30.四面体

30.四面体
30.四面体

四面体与平行六面体

一、一般四面体的性质

性质1.任意四面体六个二面角的平分面交于一点,这点到四面体四个面的距离相等,称该点为四面体内切球球心(简称四面体的内心)。内切球与四面体四个面内切。

若四面体ABCD 的体积为V ,顶点A 所对的侧面面积为A S ,类似的有,,B C D S S S ,则内切球半径

3A B C D

V

r S S S S =

+++.

性质2.任意四面体六条棱的垂直平分面交于一点,这点到四面体顶点的距离相等,该点称为四面体外接球球心(简称四面体外心)。外接球通过四面体四顶点。

性质3.任意四面体的四条中线(每一顶点与其对面重心的连线)交于一点,而且该点是中线的四等分点。

性质4.四面体体积公式一:1111

3333A A B B C C D D V S h S h S h S h ==== 性质5.四面体体积公式之二:1

||||sin ,6

V AB CD d AB CD =???<> (其中d 为AB 、CD 距离)

性质6.四面体体积公式二:

2sin 2sin 2sin 2sin 2sin 2sin 333333C D AB A D BC A B CD B C DA B D AC A C BD

S S S S S S S S S S S S V AB BC CD DA AC BD

θθθθθθ=

=====

二、特殊四面体的性质

(1) 正四面体:各边均相等;

(2) (3) 等腰四面体:三组对边分别相等。 三、平行面体

像平行四边形是平面图几何的基础一样, 平行六面体是立体几何的基本图形。

性质1.平行六面体的四条体对角线交于一点,且在这一点互相平分,称该点为平行六面体的中心; 性质2.平行六面体的所有体对角线的平方和等于所有棱的平方和。

推论1:平行六面体的所有侧面对角线的平方和等于其所有体对角线平方和的两倍。

推论2:平行六面体的每一侧棱的平方和等于等于与这一侧共面的两侧面四条对角线的平方减去与这一侧棱不共面而共端点的两条侧面对角线平方和所得差的

14

。 性质 3.平行六面体的每一体对角线长的平方等于共一端点的三条棱长的平方和减去这三条棱中每两条棱长及其所夹余弦之积的两倍。

性质 4. 平行六面体的每一体对角线通过与该对角线共端点的三条棱的另一端点构成的三角形截面的重心,且被三角形截面分成三等分。

性质5. 平行六面体的每个由三条侧面对角线构成的三角形截面面积的平方4倍,等于这截面所截三个侧面面积的平方和减去这三个这三个侧面中每两个侧面面积及其所夹二面角余弦之积的二倍。

性质 6.设平行六面体的全面积为S ,体积为V ,四条体对角线长为1111,,,AC A C BD B D l l l l ,则

1

1

1

1222

2

2AC A C BD

B D S l l l l ≤+++。1

111

32222

21()24AC A C BD B D V l l l l ≤+++,3

2(6)V ≤。 性质7.通过平行六面体中心的任何平面,将平行六面体分成体积相等的两部分。

推论1.以平行六面体任一顶点及这顶点出发的三条棱的端点构成的四面体体积是平行六面体体积的

16

。 推论 2.以平行六面体任一顶点及这顶点出发的三条侧面对角线端点构成的四面体体积是平行六面体体积的

13

。 性质8.平行六面体的体积等于底面面积与高的乘积,或任一侧面面积与相对面距离之积。 四、四面体与平行六面体的关系

四面体与平行六面体之间存在一种特殊的关系,即四面体可以补成一个平行六面体,且各棱恰好为平行六面体各面上的一条对角线。它们之间有如下性质:

性质1.任何一个四面体都可以补成一个平行六面体,并且1=3

V V 四面体平行六面体; 性质2.棱长为a

的正方体; 性质3.三组对棱分别相等且有一个面为锐角三角形的四面体可以补成一个长方体。

例1.(03全国联赛)在四面体ABCD 中,设1AB =

,CD =,直线AB ,CD 的距离为2,夹角为3

π

,则四面体ABCD 的体积为

例2(12年石家庄一模)设四面体ABCD

中,AB CD AC BD m ==

==

AD BC n ==,且226m n +=,则四面体ABCD 体积最大值为

(10全国)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为( )

(C)

练1.已知三棱锥的三个侧面两两垂直,三条侧棱长分别为4、4、7,若此三棱锥的各个顶点在同一球面上,则球的表面积为( )

A. 81π

B.36π

C.

814

π

D. 144π

练2.在四面体ABCD

,则此四面体ABCD 的外接球的半径R 为 .

例3.(04福建竞赛)四面体ABCD 中,,,AB CD A BC AD b CA BD c ======。如果异面直线AB 与CD 所成的角为α,则cos α= 练.如图,有一个内接的四棱锥P ABCD -, 若PA ABCD ⊥底面,2

BCD π

∠=

,2

ABC π

∠≠

4,5,3BC CD PA ===,该球的表面积为( )

A .100π

B .50π

C .80π

D .条件不够,不能求 例4.棱长为a 的正四面体ABCD 的棱CD 在平面α内, ||AB α,

E ,

F 在平面α上的射影,则由A ,B ,E,C,F,D 为

顶点的几何体的体积为

例5.正四面体ABCD 的四个顶点在半径为R 是的球上,求AB 的长。

例6.将边长分别为2,2,2a b c 的锐角三角形的各边中点连接起来,形成四个三角形,它是一个四面体的展开图。求这个四面体的体积。

例7.证明,如果四面体相对棱间的距离分别为123,,h h h ,则四面体的体积1231

3

V h h h ≥

。 练1.已知四面体ABCD 的一组对棱,AB CD 的中点分别为M 、N 。求MN 与BC 所成角大小。

练2.四面体S ABC -

中,有三组对棱分别相等且依次为

练3.四面体ABCD 中,AC BC ⊥,AD BD ⊥.证明:直线AC 与BD 夹角的余弦值小于CD

AB

例8.下列四组数中,有一组不可能是某一四面体的四条高,这组数是 ()

A

.1,

222 B

.4,,333 C

.2,555

例9.在直角四面体V ABC -中,0

90AVB BVC CVA ∠=∠=∠=,记VAB ?、VBC ?、VCA ?、ABC ?的

面积分别为123,,,S S S S 。求证:2222

123S S S S =++

(09清华)四面体ABCD 中,AB CD =,,AC BD AD BC ==.

(1) 求证:这个四面体的四个面都是锐角三角形;

(2) 设底面为BCD ,另外三个面与面BCD 所成的二面角为,,αβγ,求证:

cos cos cos 1αβγ++=。

(10武大)有4条边长为2的线段和两条边长为a 的线段,用这六条线段作棱,构成一个三棱锥,问a 为何值时,构成的三棱锥体积最大?

(10同济)如图四面体ABCD 中,AB CD 和为对棱,设,,,AB a CD b AB CD ==夹角为为α,距离为d 。 (1) 若2

π

α=,且棱AB BCD ⊥平面,求四面体的体积; (2) 当2

π

α=

,证明:四面体的体积为定值;

(3) 求四面体的体积。

(09华南理工)已知,,,A B C D 是某球面上不共面的四点,且AB BC AD ===

2BD AC ==,BC AD ⊥,则此球的表面积等于 。

(09复旦)半径为R 的球内部装4个半径相同的球,则小球半径r 可能的最大值是 。

(07武大)在正四棱柱1111ABCD A B C D -中,底面ABCD 的边长为4,侧棱1CC 长为3,又E为1CC 上的点,且1CE =。

(1) 求:1B D 与BDE 平面所成角的正弦值;

(2) 求四面体1A BED -的体积。

(07武大)在棱长为a 的正方体1111ABCD A B C D -中,,,E F M 分别为棱111,,AB BB A D 中点。 (3) 求证:CM DEF ⊥平面; (4) 求点M到平面DEF 的距离。

(07武大)在棱长为1的正方体1111ABCD A B C D -中,,,E F P 分别为棱111,,AA CD B C 中点。 (1)求证: BE PF ⊥;

(2)求四面体B PEF -的体积。

(08武大)在棱长为a 的正方体1111ABCD A B C D -中,E为棱AB 中点。 (5) 求二面角1B EC B --的正切值; (6) 求四面体11E B D C -的体积。

(08武大)在棱长为a 的正方体1111ABCD A B C D -中,E为棱AB 中点。 (7) 求证:四面体11A AC E -与四面体11C AC E -的体积相等; (8) 求点A 到平面11AC E 的距离。

(08浙大)有一圆锥正放,它的高为h ,圆锥内水面高为1h ,12

3

h h =,现将圆锥导致,求倒置的水面高度2h 。

(10五校),求它表面积的最小值

(09华南理工)如图,在正三棱锥P ABC -中,,底面边长为2,E 为BC 的中点,EF PC

⊥于F 。

(1) 求证:EF 是异面直线PA 与BC 的公垂线; (2) 求异面直线PA 与BC 的距离; (3) 求点B到面APC 的距离。

高考数学必背经典结论-正四面体性质

必背经典结论---提高数学做题速度! 立体几何(必背经典结论) 之 正四面体性质(李炳璋提供) 【***】由于时间仓促,难免有误,若有错误,请及时指正!谢谢!!! 设正四面体的棱长为a ,则这个正四面体的 对于棱长为a 正四面体的问题可将它补成一个边长为 (1)对棱间的距离为a 2 2 (正方体的边长)/ 对棱中点连线段 的长 d= 2 a ;(此线段为对棱的距离, 若一个球与正四面体的6条 棱都相切,则此线段就是该球的直径。) (2) 正四面体的高 a 3 6 (正方体体对角线l 32=) (3) 正四面体的体积为3 12 2a (正方体小三棱锥 正方体V V V 314=-) (4) 正四面体的全面积 S 全= 2a ; (5) 正四面体的中心到底面与顶点的距离之比为3:1 (正方体体对角线正方体体对角线:l l 2 1 61=)

(6)外接球的半径为 a 4 6 (是正方体的外接球,则半径正方体体对角线l 2 1 =) (7)内切球的半径为 a 12 6 (是正四面体中心到四个面的距离,则半径正方体体对角线l 6 1 =) (8)相邻两面所成的二面角 α=1arccos 3 (9)侧棱与底面所成的角为β=1 arccos 3 (10)对棱互相垂直。 (11)正四面体内任意一点到四个面的距离之和为定值(等于正四面体的高)。 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体。 如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°, OA=a ,OB=b ,OC=c .则 A B C D O H

(1)不含直角的底面ABC 是锐角三角形; (2)直角顶点O 在底面上的射影H 是△ABC 的垂心; (3)体积 V= 16a b c ; (4)底面面积S △ABC (5)S 2△BOC =S △BHC ·S △ABC ; (6)S 2△BOC +S 2△AOB +S 2△AOC =S 2 △ABC (7) 22221111 OH a b c =++; (8)外接球半径 (9)内切球半径 r=AOB BOC AOC ABC S S S S a b c ????++-++

三棱锥的几个重要性质

直角三棱锥的几个性质 有一类特殊的三棱锥,它的经过同一顶点的三条棱两两垂直,我们不妨把这种三棱锥称作直角三棱锥,从结构上看,它是平面的直角三角形在空间的扩展。循着直角三角形的一些重要性质对直角三棱锥进行探究,我们能得到直角三棱锥的有趣的相应性质。 我们已经学习过的直角三角形的性质有: 性质1:Rt Δ的垂心就是直角顶点。 性质2:Rt Δ的两个锐角互余。 性质3:Rt Δ两直角边的平方和等于斜边的平方。 性质4:Rt Δ中,斜边上的高是两条直角边在斜边上的射影比例中项;每条直角边是它在斜边上的射影和斜边的比例中项;由此,Rt Δ两条直角边的平方比等于它们在斜边上的射影比。 性质5:Rt Δ两直角边的乘积,等于斜边与斜边上高的乘积。 性质6:Rt Δ斜边上的中线等于斜边的一半。 (所以Rt Δ的外接圆半径R =21c =2122b a +)。 性质7:Rt Δ的内切圆半径r =22b a b a ab +++=2 1(a +b -c)。 现在我们来探究一下直角三棱锥的性质。如图所示,在三棱锥P-ABC 中,三条侧棱PA 、PB 、PC 两两垂直,设PA =a ,PB =b ,PC =c 。 ∵PA 、PB 、PC 两两垂直, ∴PA ⊥面PBC ,PB ⊥ 面PCA ,PC ⊥面PAB , ∴面PAB 、面PBC 、面PCA 两 两垂直。作PH ⊥面ABC 于H ,连CH 并延长并交AB 于 D ,连PD ,则PH ⊥AB ,PH ⊥CD ,面PCD ⊥面ABC ;而 PC ⊥面PAB ?PC ⊥AB ,所以AB ⊥面PCD ,∴AB ⊥PD , AB ⊥CH 。同理,AH ⊥BC ,BH ⊥CA 。 由AB ⊥面PCD 知CD ⊥AB ,而PD ⊥AB 且∠APB = 90°,∴∠ABC 、∠CAB 为锐角。同理,∠BCA 也是锐 角,从而有: 性质1:直角三棱锥的底面是锐角三角形。 由AB ⊥CH ,AH ⊥BC ,BH ⊥CA 易知,H 是ΔABC 的垂心,由此可得: 性质2:①直角三棱锥顶点在底面的射影是底面三角形的垂心。 在Rt ΔPAB 中,PD ·AB =PA ·PB ?PD =22b a ab +;在Rt ΔPCD 中,CD 2=PD 2+PC 2 =(22b a a b +)2+ c 2 =222 22222b a a c c b b a +++;在Rt ΔPCD 中,PH ⊥CD ,∴PD ·PC =CD ·PH ?PH 2=222CD PC PD ?=2 2222222222)(b a a c c b b a c b a ab +++?+=222222222a c c b b a c b a ++,∴21PH =222222222c b a a c c b b a ++=21a +21b +2 1c 。因此有: 性质2:②直角三棱锥顶点到底面的距离为h 满足关系式21h =21a +21b +21c 。

空间问题的四面体单元

第三章 轴对称、三维和高次单元 § 3-2空间问题的四面体单元 空间问题的有限单元法,和平面问题及轴对称问题的有限单元法的原理和分析过程完 全相同。由于空间问题应采用三维坐标系,因此单元的自由度、刚度矩阵的元素个数,方 程组内方程个数等要较平面问题和轴对称问题多,所以空间问题的规模一般比轴对称问题 和平面问题大得多。它要求计算机的内存大,且计算时间长,费用高。这些问题都给三维 有限单元法的具体运用带来许多困难。 和平面问题一样,空间有限单元法采用单元 也是多种多样的,其中最简单的是四节点四面体 单元。采用四面体单元和线性位移模式来处理空 间问题,可以看作平面问题中三角形单元的推广。 在采用四面体单元离散化后的空间结构物 中,一系列不相互重叠的四面体之间仅在节点处 以空间铰相互连接。四节点四面体单元仅在四个 顶点处取为节点,其编号为i,j,m,p 。每个单元的 计算简图如图3-7所示。 在位移法中,取节点位移为基本未知量,四 节点四面体单元共有十二个自由度 (位移分量), 其节点位移列阵为 U i V i W i (i,j,m) 相应的节点力列阵为 U i V i w i U j V j w j U m T W m U p V p W p 其子矩阵 图3-7空间四面体单元

F i F j F m F p

其子矩阵 F i U i V i w 一、单元法位移函数 结构中各点的位移是坐标 X 、 y 、z 的函数。 当单元足够小时, 单元内各点的位移可用 简单的线性多项式来近似描述, 即 u 1 2 X 3y 4Z v 5 6 X 7 y 8 Z (3-49) w 0 10X ny 12Z 曰 2,…, 12是 卜二个待定系数,它们可由单元的节点位移和坐标确定。假定节 点 i,j,m,p 的坐标分别为(x i y i Z i )、 、(x j y j z j ) 、(X m 将它们代入 (3-49)式的第一式可得各个节点在 X 方向的位移 U i 1 2X i 3Y i 4 Z u j 1 2X j 3Y j 4Z j U m 1 2 X m 3Y m 4 Z m U p 1 2 X p 3 Y p 4 Z p 解上述线性方程组,可得到 1 , 2 , 3 , 4 , 再代入 U 6V [(a i bX cy d i Z)U i (a j b j x (a m b m X C m y d m z)U m (a p b p X C (3-50) y d p Z )U p ] 1 X i Y i Z i 1 X j y j Z j 1 X m y m Z m 1 X P Y P Z P (3-52) (3-50)式,得 y m Z m )、(X p y p Z p ), 5y 3)5 (3-51) 式中1 , 其中V 为四面体ijmp 的体积,a,b i ,…,c p ,d P 为系数。

正四面体的性质

正四面体的性质:设正四面体的棱长为a,则这个正四面体的 (1)全面积S全 = 2a; (2)体积 V=3 12 a; (3)对棱中点连线段的长 d= a;(此线段为对棱的距离,若一个 球与正四面体的6条棱都相切,则此线段就是该球的直径。) (4)相邻两面所成的二面角α= 1 arccos 3 (5)对棱互相垂直。 (6)侧棱与底面所成的角为β= 1 arccos 3 (7)外接球半径 R= 4 a; (8)切球半径 r= 12 a. (9)正四面体任意一点到四个面的距离之和为定值(等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体. 如图,在直角四面体AOCB中,∠AOB=∠BOC=∠COA=90°,OA=a,OB=b,OC=c.则 ①不含直角的底面ABC是锐角三角形; ②直角顶点O在底面上的射影H是△ABC的垂心; ③体积V= 1 6 a b c; ④底面面积S△ABC ⑤S2△BOC=S△BHC·S△ABC; A B C D O H

⑥S 2 △BOC +S 2△AOB +S 2△AOC =S 2△ABC ⑦ 22 221111 OH a b c =++; ⑧外接球半径 R= ⑨切球半径 r=AOB BOC AOC ABC S S S S a b c ????++-++ 正四面体的性质:设正四面体的棱长为a ,则这个正四面体的 (1)全面积 S 全= 2a ; (2)体积 3 ; (3)对棱中点连线段的长 d= a ;(此线段为对棱的距离,若一个球与正四面体的6条棱都相切,则此线段就是该球的直径。) (4)相邻两面所成的二面角 α=1 arccos 3 (5)对棱互相垂直。 (6)侧棱与底面所成的角为β=1 arccos 3 (7)外接球半径 R= 4 a ; (8)切球半径 r= a . (9)正四面体任意一点到四个面的距离之和为定值(等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体. 如图,在直角四面体AOCB 中,∠AOB=∠BOC=∠COA=90°,OA=a ,OB=b ,OC=c .则 ①不含直角的底面ABC 是锐角三角形; A O H

三棱锥的几个重要性质,!

直角三棱锥的几个性质 有一类特殊的三棱锥,它的经过同一顶点的三条棱两两垂直,我们不妨把这种三棱锥称作直角三棱锥,从结构上看,它是平面的直角三角形在空间的扩展。循着直角三角形的一些重要性质对直角三棱锥进行探究,我们能得到直角三棱锥的有趣的相应性质。 我们已经学习过的直角三角形的性质有: 性质1:Rt Δ的垂心就是直角顶点。 性质2:Rt Δ的两个锐角互余。 性质3:Rt Δ两直角边的平方和等于斜边的平方。 性质4:Rt Δ中,斜边上的高是两条直角边在斜边上的射影比例中项;每条直角边是它在斜边上的射影和斜边的比例中项;由此,Rt Δ两条直角边的平方比等于它们在斜边上的射影比。 性质5:Rt Δ两直角边的乘积,等于斜边与斜边上高的乘积。 性质6:Rt Δ斜边上的中线等于斜边的一半。 (所以Rt Δ的外接圆半径R = 21c =2122b a +)。 性质7:Rt Δ的内切圆半径r = 2 2b a b a ab +++= 2 1 (a +b -c)。 现在我们来探究一下直角三棱锥的性质。如图所示,在三棱锥P-ABC 中,三条侧棱PA 、PB 、PC 两两垂直,设PA =a ,PB =b ,PC =c 。 ∵PA 、PB 、PC 两两垂直, ∴PA ⊥面PBC ,PB ⊥面PCA ,PC ⊥面PAB , ∴面PAB 、面PBC 、面PCA 两两垂直。作PH ⊥面ABC 于H ,连CH 并延长并交AB 于D ,连PD ,则PH ⊥AB ,PH ⊥CD ,面PCD ⊥面ABC ;而PC ⊥面PAB ?PC ⊥AB ,所以AB ⊥面PCD ,∴AB ⊥PD ,AB ⊥CH 。同理,AH ⊥BC ,BH ⊥CA 。 由AB ⊥面PCD 知CD ⊥AB ,而PD ⊥AB 且∠APB = 90°,∴∠ABC 、∠CAB 为锐角。同理,∠BCA 也是锐角,从而有: 性质1:直角三棱锥的底面是锐角三角形。 由AB ⊥CH ,AH ⊥BC ,BH ⊥CA 易知,H 是ΔABC 的垂心,由此可得: 性质2:①直角三棱锥顶点在底面的射影是底面三角形的垂心。 在Rt ΔPAB 中,PD ·AB =PA ·PB ?PD = 2 2b a ab +;在Rt ΔPCD 中,CD 2=PD 2+PC 2 =(22b a ab +)2+c 2 =222 22222b a a c c b b a +++;在Rt ΔPCD 中,PH ⊥CD ,∴PD ·PC =CD ·PH ?PH 2 =222CD PC PD ?=2 22222222 22)(b a a c c b b a c b a ab +++?+=2 22222222a c c b b a c b a ++,∴21PH = 2 222 22222c b a a c c b b a ++=21a +21b +21c 。因此有:

高二数学欧拉公式-word文档

高二数学欧拉公式 教学目标: 1、了解简单多面体的概念,掌握多面体的欧拉公式。 2、会用欧拉公式解题,了解欧拉公式的证明方法。 3、通过学生的主动参与,培养他们观察发现规律并证明所得猜想的能力 教学重点:简单多面体的欧拉公式 教学难点:简单多面体概念,欧拉公式的应用 教学过程 复习引入 ⑴什么是多面体?多面体的面?多面体的棱?多面体的顶点? 问题1:课本P52有5个多面体,试分别写出它们的顶点数V,面数F和棱数E ⑶观察上述数据,写出你发现的规律 二.新课讲解 欧拉公式 问题2:从上看出有V+E-F=2,再看课本P57表格上方的几个多面体,分别写出它们的顶点数V,面数F和棱数E,并回答它们是否满足上面的规律。 问题3:若上面的多面体的表面都是用橡皮簿膜制作的,并且可以向它们的内部充气那么那些多面体能够连续变形,最后其表面可变为一个球面?那些变为环面?那些变为对接的

球面? 简单多面体:在连续的变形中,表面可变为一个球面的多面体,叫做简单多面体 思考:前面的多面体中那些是简单多面体?棱锥,棱柱,正多面体,凸多面体是不是简单多面体? 将问题1、2、3联系起来,能得出什么猜想?用式子表示你的猜想? V+F﹣E=2此公式叫做欧拉公式 二、欧拉公式的证明 ⑴将多面体转化为由多边形组成的平面图形 ⑵变形中的不变量 ⑶计算多边形的内角和 ①设多面体的F个面分别是n1,n2,nF边形,各个面的内角总和是多少? ②n1+n2++nF和多面体的棱数E有什么关系? ③设图中的最大的多边形为m边形,则它的内角和是多少?它的内部包含的其他多边形的顶点数是多少?所有其他多边形内角总和是多少? ④图中所有多边形的内角总和是多少?它是否等于 (V-2)360? 从上有(E-F)360=(V-2)360 所以V+F-E=2

正四面体的性质 (2)

正四面体的性质及应用 设正四面体ABCD 的棱长为a ,则存在以下性质: 【性质1】正四面体的3对相对棱互相垂直,任意一对相对棱之间的距离为 a 22 【性质2】正四面体的高=h a 3 6 【性质3】正四面体的表面积为23a .体积为 3122a 【性质4】正四面体的内切球半径为=r a 126.外接球半径为=R a 4 6且4:3:1::=h R r 【性质5】正四面体底面内任一点O 到三个侧面的距离之和为 a 36 【性质6】正四面体内任一点到四个侧面的距离之和为a 3 6 【性质7】正四面体的侧棱与底面所成的二面角大小为: 36arccos 【性质8】正四面体相邻侧面所成的二面角的大小为: 3 1arccos 【性质9】设正四面体侧棱与底面所成的角为α,相邻两侧面所成的二面角的大小为β,则有βαtan 2tan = 【性质10】正四面体的外接球的球心与内切球的球心O 重合且为正四面体的中心 【性质11】中心与各个顶点的四条连线中两两夹角相等为3 1arccos -π

【性质12】正四面体内接于正方体,且它们共同内接于同一个球.球的直径等于正 方体的体对角线.( V 正四面体: V 正方体 : V 球 = 2 : 6 : 3 3) 二.正四面体性质的应用 【例1】一个球与正四面体的6条棱都相切,若正四面体的棱长为a.求此球的体积.【例2】在正四面体ABCD.E,F分别为棱AD,BC的中点,连结AF,CE.①异面直线AF 和CE所成的角_______②CE与平面BCD所成的角_______ 【例3,四个顶点在同一球面上,则此球的表面积为________ 【例4】四面体的ABCD的表面积为S , 其四个面的中心分别为E , F , G , H .设四面体EFGH的表面积为T , 则 S : T = _______

四面体的性质

四面体的性质 不在一直线上的三点可以连成一个三角形,不共面的四点可以连成四个三角形,这四个三角形围成的几何体叫做四面体(如图1).它有四个顶点,六条棱,四个面. 研究四面体的有关性质可以加深对四面体,空间四边形的知识的理解,有利于提高熟练运用知识的能力. 性质1:四面体中相对的棱所在的直线是异面直线.如图1中AB 和CD ,BC 和AD ,AC 和BD 都是异面直线. 性质2:四面体中,若一个顶点在对面内射影是这个三角形的垂心,则四面体的三组对棱分别互相垂直. 证明:如图2的四面体中,设顶点A 在面BCD 内的射影H 是BCD △的垂心.AH BCD ⊥平面.连结BH ,CH ,DH ,则BH CD ⊥,CH BD ⊥,DH BC ⊥.根据三垂线定理得AB CD ⊥,AC BD ⊥,AD BC ⊥. 性质3:四面体中,若有两组对棱互相垂直,则第三组对棱也互相垂直. 证明:设四面体ABCD 中,AB CD ⊥,AC BD ⊥,过A 作AH BCD ⊥平面,H 为垂足(如图2).连结BH ,CH ,则BH 为AB 在平面BCD 内的射影,根据三垂线定理的逆定理,BH CD ⊥;同理CH BD ⊥,所以H 是BCD △的垂心.由性质2知AD BC ⊥. 根据性质2,3立即可以得到: 性质4:四面体中,若一个顶点在它对面内的射影是这个面的中心,则其余各顶点在其对面内的射影也分别是这些面的中心. 利用全等三角形的判定和性质,可以证明下面两条性质: 性质5:四面体中,若交于同一顶点的三条棱相等,则这个顶点在对面内的射影是这个三角形的外心,且这三条棱和顶点所对面所成的角相等.反之也真. 特别地,若这个顶点所对的面是一个直角三角形,则这顶点的射影是直角三角形斜边的中点. 性质6:四面体中,若一个顶点在对面内的射影是这个三角形的内心,则顶点到对面三角形三条边的距离相等,且以这三角形三角形三条边为棱的三个二面角相等. 性质7:四面体中,若交于同一点的三条棱两两互相垂直,则这个顶点所对面是一个锐角三角形. 证明:如图3,设90APB BPC CPA ∠=∠=∠=o ,PA a =,PB b =,PC c =,不妨设a b c ≤≤,则222AB a b =+,222BC b c =+,222CA c a =+.显然BC 是ABC △的最大边,BAC ∠是ABC △中最大内角.根据余弦定理,有

GTP模型中四面体的引入及其空间模型扩展

收稿日期:2003-07-25; 修订日期:2003-08-01 基金项目:教育部“高校青年教师奖”专项基金;香港研究资助局(32Z B40);香港理工大学(1.34.9709) 作者简介:王彦兵(1972-),男,博士生,从事3D G IS 与3D G MS 研究。 GTP 模型中四面体的引入及其空间模型扩展 王彦兵1,2,吴立新1,2,史文中2 (1.中国矿业大学北京校区3S 与沉陷工程研究所,北京100083;2.香港理工大学土地测量与地理信息学系) 摘要:该文从空间拓扑概念出发,分析了基于广义三棱柱(G TP )模型建立空间实体间拓扑关系时的不足。针对G TP 进行平面剖切时存在的缺陷,讨论了在G TP 模型中加入新的几何元素———四面体作为辅助元素的必要性,并将空间实体的描述分为几何元素和实体元素两类。在此基础上,对原有G TP 模型进行了改进,建立了几何元素和实体元素之间的拓扑关系,并有效地解决了空间实体的3D 平面剖切问题。关键词:G TP 模型;单纯形;四面体;拓扑关系;3D 地学模拟系统 中图分类号:P208 文献标识码:A 文章编号:1672-0504(2003)05-0016-04 0 引言 GIS 与其它信息系统相比,其最主要的特性是对 实体空间关系的表达[1-4]。GIS 中表达的空间关系主要包括:度量关系、顺序关系和拓扑关系。度量关系是纯粹的计算方法,是对空间实体在欧氏空间上方位 的一种数值对比关系,是基于距离函数的计算方法。顺序关系是建立在数学关系(如“<”(严格顺序),“≤”(部分顺序))上的一种操作。拓扑关系是不考虑实体之间的距离的一种空间邻近关系,它主要的特点是基于拓扑变换(如旋转、放缩和转换等)下的不变性。 拓扑关系作为GIS 中主要表达和分析的空间关系之一[5-7],其表达有利于空间数据组织、空间分析、空间查询、空间推理和空间一致性检验[8]。3D 空间实体的拓扑描述是在2D 拓扑基础上的扩展,增加了新的空间实体元素———体,其拓扑关系也是2D 拓扑关系在3D 上的扩充。近年,众多学者提出了多种3D 拓扑数据 模型,主要思想是将空间对象抽象为点、线、面和体四类元素进行建模。但迄今为止,所提出的3D 拓扑数据模型均存在不同程度的缺陷和需要改进之处。 在拓扑学中,单纯形和复形如同组合数学一样都是解决拓扑问题的工具,通常利用单纯形和复形来对几何实体进行拓扑描述和空间关系的表达[9]。四面体是作为3D 空间建模最基本的几何元素之一,是3D 的单纯形。陈军、郭薇提出了顾及维数的3D 空间实体间拓扑关系描述框架[10],描述了欧氏空间中任意k —单纯形之间的空间拓扑关系,定义了相邻、包含、相交、部分覆盖、相离、相等6种基本拓扑 关系类型。根据3D 空间实体的可剖分性,将空间实体抽象为0~3—单纯形,并利用空间实体各单纯形间拓扑关系的组合形式描述3D 空间实体的拓扑关系,四面体就是对应的3—单纯形。 广义三棱柱(G eneralized Tri —Prism ,G TP )模型[11,12]是类三棱柱(Analogical Tri —Prism ,ATP )模 型[13,14]的发展。该模型是针对地质钻孔尤其是深 钻偏斜特点而提出的一种可以不受三棱柱棱边平行 (即钻孔垂直)限制的真3D 地学空间构模方法。G TP 模型主要用于地质体3D 建模,尤其适用于层状矿体的描述。G TP 模型直接基于原始钻孔数据构模,使得所构建的模型更符合实际地质状况并确保模型精度。G TP 模型同时建立了6类元素的6组基本拓扑 关系[12],可进行地学空间拓扑分析、查询和动态更新。由于G TP 的棱边不一定平行,即任意一个侧面的两条棱边不一定共面,这在进行空间分析和剖切时不可避免地会产生空洞。本文根据四面体属性和G TP 性质以及拓扑学理论,提出在G TP 模型中加入一个新的几何元素———四面体的解决方案。 1 G TP 模型中引入四面体的必要性 1.1 G TP 模型 G TP 模型的主要特点在于它不受三棱柱棱边平 行的限制,并将TP 模型[15]称为其特例;而且,基于TI N 边退化和TI N 面退化,可以由G TP 导出Pyramid 模型和TE N 模型[11,12]。G TP 构模原理是:用G TP 上下底面的三角形集合所组成的TI N 面来表达不同的地层面,然后利用G TP 侧面的空间四边形面来描述 第19卷 第5期2003年9月 地理与地理信息科学G eography and G eo -In formation Science V ol.19 N o.5 September 2003

正四面体的性质

⑨内切球半径 r= S ^OB +S ^OC +S ^OC ~S m c a + b +c 与正四面体的6条棱都相切,则此线段就是该球的直径。) 1 a = arccos — 3 (5)对棱互相垂直。 ⑺外接球半径 R= —a ; 4 (8)内切球半径 r= 逅a 12 (9)正四面体内任意一点到四个面的距离之和为定值 (等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体 . 如图,在直角四面体 AOC 中,/ AOB M BOC M COA=90 , OA=a ,OB=b ,OC=c . 则 ① 不含直角的底面ABC 是锐角三角形; ② 直角顶点O 在底面上的射影H 是^ ABC 的垂心; 1 ③ 体积 V= - a b c ; 6 ④ 底面面积 S AAB (=-J a 2b 2 + b 2c 2 +c 2a 2 ; 2 2 2 2 & ⑥S △Bo +S △Ao +S △ AO =S △ABC 1 1 + -- ? 2 2 J b c R= 1 J a 2 + b 2 +c 2 ; (1)全面积 (2)体积 V=返 a 3 12 (3)对棱中点连线段的长 d= 匹a ;(此线段为对棱的距离,若一个球 2 ⑷相邻两面所成的二面角 ⑹ 侧棱与底面所成的角为 P =arccos ⑤ S △ BO =S BHC ? & ABC ⑧外接球半径 C

2 ⑨内切球半径r= S^OB +S^OC +S^OC~S m c a + b +c

⑨内切球半径 r= S ^OB +S ^OC +S ^OC ~S m c a + b +c 与正四面体的6条棱都相切,则此线段就是该球的直径。) 1 a = arccos — 3 (5)对棱互相垂直。 ⑺外接球半径 R= —a ; 4 (8)内切球半径 r= 逅a 12 (9)正四面体内任意一点到四个面的距离之和为定值 (等于正四面体的高). 直角四面体的性质 有一个三面角的各个面角都是直角的四面体叫做直角四面体 . 如图,在直角四面体 AOC 中,/ AOB M BOC M COA=90 , OA=a ,OB=b ,OC=c . 则 ① 不含直角的底面ABC 是锐角三角形; ② 直角顶点O 在底面上的射影H 是^ ABC 的垂心; 1 ③ 体积 V= - a b c ; 6 ④ 底面面积 S AAB (=-J a 2b 2 + b 2c 2 +c 2a 2 ; (1)全面积 (2)体积 V=返 a 3 12 (3)对棱中点连线段的长 d= 匹a ;(此线段为对棱的距离,若一个球 2 ⑷相邻两面所成的二面角 ⑹ 侧棱与底面所成的角为 P =arccos C

正四面体性质及其应用

正四面体的性质及其应用 正四面体是四个面都是等边三角形的凸多面体,它是一个很规则的几何体,因此具有一些特有的性质,设正四面体的棱长为a ,则 (1) 全面积S 全= 3 a 2; (2) 高h = 6 3 a ; (3) 体积V = 2 12 a 3 ; (4) 对棱中点的连线是对棱的公垂线,其长为d = 2 2 a ; (5) 相邻两面所成的二面角α=arccos 1 3; (6) 棱与其相交的面所成的角 β=a rctan 2 ; (7) 正四面体的内切球和外接球的球心重合,内切球半径 r = 6 12a ,外接球半径R = 6 4 a ,r ︰R =1︰3; (8) 正四面体内任一点到四个面的距离之和为定值(等于正四面体的高)。 将正四面体置于正方体中,结合正方体的性质以上诸性质容易得到证明。考查正四面体的性质多出选择或填空题,熟记以上八条性质对快速求解相关问题有很大帮助,例如: 例1:已知半径为1的球面上有A 、B 、C 三个点,且它们之间的球面距离都为π 3 ,则球 心O 到平面ABC 的距离为( ) A 3 2 B 6 3 C 12 D 21 7 解析:如右图所示,OA=OB=OC =1 又3 π = ==⌒ ⌒ ⌒ CA BC AB ,球的半径r =1 ∴∠AOB=∠BOC=∠COA =π 3 ,则AB=BC=CA =1 所以O -ABC 为棱长为1的正四面体,则由正四面体的性质得球心O 到平面ABC 的 距离即其高为 6 3 ,答案B 。 例2:(05年湖南省十所示范校联考)已知棱长为a 的正四面体ABCD 有内切球O ,经过该棱锥A -BCD 的中截面为M ,则O 到平面M 的距离为( ) A a 4 B 6 6a C 6 12a D 2 8 a 解析:直接运用正四面体的性质,内切球的半径r = 6 12 a ,中截面到底面的距离为高的一半 6 6a ,则O 到平面M 的距离为 6 6a - 6 12a = 6 12 a ,因此选 例3:(06年陕西卷)将半径为R 心到桌面的距离为 。 解析

正四面体性质及其应用

正四面体性质及其应用 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

正四面体的性质及其应用 正四面体是四个面都是等边三角形的凸多面体,它是一个很规则的几何体,因此具有一些特有的性质,设正四面体的棱长为a ,则 (1) 全面积S 全= 3 a 2; (2) 高h = 6 3a ; (3) 体积V = 2 12 a 3; (4) 对棱中点的连线是对棱的公垂线,其长为d = 2 2a (5) 相邻两面所成的二面角α=arccos 1 3; (6) 棱与其相交的面所成的角 β=arctan 2 ; (7) 正四面体的内切球和外接球的球心重合,内切球半径 r = 6 12a ,外接球半径R = 6 4a ,r ︰R =1︰3; (8) 正四面体内任一点到四个面的距离之和为定值(等于正四面体的高)。 将正四面体置于正方体中,结合正方体的性质以上诸性质容易得到证明。考查正四面体的性质多出选择或填空题,熟记以上八条性质对快速求解相关问题有很大帮助,例如: 例1:已知半径为1的球面上有A 、B 、C 三个点,且它们之间的球面距离都为π 3 ,则球心O 到平面ABC 的距离为( ) A 3 2 B 6 3 C 12 D 21 7 解析:如右图所示,OA=OB=OC =1 又3 π = ==⌒ ⌒ ⌒ CA BC AB ,球的半径r =1 ∴∠AOB=∠BOC=∠COA =π 3,则AB=BC=CA =1

所以O -ABC 为棱长为1的正四面体,则由正四面体的性质得球心O 到平面ABC 的距离即其高为 6 3,答案B 。 例2:(05年湖南省十所示范校联考)已知棱长为a 的正四面体ABCD 有内切球O ,经过该棱锥A -BCD 的中截面为M ,则O 到平面M 的距离为( ) A a 4 B 6 6a C 6 12a D 2 8a 解析:直接运用正四面体的性质,内切球的半径r = 6 12a ,中截面到底面的距离为高的一半 6 6a ,则O 到平面M 的距离为 6 6a - 6 12a = 6 12a ,因此选C 。 例3:(06年陕西卷)将半径为R 球的球心到桌面的距离为 。 解析A 、B 、C 、D ,因为四个球两两相切,则 ABCD 2R 的正四面体,A 到面BCD 的距离为 2 6 3 R ,则上面一个球的球心A 到桌面的距离为R +2 6 3R =(1+2 6 3)R 。 例4:(06年山东卷)如图1,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60 ○ ,E 为AC 的中点,将△ADE 与△BEC 分别沿重合于点 P ,则三棱锥P -DCE 的外接球的体积为( )A 4 3 27π B 6 2π C 6 8π D 解析:三棱锥P -DCE 实质上是棱长为1的正四面体, 则其外接球的体积为 V = 43πR 3= 43π( 6 4)3= 6 8π。 例5:(06年湖南卷)棱长为2球球心的一个截面如图1

四面体性质探索

[文件] sxglija0031.doc [科目] 数学 [年级] 高中 [章节] [关键词] 四面体 [标题] 四面体性质探索 [内容] [主讲教师] 北京四中李建华 [教学课题] 四面体性质探索 [教学目标] 1.通过教学使学生了解和掌握四面体﹑有一个顶点处三条棱相互垂直的四面体和对棱相等的四面体的基本性质,理解长方体、有一个顶点处三条棱相互垂直的四面体和对棱相等四面体的本质联系,并能够对四面体在多面体中的重要地位有所领会; 2.通过教学使学生初步体会到类比﹑转化与整合在认识事物过程中的重要作用,并能够初步理解和掌握转化与整合的思想方法; 3.通过教学培养学生的空间想象能力,提出问题﹑分析问题和解决问题的能力,特别是几何图形的分解与组合能力; 4.通过教学渗透科学理性精神,爱国主义情怀,激发学生学习数学 的兴趣,并逐步提高数学审美能力。 [教学重点] 类比、转化与整合思想方法的展示。 [教学难点] 几何图形之间各种联系的发掘和应用。 [课时安排] 1课时(45分钟)。 [教学模式] 启发式为主,辅以讲授。 [教学工具] 计算机以及常规教学工具。 [教学过程] 一、课题引入 师:从小学到高中,大家最熟悉的多面体大概就是长方体了。 (演示) 然而,从数学角度来看,长方体并不是最简单的多面体。比如,大家知道,如果从面的数目上来说,四面体是最简单的多面体,就象从边的数目上来说,三角形是最简单的多边形一样。 那么,有没有可能将长方体分解为若干个四面体呢? 我们先来回顾在平面几何当中,我们是怎样将任意多边形分解为三角形的。 (演示) 我们再来看看如何将长方体进行分解,请看演示:

多面体的欧拉公式

多面体的欧拉公式 在数学历史上有很多公式都是欧拉(Leonhard Euler)发现的,它们都叫做欧拉公式,分散在各个数学分支之中。 欧拉13岁进入瑞士巴塞尔大学读书,15岁获得学士学位,16岁又获得巴塞尔大学哲学硕士学位,轰动了当时的科学界。但是,他的父亲却希望他去学神学。直到小欧拉19岁时获得了巴黎科学院的奖学金之后,父亲才不再反对他读数学。欧拉是一位创作性超群的数学家,后来从瑞士转赴俄国和德国工作,因此三个国家都声称他是本国的科学家。 有许多关于欧拉的传说。比如,欧拉心算微积分就像呼吸一样简单。有一次他的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来。欧拉创作文章的速度极快,通常上一本书还没有印刷完,新的手稿就写好了,导致他的写作顺序与出版顺序常常相反,让读者们很郁闷。而且,收集这些数量庞大的手稿也是一件困难的事情。瑞士自然科学会计划出一部欧拉全集,这本全集编了将近100年,终于在上个世纪90年代基本完成,没想到圣彼得堡突然又发掘出一批他的手稿,使得这本全集至今仍未完成。欧拉28岁时一只眼睛失明了,后来另一只眼睛也看不见了,据说是因为操劳过度,也有一说是因为观察太阳所致。尽管如此,他仍然靠心算完成了大量论文。 下面来看看欧拉公式中最著名和优美的一个。 拓扑学的欧拉公式描述了多面体顶点(Vertex),边(Edge)和面(Face)之间的关系: V - E + F = X 其中,V是多面体的顶点个数,E是多面体的棱的条数,F是多面体的面数, X是多面体的欧拉示性数(Euler characteristic)。 X是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。X 的值依赖于几何物体的形态和曲面的取向。 可定向性——大部分我们在物理世界中遇到的曲面是可定向的。例如平面,球面与环面是可定向的。但是莫比乌斯带(M?bius strip)不可定向,它在三维空间中看起来都只有一“侧”。假设一只蚂蚁在莫比乌斯带上爬行,它可以在不穿过边界的情况下爬到曲面的另一侧。 亏格(Genus)——可定向曲面的亏格是一个整数。如果沿一个几何曲面的任意一条简单闭合曲线切开,都能把曲面切断,那么这个曲线的亏格就是0。如果存在一条简单闭合曲线在切开后,曲面没有分成两个部分,那么亏格就是1。进一步的在亏格为1的曲面上切开一条曲线后,还能再找到一条这样的曲线,那么亏格为2。依次类推。

03-02 空间问题的四面体单元

第三章 轴对称、三维和高次单元 §3-2 空间问题的四面体单元 空间问题的有限单元法,和平面问题及轴对称问题的有限单元法的原理和分析过程完全相同。由于空间问题应采用三维坐标系,因此单元的自由度、刚度矩阵的元素个数,方程组内方程个数等要较平面问题和轴对称问题多,所以空间问题的规模一般比轴对称问题和平面问题大得多。它要求计算机的内存大,且计算时间长,费用高。这些问题都给三维有限单元法的具体运用带来许多困难。 和平面问题一样,空间有限单元法采用单元也是多种多样的,其中最简单的是四节点四面体单元。采用四面体单元和线性位移模式来处理空 间问题,可以看作平面问题中三角形单元的推广。 在采用四面体单元离散化后的空间结构物中,一系列不相互重叠的四面体之间仅在节点处以空间铰相互连接。四节点四面体单元仅在四个顶点处取为节点,其编号为i,j,m,p 。每个单元的计算简图如图3-7所示。 在位移法中,取节点位移为基本未知量,四节点四面体单元共有十二个自由度(位移分量),其节点位移列阵为 {}[ ] T p p p m m m j j j i i i p m j i e w v u w v u w v u w v u =??????????????=δδδδδ 其子矩阵 {}[]i i i i w v u =δ (i,j,m) 相应的节点力列阵为 {}[ ] T p m j i e F F F F F - 图3-7 空间四面体单元

其子矩阵 {}[]T i i i i W V U F = 一、单元法位移函数 结构中各点的位移是坐标x 、y 、z 的函数。当单元足够小时,单元内各点的位移可用简单的线性多项式来近似描述,即 ?? ? ??+++=+++=+++=z y x w z y x v z y x u 121110087654321αααααααααααα (3-49) 式中1α,2α,…,12α是十二个待定系数,它们可由单元的节点位移和坐标确定。假定节点i,j,m,p 的坐标分别为(i x i y i z )、(j x j y j z )、(m x m y m z )、 (p x p y p z ),将它们代入(3-49)式的第一式可得各个节点在x 方向的位移 ?? ? ? ? ?? ??? ?? ? ?+++=+++=+++=+++=p p p p m m m m j j j j i i i i z y x u z y x u z y x u z y x u 4321432143214321αααααααααααααααα (3-50) 解上述线性方程组,可得到1α,2α,3α,4α,再代入(3-50)式,得 ] )()()()[(61p p p p p m m m m m j j j j j i i i i i u z d y c x b a u z d y c x b a u z d y c x b a u z d y c x b a V u +++-+++++++-+++= (3-51) 其中V 为四面体ijmp 的体积,a i ,b i ,…,c p ,d p 为系数。 p p p m m m j j j i i i z y x z y x z y x z y x V 1 111= (3-52)

正四面体

正四面体 常用性质: 1、正四面体是由四个全等正三角形围成的空间封闭图形,所有棱长都相等。 它有4个面,6条棱,4个顶点。正四面体是最简单的正多面体。 2、正四面体属于正三棱锥,但是正三棱锥只需要底面为正三角形,其他三个面是全等的等腰三角形就可以,不需要四个面全等且都是等边三角形。因此,正四面体是特殊的正三棱锥。 3、基本性质:正四面体是一种柏拉图多面体,正四面体与自身对偶。 正四面体的重心、四条高的交点、外接球、内切球球心共点,此点称为中心。 正四面体的对边相互垂直。正四面体的对棱相等。 正四面体内任意一点到四个面的距离之和为定值 3 。 4、相关数据当正四面体的棱长为a时,一些数据如下: (中心把高分为1:3两部分} 2体积: 3 12 对棱中点的连线段的长: 2,两邻面夹角满足 1 cos 3 α=。 若将正四面体放进一个正方体内,则该正方体棱长为 2,其实,正四面体的棱切球 即为次正方体的内切球。 5、建系方法1.设有一正四面体D-ABC棱长为a 以AB边为y轴A为顶点ABC所属平面为xOy面建系四个顶点的坐标依次为 其他性质: 正四面体有一个在其内部的内切球和七个与四个面都相切的旁切球,其中有三个旁切球球心在无穷远处。 正四面体有四条三重旋转对称轴,六个对称面。 正四面体可与正八面体填满空间,在一顶点周围有八个正四面体和六个正八面体。 正四面体体积占外接球体积的2*3^0.5/9*π,约12.2517532%。 内切球体积占正四面体体积的π*3^0.5/18,约30.2299894%。 两条高夹角:2ArcSin(√6/3)=ArcCos(-1/3)=≈1.91063 32362 49(弧度)或109°28′16″39428 41664 889。这一数值与三维空间中求最小面有关,也是蜂巢底菱形的钝角的角度. 侧棱与底面的夹角:ArcCos(√3/3) 正四面体的对棱相等。具有该性质的四面体符合以下条件: 1.四面体为对棱相等的四面体当且仅当四面体每对对棱的中点的连线垂直于这两条棱。 2.四面体为对棱相等的四面体当且仅当四面体每对对棱中点的三条连线相互垂直。 3.四面体为对棱相等的四面体当且仅当四条中线相等。 化学中CH4,CCl4,SiH4等物质也是正四面体结构。正四面体键角是109度28分,约为109.47°。

正四面体的结构与稳定性

正四面体的结构与稳定性 江苏省如皋市丁堰中学冒春建 226521 物质的组成、结构决定物质的性质。如果某物质具有稳定的空间构型,就有稳定的性质。那么怎么样的空间构型才是稳定的呢?按照价键理论,只要化学键的键角方向与其成键原子的价电子云在空间的伸展方向一致,则成键原子间的作用力最强烈,而成键电子与成键电子之间的排斥力最小(即通常所说的“键角张力”),非成键原子或原子团之间的空间距离最大,达到最大程度的舒展,使非成键原子或原子团间的空间位阻最小,具有这样的结构其内能最小,结构稳定。 正四面体结构是中学生所遇化学物质中最常见的空间构型之。例如,原子晶体中的金刚石、晶体硅、水晶等,它们的熔沸点高、硬度大,通常情况下很难跟一般的化学试剂反应,表现出较强的稳定性;分子晶体中的甲烷、四氯化碳等,它们在通常情况下与大多数化学试剂如强酸、强碱、强氧化剂、强还原剂等都不起反应,也表现出较强的稳定性。这是什么原因呢?因为在这些物质中,碳原子、硅原子都是以四个sp3杂化轨道与其相邻的四个原子形成典型的共价键基团“CC4”、“SiSi4”、“SiO4”或小分子“CH4”、“CCl4”,它们的键角方向与其中心原子的四个sp3杂化轨道的空间伸展方向一致,均为109°28′,不存在“键角张力”。并且它们的成键原子的电子云之间达到最大程度的重叠,键能大,内能低,结构稳定,所以它们的性质也稳定。 我们知道,浓硫酸中+6价的硫具有强氧化性,而稀硫酸中同样为+6价的硫却没有氧化性,这是为什么呢?在浓硫酸中,+6价的硫绝大多数是以H2SO4分子形式存在,而H2SO4分子的空间构型是不规则的四面体,在H2SO4分子中O—S—O键的键角与硫原子的四个sp3杂化轨道的空间伸展方向(夹角为109°28′)不一致,化学键之间存在较强的“键角张力”,内能较大。并且四个S—O键的键长不等,使位于中间的+6价硫原子的周围空间相对来说有一定的空隙,易受到具有还原性微粒的攻击,夺得电子,从而表现出氧化性。 在稀硫酸中,+6价的硫原子是以自由移动的SO42-离子形式存在,而SO42-离子的空间构型是正四面体,所有的S—O键都是沿着硫原子的四个sp3杂化轨道在空间的伸展方向成键,不存在化学键之间的“键角张力”,四个S—O键的键长、键能完全相同,四个氧原子均匀地、等距离地分布在硫原子周围,使位于正四面体中心的+6价硫原子难以被其它原子或原子团攻击,也就没有得电子的可能性,故稀硫酸中+6价的硫没有氧化性。 又如,氨气和硝酸中的氮元素分别处于最低价态-3价和最高价态+5价,按理说,前者具有较强的还原性,后者具有很强的氧化性,两者相遇应发生强烈的氧化还有反应,而事实上,它们之间发生的是非氧化还原反应(简单的化合反应),这又是什么原因呢?这是由于N H3分子中的氮原子在成键时的四个sp3杂化轨道有一个被自身的孤对电子占领,当它遇到H+后很快形成N→H配位键,变成N H4+离子。而N H4+离子的空间构型又是正四面体,四个N—H键的键长、键能均完全一样,键角均为109°28′,与N原子的四个sp3杂化轨道的夹角完全吻合,不存在“键角张力”;四个氢原子也均匀地分布在氮原子周围,使位于中心的-3价氮原子难以被其它原子或原子团进攻。故氨气在遇到硝酸、浓硫酸等酸性强氧化剂时,表现不出还原性。但是,当N H3在一定条件下,遇到CuO、Cl2等氧化剂时又表现出一定的氧化性。这是因为N H3分子中,N原子的四个sp3杂化轨道中有一个被孤对电子占用,根据价电子对互斥原理,N—H键间的夹角受孤对电子的排斥挤压,键角不再是109°28′,而是107°,故N H3分子中氮原子的周围空间不是被氢原子均匀包围,氮原子的价电子云有了一定程度的“裸露”,较易受到其它氧化性微粒的进攻,从而表现出一定的还原性。

相关文档
最新文档