函数 (Ⅱ)解:f (x 1)=f (

21

)=-1,f (x n +1)=f (2

12n n x x +)=f (n

n n n x x x x ?++1)=f (x n )+f (x n )=2f (x n ) ∴

)

()

(1n n x f x f +=2即{f (x n )}是以-1为首项,2为公比的等比数列

∴f (x n )=-2n -

1 (Ⅲ)解:

)21

21211()(1)(1)(11

221-++++=+++n n

x f x f x f 221

2)212(2112111

1->+-=--=---=--n n n

而2

2

12)212(252-<+--=++-=++-n n n n ∴

25

2)(1)(1)(121++-

>+++n n x f x f x f n

6.已知函数()f x 的定义域为[]0,1,且同时满足:

(1)对任意[]0,1x ∈,总有()2f x ≥; (2)(1)3f =

(3)若120,0x x ≥≥且121x x +≤,则有1212()()()2f x x f x f x +≥+-. (I)求(0)f 的值; (II)求()f x 的最大值;

(III)设数列{}n a 的前n 项和为n S ,且满足*

12(3),n n S a n N =--∈.

求证:1231123

32()()()()2n n f a f a f a f a n -?++++≤+- .

解:(I )令120x x ==,由(3),则(0)2(0)2,(0)2f f f ≥-∴≤

由对任意[]0,1x ∈,总有()2,(0)2f x f ≥∴= (II )任意[]12,0,1x x ∈且12x x <,则212101,()2x x f x x <-≤∴-≥

22112111()()()()2()f x f x x x f x x f x f x ∴=-+≥-+-≥

max ()(1)3f x f ∴==

(III)*

12(3)()n n S a n N =--∈ 1112(3)(2)n n S a n --∴=--≥

1111133(2),10n n n n a a n a a --∴=≥=≠∴=

1

11112113333333()(

)()()()23()4n n n n n n n n f a f f f f f -∴==+≥+-≥-+

1

11143333()()n

n f f -∴≤+,即11433())(n n f a f a +≤+。

2211221

14144144441

12133333333333()()()()2n n n n n n n f a f a f a f a ------∴≤+≤++≤≤+++++=+ 故1

13

()2n n f a -≤+

1213

13

1()1()()()2n n

f a f a f a n --∴+++

≤+ 即原式成立。

7. 对于定义域为[]0,1的函数()f x ,如果同时满足以下三条:①对任意的[]0,1x ∈,总有

()0f x ≥;②(1)1f =;③若12120,0,1x x x x ≥≥+≤,都有1212()()()f x x f x f x +≥+成

立,则称函数()f x 为理想函数.

(1) 若函数()f x 为理想函数,求(0)f 的值;

(2)判断函数()21x

g x =-])1,0[(∈x 是否为理想函数,并予以证明; (3) 若函数()f x 为理想函数,

?[]00,1x ∈,使得[]0()0,1f x ∈,且

00(())f f x x =,求证00()f x x =.

解:(1)取021==x x 可得0)0()0()0()0(≤?+≥f f f f .

又由条件①0)0(≥f ,故0)0(=f .

(2)显然12)(-=x

x g 在[0,1]满足条件①0)(≥x g ;-

也满足条件②1)1(=g .

若01≥x ,02≥x ,121≤+x x ,则

)]12()12[(12)]()([)(21212121-+---=+-++x x x x x g x g x x g 0)12)(12(1222122121≥--=+--=+x x x x x x ,即满足条件③,

故)(x g 理想函数.

(3)由条件③知,任给m 、∈n [0,1],当n m <时,由n m <知∈-m n [0,1],

)()()()()(m f m f m n f m m n f n f ≥+-≥+-=∴

若)(00x f x <,则000)]([)(x x f f x f =≤,前后矛盾; 若)(00x f x >,则000)]([)(x x f f x f =≥,前后矛盾. 故)(00x f x =

8.已知定义在R 上的单调函数()f x ,存在实数0x ,使得对于任意实数12,x x ,总有

0102012()()()()f x x x x f x f x f x +=++恒成立。

(Ⅰ)求0x 的值;

(Ⅱ)若0()1f x =,且对任意正整数n ,有1

(

)12

n n a f =+, ,求数列{a n }的通项公式; (Ⅲ)若数列{b n }满足12

21n n b og a =+ ,将数列{b n }的项重新组合成新数列{}n c ,具体法则

如下:112233456,,,c b c b b c b b b ==+=++478910,c b b b b =+++……,求证:

123111129

24

n c c c c ++++<

。 解:(Ⅰ)令120x x ==,得0()(0)f x f =-,①

令121,0x x ==,得00()()(1)(0)f x f x f f =++,(1)(0)f f ∴=-,② 由①、②得0()(1)f x f =,又因为()f x 为单调函数,01x ∴= (Ⅱ)由(1)得121212()()()(1)()()1f x x f x f x f f x f x +=++=++,

1111

(1)()()()(1),2222f f f f f =+=++

111

()0,()1122f a f ==+= 11111111111

()()()()(1)2()1222222n n n n n n f f f f f f +++++=+=++=+, 1111

()1[()1],222n n f f ++=+ 112n n a a +=,1

12n n a -??= ?

??

1

112212121212n n n b og a og n -??=+=+=+ ?

??

(Ⅲ)由{C n }的构成法则可知,C n 应等于{b n }中的n 项之和,其第一项的项数为

[1+2+…+(n -1)]+1=

2)1(n n -+1,即这一项为2×[2

)1(n

n -+1]-1=n(n -1)+1 C n =n(n -1)+1+n(n -1)+3+…+n(n -1)+2n -1=n 2(n -1)+2

)121(-+n n =n 3

3192912824

+=<

当3n ≥时,322

111111

[](1)2(1)(1)

n n n n n n n n n =<=---+

3333111111111111[]234822334(1)(1)

n n n n n ∴+

++++<++-++-??-??+ 11111129

1[]18223(1)81224

n n <++-<++=

??+ 解法2:3

2

3

4(1)(2)0,4(1)n n n n n n n n --=-≥∴≥-

3333311111()4(1)41111111111111()234842311111119291181648161624

n n n n n

n n n n <=---∴+++++<++-++--<++-<++=<

9.设函数()f x 是定义域在(0,)+∞上的单调函数,且对于任意正数,x y 有

()()()f xy f x f y =+,已知(2)1f =.

(1)求1

()

2f 的值;

(2)一个各项均为正数的数列

{}

n a 满足:

()()(1)1(*)

n n n f S f a f a n N =++-∈,其中

n

S 是数列

{}

n a 的前n 项的和,求数列

{}

n a 的通项公式;

(3)在(2)的条件下,是否存在正数M ,使

122n n a a a ????

11)M a ≥-

2(21)a ?- (21)

n a ?-

对一切*n N ∈成立?若存在,求出M 的取值范围;若不存在,说明理由.

解:(1)∵()()()f xy f x f y =+,令1x y ==,有(1)(1)(1)2(1)f f f f =+=,∴(1)0f =.

再令12,2x y ==

,有1(1)(2)()2f f f =+,∴1()(1)(2)011

2f f f =-=-=-,∴1()12f =-

(2)∵()()(1)1n n n f S f a f a =++-11

[(1)]()[(1)]22n n n n f a a f f a a =++=+,

又∵()f x 是定义域(0,)+∞上单调函数,∵0n S >,1

(1)02n n a a +>,∴

1

(1)

2n n n S a a =+ ……①

1n =时,由

1111

(1)2S a a =

+,得

11

a =,当

2

n ≥时,

11

11(1)

2

n n n S a a ---=

+ ……②

由①-②,得11111

(1)(1)22n n n n n n n

S S a a a a a ----=+-+=, 化简,得 22

11()0

n n n n a a a a ----+=,∴

11()(1)0

n n n n a a a a --+--=,

∵0

n a >,∴

110

n n a a ---=,即

11

n n a a --=,∴数列

{}

n a 为等差数列.

11

a =,公差1d =.

∴1(1)1(1)1n a a n d n n =+-=+-?=,故

n a n

=.

(3)∵

1222122!

n n n n a a a n n ???=???=? ,

12(21)(21)(21)13(21)

n a a a n ---=??-

n n b =

n

11n n b ++=

.

∴1n n b b +=

=

1>,

1n n

b b +>,数列

{}

n b 为单调递增函数,由题意

n

M b ≤恒成立,则只需

m i n ()n M b ≤

=

1b =

M ∈,存在正数M ,使所给定的不等式恒成立,M

的取值范围为.

11. 设函数f (x )定义在R 上,对于任意实数m 、n ,恒有fm n fm fn ()()()+=·,且当x >0时,0

(1)求证:f (0)=1,且当x <0时,f (x )>1; (2)求证:f (x )在R 上单调递减;

(3)设集合{

}

A x y f xf y f =>(,)|()()()22

1·,

{}

B x y f a x y a R =-+=∈(,)|()21,,若A B ∩=?,求a 的取值范围。 解:(1)令m=1,n=0,得f (1)= f (1)·f (0)

又当x >0时,0< f (x )<1,所以f (0)=1 设x <0,则-x >0

令m=x ,n=-x ,则f (0)= f (x )·f (-x ) 所以f (x )·f (-x )=1 又0< f (-x )<1,所以f x f x ()()

=

->1

1

(2)设x x R 12、∈,且x x 12<,则x x 210-> 所以0121

<-0恒成立

所以

f x f x f x x ()()()21

21

=- 所以0121<

()

所以f (x 2)< f (x 1),故f (x )在R 上是单调递减的。

(3)由

得:f x y f ()()22

1

+> 因为f (x )在R 上单调递减

所以x y 2

2

1+<,即A 表示圆x y 2

2

1+=的内部 由f (ax -y +2)=1= f (0)得:ax -y +2=0 所以B 表示直线ax -y +2=0

所以A B ∩=?,所以直线与圆相切或相离,即

2112

+≥a

解得:-≤≤33a

12.定义在R 上的函数f (x )对任意实数a 、b 都有f (a +b )+ f (a -b )=2 f (a )·f (b )成立,且f ()00≠。

(1)求f (0)的值; (2)试判断f (x )的奇偶性;

(3)若存在常数c >0使f c

()2

0=,试问f (x )是否为周期函数?若是,指出它的一个周期;若不是,请说明理由。

解:(1)令a =b =0

则f (0)+ f (0)=2 f (0)·f (0) 所以2 f (0)·[f (0)-1]=0 又因为f ()00≠,所以f (0)=1

(2)令a =0,b =x ,则f (x )+ f (-x )=2 f (0)·f (x ) 由f (0)=1可得f (-x )= f (x ) 所以f (x )是R 上的偶函数。 (3)令a x c b c =+=22

,,则

f x c c f x c c fx c f c +?? ???+??????++?? ???-?????

?=+?? ????? ?

??2222222· 因为f c 20?? ?

?

?=

所以f (x +c )+ f (x )=0 所以f (x +c )=- f (x )

所以f (x +2c )=- f (x +c )= -[-f (x )]= f (x ) 所以f (x )是以2c 为周期的周期函数。

16.设定义在R 上的函数()f x 对于任意,x y 都有()()()f x y f x f y +=+成立,且

(1)2f =-,当0x >时,()0f x <。

(1)判断f(x)的奇偶性,并加以证明;

(2)试问:当-2003≤x ≤2003时,()f x 是否有最值?如果有,求出最值;如果没有,

说明理由;

(3)解关于x 的不等式

2211

()()()()22

f bx f x f b x f b ->-,其中22b ≥. 分析与解:⑴令x=y=0,可得f(0)=0

令y=-x ,则f(0)=f(-x)+f(x),∴f(-x)= -f(x),∴f(x)为奇函数 ⑵设-3≤x 1<x 2≤3,y=-x 1,x=x 2

则f(x 2-x 1)=f(x 2)+f(-x 1)=f(x 2)-f(x 1),因为x >0时,f(x)<0, 故f(x 2-x 1)<0,即f(x 2)-f(x 1)<0。

∴f(x 2)<f(x 1)、f(x)在区间[-2003、2003]上单调递减

∴x=-2003时,f(x)有最大值f(-2003)=-f(2003)=-f(2002+1)=-[f(2002)+f(1)]=-[f(2001)+f(1)+f(1)]=…=-2003f(1)=4006。

x=2003时,f(x)有最小值为f(2003)= -4006。 ⑶由原不等式,得

2

1

[f(bx 2) -f(b 2x)]>f(x) -f(b)。 即f(bx 2)+f(-b 2x)>2[f(x)+f(-b)]

∴f(bx 2-b 2x)>2 f(x -b),即f[bx(x -b)]>f(x -b)+f(x -b) ∴f[bx(x -b)]>f[2 f(x -b)]

由f(x)在x ∈R 上单调递减,所以bx(x -b)<2(x -b),∴(x -b)(bx -2) <0 ∵b 2≥2, ∴b ≥2或b ≤-2 当b >2时,b >

b 2,不等式的解集为????????b x b x 2| 当b <-2时,b <

b 2,不等式的解集为????

??

??b x b x x 2|或

当b=-2时,不等式的解集为{}

R x x x ∈-≠且,2| 当b=2时,不等式解集为φ

17.已知定义在R 上的函数()f x 满足:

(1)值域为()1,1-,且当0x >时,()10f x -<<; (2)对于定义域内任意的实数,x y ,均满足:()()()()()

1f m f n f m n f m f n ++=+

试回答下列问题: (Ⅰ)试求()0f 的值;

(Ⅱ)判断并证明函数()f x 的单调性;

(Ⅲ)若函数()f x 存在反函数()g x ,求证:2

1111511312g g g g n n ????????+++> ? ?

? ?++??

??????

分析与解:(Ⅰ)在()()()()(

)1f m f n f m n f m f n ++=

+中,令0,0m n >=,则有()()()()()

010f m f f m f m f +=+.即:()()()()()100f m f m f f m f +=+????.也即:()()()2

010f f m ??-=??

. 由于函数()f x 的值域为()1,1-,所以,()

()

2

10f m ??-≠?

?

,所以()00f =. (Ⅱ)函数()f x 的单调性必然涉及到()()f x f y -,于是,由已知

()()()()()

1f m f n f m n f m f n ++=

+,我们可以联想到:是否有()()()()()

1f m f n f m n f m f n --=

-?(*)

这个问题实际上是:()()f n f n -=-是否成立?

为此,我们首先考虑函数()f x 的奇偶性,也即()()f x f x -与的关系.由于()00f =,所以,在()()()()()

1f m f n f m n f m f n ++=

+中,令n m =-,得()()0f m f m +-=.所以,函数()

f x 为奇函数.故(*)式成立.所以,()()()()()1f m f n f m n f m f n -=--????.任取

12,x x R ∈,且12x x <,则210x x ->,故()210f x x -<且()()211,1f x f x -<<.所以,()()()()()21212110f x f x f x x f x f x -=--

(Ⅲ)由于函数()f x 在R 上单调递减, 所以,函数()f x 必存在反函数()g x ,

由原函数与反函数的关系可知:()g x 也为奇函数;()g x 在()1,1-上单调递减;且当

10x -<<时,()0g x >.

为了证明本题,需要考虑()g x 的关系式.

在(*)式的两端,同时用g 作用,得:()()()()1f m f n m n g f m f n ??

--=?

?-??

令()(),f m x f n y ==,则(

)(),m g x n g y ==,则上式可改写为:()()1x y g x g y g xy ??--= ?-??

不难验证:对于任意的(),1,1x y ∈-,上式都成立.(根据一一对应). 这样,我们就得到了()g x 的关系式.

高一数学抽象函数常见题型

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。本文就抽象函数常见题型及解法评析如下: 一、定义域问题 例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。 解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x 从而函数f (x )的定义域是[1,4] 例2. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 2 1x f -的定义域。 解:)(x f 的定义域是]21[,-,意思是凡被f 作用的对象都在]21[,-中,由此可得 4111)21(3)21(2)3(log 1122 1≤≤?≤-≤?≤-≤--x x x 所以函数)]3([log 2 1x f -的定义域是]4111[, 二、求值问题 例3. 已知定义域为+R 的函数f (x ),同时满足下列条件:①5 1)6(1)2(==f f ,;②)()()(y f x f y x f +=?,求f (3),f (9)的值。 解:取32==y x ,,得)3()2()6(f f f +=

因为5 1)6(1)2(= =f f ,,所以54)3(-=f 又取3==y x 得5 8)3()3()9(-=+=f f f 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2)]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 0)]2 ([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 四、解析式问题 例5. 设对满足10≠≠x x ,的所有实数x ,函数)(x f 满足x x x f x f +=-+1)1( )(,

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴) (1 )(x f x f = - 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数 (4)f(x)·f(2x-x 2 )=f[x+(2x-x 2 )]=f(-x 2 +3x)又1=f(0), f(x)在R 上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0

自己整理抽象函数单调性及奇偶性练习及答案

1、已知f x ()的定义域为R ,且对任意实数x ,y 满足f xy f x f y ()()()=+,求 证:f x ()是偶函数。 2、已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x,y,f(x)都满足f(xy)=yf(x)+xf(y). (1)求f(1),f(-1)的值; (2)判断f(x)的奇偶性,并说明理由. 3、函数f(x)对任意x ?y ∈R,总有f(x)+f(y)=f(x+y),且当x>0时, f x ()<0, f(3)=-2. (1)判断并证明f(x)在区间(-∞,+∞)上的单调性; (2)求f(x)在[-3,3]上的最大值和最小值. 4、已知函数f (x )在(-1,1)上有定义,f (2 1)=-1,当且仅当0

6、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1) 求证:f(0)=1; (2) 求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2)>1,求x 的取值范围。 7、已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2) 判断函数()f x 的单调性,并证明. 8、函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任 意,x y R ∈,有()[()]y f xy f x =;③1 ()13 f >. (1)求(0)f 的值; (2)求证: ()f x 在R 上是单调减函数;

一次函数经典例题大全

一.定义型 例1. 已知函数是一次函数,求其解析式。 解:由一次函数定义知 , ,故一次函数的解析式为y=-6x+3。 注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。如本例中应保证m-3≠0。 二. 点斜型 例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。 解:一次函数的图像过点(2, -1), ,即k=1。故这个一次函数的解析式为y=x-3。 变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。 三. 两点型 例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。 解:设一次函数解析式为y=kx+b,由题意得 ,故这个一次函数的解析式为y=2x+4 四. 图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。 解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2) 有故这个一次函数的解析式为y=-2x+2 五. 斜截型 例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。 解析:两条直线;。当k1=k2,b1≠b2时,

直线y=kx+b与直线y=-2x平行,。 又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2 六. 平移型 例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。 解析:设函数解析式为 y=kx+b, 直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行 直线y=kx+b在y轴上的截距为 b=1-2=-1,故图像解析式为 七. 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。 解:由题意得Q=20-0.2t ,即Q=-0.2t+20 故所求函数的解析式为 Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。 八. 面积型 例8. 已知直线y=kx-4与两坐标轴所围成的三角形面积等于4,则直线解析式为__________。 解:易求得直线与x轴交点为,所以,所以|k|=2 ,即 故直线解析式为y=2x-4或y=-2x-4 九. 对称型 若直线与直线y=kx+b关于 (1)x轴对称,则直线的解析式为y=-kx-b (2)y轴对称,则直线的解析式为y=-kx+b (3)直线y=x对称,则直线的解析式为 (4)直线y=-x对称,则直线的解析式为 (5)原点对称,则直线的解析式为y=kx-b 例9. 若直线l与直线y=2x-1关于y轴对称,则直线l的解析式为____________。 解:由(2)得直线l的解析式为y=-2x-1 十. 开放型 例10. 已知函数的图像过点A(1, 4),B(2, 2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。 解:(1)若经过A、B两点的函数图像是直线,由两点式易得y=-2x+6 (2)由于A、B两点的横、纵坐标的积都等于4,所以经过A、B两点的函数图像还可以 是双曲线,解析式为 (3)其它(略)

2009届高考数学快速提升成绩题型训练——抽象函数

2009届高考数学快速提升成绩题型训练——抽象函数 D

7. 已知定义在R 上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间? 8. 设f (x )是定义在R 上的奇函数,且对任意a ,b ,当a+b ≠0,都有b a b f a f ++)()(>0 (1).若a >b ,试比较f (a )与f (b )的大小; (2).若f (k )293()3--+?x x x f <0对x ∈[-1,1]恒成立,求实数k 的取值范围。 9.已知函数()f x 是定义在(-∞,3]上的减函数,已知 22(sin )(1cos )f a x f a x -≤++对x R ∈恒成立,求实数a 的取值范围。 10.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+. (1)求证: ()f x 是奇函数; (2)若(3),(24)f a a f -=试用表示. 11.已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,,a b R ∈都满足:

()()()f a b af b bf a ?=+. (1)求(0),(1)f f 的值; (2)判断()f x 的奇偶性,并证明你的结论; (3)若(2)2f =,*(2) ()n n f u n N n -=∈,求数列{n u }的前n 项和n s . 12.已知定义域为R 的函数()f x 满足22(()))()f f x x x f x x x -+=-+. (1)若(2)3,(1);(0),();f f f a f a ==求又求 (2)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式. 13.已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2)求和(1)(2)(3)...()f f f f n ++++*()n N ∈; (3)判断函数()f x 的单调性,并证明. 14.函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 整理:河南省郸厂城县才源高中 王保社 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴) (1 )(x f x f = - 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数 (4)f(x)·f(2x-x 2 )=f[x+(2x-x 2 )]=f(-x 2 +3x)又1=f(0), f(x)在R 上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0

高中数学经典例题错题详解

高中数学经典例题、错 题详解

【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M到N的映射是() M N A M N B M N C M N D 映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。 函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A到集合B的一个函数。(函数的本质是建立在两个非空数集上的特殊对应) 映射与函数的区别与联系: 函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。 映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。 映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射方向性 上题答案应选 C 【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。 本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。 【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→(x+1、x2),(1)求2在B 中的对应元素;(2)(2、1)在A中的对应元素 【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2+1、1);(2)由题意得:x+1=2,x2=1 得出x=1,即(2、1)在A中的对应元素为1 【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数() 【分析】如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B的映射共有n m 个;集合B到集合A的映射共有m n个,所以答案为23=9;32=8 【例4】若函数f(x)为奇函数,且当x﹥0时,f(x)=x-1,则当x﹤0时,有() A、f(x) ﹥0 B、f(x) ﹤0 C、f(x)·f(-x)≤0 D、f(x)-f(-x) ﹥0 奇函数性质: 1、图象关于原点对称;? 2、满足f(-x) = - f(x)?; 3、关于原点对称的区间上单调性一致;? 4、如果奇函数在x=0上有定义,那么有f(0)=0;? 5、定义域关于原点对称(奇偶函数共有的)

函数概念典型例题

函数概念及其表示---典例分析 例1.下列各组函数中,表示同一函数的是( C ). 选题理由:函数三要素。 A. 1,x y y x == B. 11,y x y = += C. ,y x y == D. 2||,y x y == 点评:有利于理解函数概念,强化函数的三要素。 变式: 1.函数f (x )= 2(1)x x x ??+? ,0,0x x ≥< ,则(2)f -=( ). A. 1 B .2 C. 3 D. 4 例2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( B ). 选题理由:更好的帮助学生理解函数概念,同时也体现函数的重要表示法图像法,图形法是数形结合思想应用的前提。 变式: 1.下列四个图象中,不是函数图象的是(B ). 2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ). A. f :x →y = 1 2x B. f :x →y = 1 3x C. f :x →y =1 4x D. f :x →y =1 6 x A. B. C. D.

函数的表达式及定义域—典例分析 【例1】 求下列函数的定义域: (1)1 21 y x = +-;(2 )y = . 选题理由:考查函数三要素,定义域是函数的灵魂。 解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞. (2 )由30 20 x -≥??≠,解得3x ≥且9x ≠, 所以原函数定义域为[3,9)(9,)+∞. 选题理由:函数的重要表示法,解析式法。 变式: 1 .函数y =的定义域为( ). A. (,1]-∞ B. (,2]-∞ C. 11(,)(,1]22-∞-- D. 1 1(,) (,1]2 2 -∞-- 2.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)- 【例2】已知函数1( )1x f x x -=+. 求: (1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1 (2)3f =-. (2)设11x t x -=+,解得11t x t -= +,所以1()1t f t t -=+,即1()1x f x x -=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等. 变式: 1.已知()f x =2x +x +1,则f =______;f [(2)f ]=______. 2.已知2(21)2f x x x +=-,则(3)f = . 【例 2】 已知f (x )=33x x -+?? (,1) (1,)x x ∈-∞∈+∞,求f [f (0)]的值. 选题理由:分段函数生活重要函数,是考察重点。 解:∵ 0(,1)∈-∞ , ∴ f 又 ∵ >1, ∴ f )3)-3=2+ 12=52,即f [f (0)]=5 2 . 点评:体现了分类讨论思想。 2.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为 t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).

抽象函数题型Word版

高考数学总复习:抽象函数题型 抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开,教师对教材也难以处理,而高考中又出现过这一题型,有鉴于此,本文对这一问题进行了初步整理、归类,大概有以下几种题型: 一. 求某些特殊值 这类抽象函数一般给出定义域,某些性质及运算式而求特殊值。其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化。 例1 定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求 f ()2000的值。 解:由f x f x ()()220-+-=, 以t x =-2代入,有f t f t ()()-=, ∴f x ()为奇函数且有f ()00= 又由f x f x ()[()]+=--44 =-=-∴+=-+=f x f x f x f x f x ()() ()()() 84 故f x ()是周期为8的周期函数, ∴==f f ()()200000 例2 已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0时, f x f ()()>-=-012,,求f x ()在[]-21,上的值域。 解:设x x 12< 且x x R 12,∈, 则x x 210->,

由条件当x >0时,f x ()>0 ∴->f x x ()210 又f x f x x x ()[()]2211=-+ =-+>f x x f x f x ()()()2111 ∴f x ()为增函数, 令y x =-,则f f x f x ()()()0=+- 又令x y ==0 得f ()00= ∴-=-f x f x ()(), 故f x ()为奇函数, ∴=-=f f ()()112,f f ()()-=-=-2214 ∴-f x ()[]在,21上的值域为[]-42, 二. 求参数范围 这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用。 例3 已知f x ()是定义在(-11,)上的偶函数,且在(0,1)上为增函数,满足 f a f a ()()---<2402,试确定a 的取值范围。 解: f x ()是偶函数,且在(0,1)上是增函数, ∴f x ()在()-10,上是减函数, 由-<-<-<-

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x >0时,f(x)>1,且对任意的a 、b∈R,有f(a+b )=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x ) ∴) (1 )(x f x f = - 由已知x>0时,f(x )>1>0,当x <0时,-x>0,f (-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x1)>0,x 2-x1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f (x 1) ∴f(x )在R 上是增函数 (4)f(x)·f(2x-x2 )=f[x+(2x-x 2 )]=f(-x2 +3x)又1=f (0), f(x)在R上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0<x<3 2.已知函数()f x ,()g x 在 R 上有定义,对任意的,x y R ∈有 ()()()()()f x y f x g y g x f y -=- 且(1)0f ≠ (1)求证:()f x 为奇函数 (2)若(1)(2)f f =, 求(1)(1)g g +-的值 解(1)对x R ∈,令x=u-v 则有f(-x)=f(v-u)=f(v)g(u )-g(v)f(u )=f(u-v)=-[f(u )g (v )- g(u)f(v )]=-f(x) ? ? ?? ? (2)f(2)=f{1-(-1)}=f (1)g (-1)-g(1)f(-1)=f(1)g(-1)+g(1)f(1)=f (1){g (-1)+g(1)}

有关抽象函数的题型

抽象函数的单调性 线性函数型抽象函数是由线性函数(即一次函数)抽象而得的函数 例:已知函数f(x)对任意的实数x、y均有f(x+y)= f(x)+f(y),且当x> 0时,有f(x)> 0, f(- 1)= –2 , 求函数f(x)在区间[-2 , 1] 上的值域. 训练:已知函数f(x)对任意的实数x、y,满足条件f(x)+f(y)= 2 + f(x+y),且当x> 0时,有f(x)> 2, f(3)= 5 , 求使f(a2–2a –2) < 3 成立的实数a的取值范围. 3.已知函数f(x)对任意的实数x、y均有f(x+y)= f(x)+f(y) ,且当x> 0时,有f(x)< 0 , f(3)= –3, ①证明函数f(x)的单调性 ②求函数f(x)的奇偶性 ③试求f(x)在区间[ m , n ] 上的值域。 4. 已知函数f(x)对任意的实数x、y均有f(x+y)= f(x)+f(y) ,且当x> 0时,有f(x)< 0 , f(1)=–2 ①求证f(x)的奇偶性 ②求函数f(x)的单调性 ③求f(x)在区间[ -3 ,3 ]的最值。

对数函数型抽象函数 对数函数型抽象函数,即由对数函数抽象而得到的函数 例1.设f (x )是定义在(0,+∞)上的单调增函数,且满足f(xy)=f(x)+f(y),f(3)=1 (1)求f(1)的值 (2)f(x)+f(x –8)≤2,求X 的取值范围 训练: 2. . f (x )是定义在(0,+∞)上的减函数,对于任意的 x , y > 0 ,恒有f(xy)=f(x)+f(y),且f(3 1) = 1, ①求f(1)的值 ②若存在m,使得f(m)=2,求m 的值 ③解不等式f(x)+f(2 – x ) < 2 .幂函数型抽象函数 幂函数型抽象函数,即由幂函数抽象而得的函数 例1已知函数f(x)对任意实数x ,y 都有f(xy)=f(x)*f(y),且f(–1)=1,f(27)=9,当0≤x<1时, f(x)∈[0, 1 ) ① 判断f(x)的奇偶性 ②判断f(x)在(0 ,+∞)在上的单调性,并给出证明 ③ 若a ≥0,且f(a+1)≤39 , 求a 的取值范围

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

抽象函数习题精选精讲1

含有函数记号“ ()f x ”有关问题解法 由于函数概念比较抽象,学生对解有关函数记号 ()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地 掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出 ()f x ,这也是证某些公式或等式常用的方法,此法解培养学生 的灵活性及变形能力。 例1:已知 ( )211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴ 2()1x f x x -= - 2.凑合法:在已知 (())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁, 还能进一步复习代换法。 例2:已知 33 11()f x x x x +=+,求 ()f x 解:∵ 22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11 ||||1|| x x x x +=+≥ ∴ 23()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设 ()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22 222()24ax bx a c x x +++=++比较系数得2()4 1321 ,1,2222 a c a a b c b +=??=?===??=? ∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵ ()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵ ()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴ lg(1),0 ()lg(1),0x x f x x x +≥?=? --

函数·典型例题精析

2.2 函数2例题解析 【例1】判断下列各式,哪个能确定y 是x 的函数?为什么? (1)x 2+y =1 (2)x +y 2=1 (3)y =11 --x x 解 (1)由x 2+y =1得y =1-x 2,它能确定y 是x 的函数. (2)x y 1y y x 2由+=得=±.它不能确定是的函数,因为对1-x 于任意的x ∈{x|x ≤1},其函数值不是唯一的. (3)y y x =的定义域是,所以它不能确定是的函数.11 --?x x 【例2】下列各组式是否表示同一个函数,为什么? (1)f(x)|x|(t)(2)f(x)g(x)(x)2=,==,=?t x 2 2 (3)f(x)g(x)(4)f(x)g(x)=2,==2,=x x x x x x +--+--111 11122 解 (1)中两式的定义域部是R ,对应法则相同,故两式为相同函数. (2)、(3)中两式子的定义域不同,故两式表示的是不同函数. (4)中两式的定义域都是-1≤x ≤1,对应法则也相同,故两式子是相同函数. 【例3】求下列函数的定义域: (1)f(x)2 (2)f(x)(3)f(x)=++==x x x x x x x --+----145 3210215 2||

(4)f(x)(4x 5)(1)x 10 4x 0 1x 4{x|1x 4}(2)3x 20x {x|x }=+-由-≥-≥得≤≤.∴定义域是≤≤由->,得>,∴定义域是>812323|| x -???解 (3)10x x 210 |x|503x 7x 5{x|3x 7x 5} 2由--≥-≠得≤≤且≠,∴定义域是≤≤,且≠??? (4)10 |x|0 4x 508x 00x x 8[80)(0)()由-≥≠-≠解得-≤<或<<或<≤∴定义域是-,∪,∪,854545454 8||x ?????? ??? 【例4】已知函数f(x)的定义域是[0,1],求下列函数的定义域: (1)y f (2)y f(2x)f (3)y f ==+=()()()123 2x x x a + 解(1)01x 1x 1f(){x|x 1x 1}由<≤,得≤-或≥,∴的定义域是≤-或≥1 122x x

抽象函数常见题型解法

高考数学总复习第十讲:抽象函数问题的题型综述 抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开,教师对教材也难以处理,而高考中又出现过这一题型,有鉴于此,本文对这一问题进行了初步整理、归类,大概有以下几种题型: 一. 求某些特殊值 这类抽象函数一般给出定义域,某些性质及运算式而求特殊值。其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化。 例1 定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值。 解:由f x f x ()()220-+-=, 以t x =-2代入,有f t f t ()()-=, ∴f x ()为奇函数且有f ()00= 又由f x f x ()[()]+=--44 =-=-∴+=-+=f x f x f x f x f x () ()()()() 84 故f x ()是周期为8的周期函数, ∴==f f ()()200000 例2 已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0

时, f x f ()()>-=-012,,求f x ()在[]-21,上的值域。 解:设x x 12< 且x x R 12,∈, 则x x 210->, 由条件当x >0时,f x ()>0 ∴->f x x ()210 又f x f x x x ()[()]2211=-+ =-+>f x x f x f x ()()()2111 ∴f x ()为增函数, 令y x =-,则f f x f x ()()()0=+- 又令x y ==0 得f ()00= ∴-=-f x f x ()(), 故f x ()为奇函数, ∴=-=f f ()()112,f f ()()-=-=-2214 ∴-f x ()[]在,21上的值域为[]-42, 二. 求参数范围 这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用。

高中数学 函数知识点总结与经典例题与解析

函数知识点总结 知识点一、平面直角坐标系 1、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。 知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>?y x 点P(x,y)在第二象限0,0>?y x 2、坐标轴上的点的特征 点P(x,y)在x 轴上0=?y ,x 为任意实数 点P(x,y)在y 轴上0=?x ,y 为任意实数 点P(x,y)既在x 轴上,又在y 轴上?x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。 位于平行于y 轴的直线上的各点的横坐标相同。5、关于x 轴、y 轴或远点对称的点的坐标的特征 点P 与点p ’关于x 轴对称?横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称?纵坐标相等,横坐标互为相反数

SX2020A093高考数学必修_抽象函数常见题型例析

抽象函数常见题型例析 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.由于抽象函数表现形式的抽象性,使得这类问题是函数内容的难点之一,其性质常常是隐而不漏,但一般情况下大多是以学过的常见函数为背景,对函数性质通过代数表述给出.抽象函数的相关题目往往是在知识网络的交汇处设计,高考对抽象函数的要求是考查函数的概念和知识的内涵及外延的掌握情况、逻辑推理能力、抽象思维能力和数学后继学习的潜能.为了扩大读者的视野,特就抽象函数常见题型及解法评析如下. 一、函数的基本概念问题 1.抽象函数的定义域问题 例1 已知函数)(2x f 的定义域是[1,2],求)(x f 的定义域. 解:由)(2x f 的定义域是[1,2],是指1≤x ≤2,所以1≤x 2≤4, 即函数)(x f 的定义域是[1,4]. 评析:一般地,已知函数))((x f ?的定义域是A ,求)(x f 的定义域问题,相当于已知))((x f ?中x 的取值范围为A ,据此求)(x ?的值域问题. 评析:这类问题的一般形式是:已知函数)(x f 的定义域是A ,求函数))((x f ?的定义域.正确理解函数符号及其定义域的含义是求解此类问题的关键.一般地,若函数)(x f 的定义域是A ,则x 必须是A 中的元素,而不能是A 以外的元素,否则,)(x f 无意义.因此,如果)(0x f 有意义,则必有x 0∈A .所以,这类问题实质上相当于已知)(x ?的值域是A ,据此求x 的取值范围,即由)(x ?∈A 建立不等式,解出x 的范围.例2和例1形式上正相反. 2.抽象函数的求值问题 例2 已知定义域为R +的函数)(x f ,同时满足下列条件:①)2(f = 1,)6(f =5 1 ;②)(y x f ?=) (x f +)(y f ,求)3(f 、)9(f 的值.

相关文档
最新文档