锻造冲孔力计算

锻造冲孔力计算
锻造冲孔力计算

冲孔力计算

已知:钢材厚度δ=(55-65)mm

冲孔尺寸为d=(¢40-¢50)mm

查资料得到Q235钢材加热到900℃的抗剪强度为τ=59MPa

图1.冲裁示意图图2.冲裁剪切力示意图

因为工件厚度比较大,所以采用两次(翻边)冲裁成型,且为保证两次冲裁孔能完全成型,第一次冲裁完成冲冲孔厚度的70%。如上图1及图2所示,由剪切强度极限公式可得最小冲裁力为:=A*τ=[π*d*(δ*70%)]*τ

=3.14×(50×)m×(65××0.7)m×(59×)Pa

=421466.5N≈422KN=42.2T

式中:A——冲裁截面积(=圆周长×厚度)

因设备吨位计算以各工序、各工件中最大冲裁力为依据,所以d 和δ均取最大值。

因一次冲裁的厚度比较大(达到65×0.7=45.5mm),压力机公称力行程远小于此值,所以需要选用公称力稍大的压力机。具体选用哪个吨位压力机需要查看设备许用压力曲线,保证完成冲裁件加工时的冲裁工艺力曲线必须在压力机滑块的许用压力曲线之下。

给水排水管道系统水力计算汇总

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

冲孔灌注桩计算方式

冲孔灌注桩计算 首灌量= 桩的截面积×H+V, H = 导管离孔底的高度(一般为30~35㎝)+80㎝,V是导管中高出H部分的混凝土量,它是用来抵消泥浆反压力的 算砼理论方量=桩截面积×(有效桩长+超灌高度H) 理论方量:终孔深度×3.14×半径×半径 充盈系数K:1.25~1.5充盈系数K=实际方量÷理论方量 实际方量:(终孔深度+超灌量1~1.5m)×3.14×半径×半径×充盈系数K 孔深=主钻杆长度+副钻杆长度+钻头长度-机高-余尺 桩底标高=地面标高-孔深 有效桩长=设计桩顶标高-桩底标高 钢筋笼顶标高=设计桩顶标高+锚固长度(承压桩35D,抗拔桩40D) 吊筋长度=机台面标高-钢筋笼顶标高 机台面标高=地面标高+机台高 钢筋笼长度=钢筋笼顶标高-钢筋笼底标高(放到底的钢筋笼:钢筋笼底标高=桩底标高) 桩笼长=孔深+锚固长度+加上焊接总长度+接头错开的长度 钢筋笼总长度=有效桩长+钢筋搭接长度+锚固长度 桩笼长=设计桩顶标高+钢筋笼锚固长度(35D) -(地面标高-孔深) 砼浇注面标高= 体积(方量)=桩孔的截面积x(导管到孔底的距离(0.2~0.4m)+导管埋入混凝土中的深度(1m))+导管内混凝土的高度(孔深/2.4)

初灌方量T(m3)=初灌后孔内砼体积T1(m3)+初灌后导管内砼体积T2(m3) 充盈系数k=1.4、泥浆比重按1.15、混凝土比重按2.45、 导管每米混凝土方量按0.049m3 T1=k×孔内每米砼方量(m3/m)×1.5m T2=[(孔深m×泥浆比重)/砼比重]×导管内每米砼方量(m3/m) Φ800初灌方量T(m3)= T1+T2=1.4×0.70336×1.5+[(40×1.15)/2.45]×0.049= m3 φ1000初灌方量T (m3)= T1+ T2 =1.4×1.099×1.5+[(40×1.15)/2.45]×0.049= m3 φ1200初灌方量T (m3)= T1+ T2 =1.4×1.583×1.5+[(40×1.15)/2.45]×0.049= m3

70MN锻造水压机液压缸的设计计算

主缸的结构设计 采用三缸分级压力,主缸30MN ,侧缸每个20MN 。 柱塞尺寸的确定: z D =0232.1105.3610304466 =????=ππp P m ,取1100=z D mm (主缸活塞直径) c D = 698.0105.361020446 6 =????=ππp P m ,取 710=c D mm (侧缸活塞直径) 70MN 锻造水压机主要技术参数 压机结构形式:三梁四柱预应力组合上传动式; 传动形式:油泵直传; 介质压力:36.5MPa ; 公称压力:70MN ; 压力分级:20MN/40MN/60MN(墩粗70MN) 回程力:6.4MN ; 活动横梁行程:2500mm ; 最大净空距(开启高度):6000mm ; 锻造偏心距:200mm ×200mm ; 活动横梁速度: 下降:300mm/s ; 工作:75~100mm/s(60MN); 60mm/s(70MN) 回程:300mm/s 工作台尺寸:3400×9000mm ; 工作台行程:左右各6000mm ; 移动工作台速度:150~200mm/s 移动工作台承重:≤170T 立柱中心距:5200×2300mm ;

此时,第一级压力为6695.344 1 21== P p D z πMN , 第二级压力为MN p D p D z c 1132.496695.344437.144 1 41222=+=+=P ππ 第三级压力为5569.636695.348874.284 1 42222=+=+=P p D p D z c ππMN 主缸内径1110101100211=+=?+==t D r D z mm ,即5552 1110 1==r mm 工作 缸 材 料 选 择 为 20MnMo , 许 用 应 力 [] σ取110~ 150Mpa(MPa MPa s b 372350,570 ==σσ),根据强度公式可以得到 主工作缸的外径: [][]p r r D 3221 22- ==σσ([]σ=110 Mpa ),08.17022=D mm ,取180 2=D mm , 即9002 1800 2== r mm 34512=-=r r δmm ,690~5.517345)2~5.1()2~5.1(=?==δt mm ,取 600=t mm 690~5.517345)2~5.1()2~5.1(=?===δh mm ,取600=h mm , 2225554.04.011=?==r R mm , 75.39615.11==δδmm ,25.86~75.51)25.0~15.0(==δR mm ,取 70=R mm , 5.5175.1==δL mm ,??=15~101a ,取?10 筒壁部分: 最大应力点在缸筒内壁,计算当量应力为 01.102105.36555 900900336 2 22212222max =??-?=?-=p r r r σMPa 570≥b σMPa 372≥s σMpa 安全系数为 6467.301 .102372 == s n

管道支架受力计算

地下三层3-8/D-E轴空调冷却水管道支 架受力计算 管道受力计算步骤如下: 1)对图纸进行支架的深化设计 首先对现有的图纸进行支架的深化设计,确定各个部位支架的间距,并在图纸上标明具体位置。并以洽商或工作联系单的形式经过专业设计人员的签认。 2)支吊架拉力计算 第一步、根据图集《室内管道支架及吊架》(03S402,中国建筑标准设计研究所2003.5.1实行)查出管道(如为保温管道应为带保温的管道)重量。 根据长城金融工程空调冷却水施工设计说明要求(DN450采用螺旋焊接钢管),钢管规格为为Φ478*9。 对于加厚管道,应根据每米钢管质量的计算公式计算出它的每米重量A:1*24.6616*δ*(D —δ)/1000,其中D为外径,δ为壁厚。 冷却水管重量:24.6616×9×(478-9)÷1000=104.6 kg/m 第二步、计算管道满水重量和支架自重 每米管道水重量: T=π*(管内径)2*水密度(kg/m3) 3.14×(0.45÷2)2×1000÷1000=159 kg/m 第三步、根据设计签认的“支吊架”深化图纸及上述计算数据,用下式计算出每个的膨胀螺栓须承受的力B(KN):

槽钢自重(t):2.85m×14.2kg/m=40.47 kg 总重量(t):(104.6+159)×66.4+40.47×7=17786.33 kg 膨胀螺栓承受的力:17786.33÷(8×7)÷100=3.18 KN 第四步、从图集《室内管道支架及吊架》(03S402)中P9关于M16的锚栓抗拉极限荷载为9.22KN,抗剪极限荷载为5.91KN,均大于深化设计荷载,故M16的膨胀螺栓的选取满足本工程需要。

锻造比概念和算法

锻造比概念和算法 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

锻造比概念和算法 锻造比是锻造时金属变形程度的一种表示方法。锻造比以金属变形前后的横断面积的比值来表示。不同的锻造工序,锻造比的计算方法各不相同。 1、拔长时,锻造比为y=F0/F1或y=L1/L0 式中F0,L0—拔长前钢锭或钢坯的横断面积和长度; F1,L0—拔长后钢锭或钢坯的横截面积和长度。 2、镦粗时的锻造比,也称镦粗比或压缩比,其值为 y=F1/F0或y=H0/H1 F0,H0—镦粗前钢锭或钢坯的横截面积和高度; F1,H1—镦粗后钢锭或钢坯的横截面积和高度。 锻造比是锻造时金属变形程度的一种表示方法。锻件的组织和机械性能与很多因素有关,而锻造比是影响锻件质量的最主要因素之一。对于用铸锭(包括有色金属铸锭)锻制的大型锻件和莱氏体钢锻件,正确选取锻造比有较大的实际意义;对于某些大型锻件的中间坯料,如涡轮盘、压气机盘等的圆饼坯料,轴、框、梁等的预制锻坯,锻造比也有重要的实际意义。 1,锻造比永远是正的,变形前后的面积之比的计算永远是对的,即大面积变形成小面积时,用变形前的面积除以变形后的面积;反之类推。2,用长度比较时要当心:同形状变形时是可以拿长的除以短的(体积不变定律),不同形状变形时是绝对不可以的,例如八角锭拔长成方形时,只能用八角形除以方形面积。 以上的说法还应补充: 锻造比分为工序锻造比、火次锻造比和总锻造比。 当只用拔长或只用镦粗,而进行几次锻造时,则总锻造比等于各次锻造比的乘积,即 y总=y1*y2*y3… 如两次拔长中间镦粗或两次镦粗中间拔长时,总锻造比规定为两次锻造比相加,即 y总=y1+y2 此式中未将中间镦粗或中间拔长的锻造比计算在总锻造比之内。 锻造比是自由锻里的一个重要指标,但不是唯一的,在大型锻件锻造中,更注重锻造状态:应变场、温度场等等。如果在很小的进砧量下以每次很小的压缩量锻造,它的心部压实水平远远不如大进砧量、大压下量的锻造状态——小压缩量多次锻压积累的变形效应都集中在锻件外层,而我们追求的往往是心部材料的压实。每次洽谈大锻件合同、碰到用户提出“锻造比要大于多少”时我总要解释一番,其实关键的还是看最后的组织检测和探伤情况。

锻造工艺

复杂弯轴类锻件辊锻-摩擦压力机模锻复合锻造工艺 一、前言 复杂弯轴类锻件的最佳成形法一直是锻造行业致力研究的问题,前些年我国轻轿车生产数量不大,没有形成规模经营,故轻轿车复杂弯轴锻件的生产主要以传统的锤上模锻工艺进行小批量生产,有的厂家甚至采用自由锻—胎模锻工艺,需几火次才能锻成。近年来,我国轻轿车生产迅速发展,生产批量越来越大,整机制造水平越来越高,对复杂弯轴类锻件而言,不仅形状复杂,而且锻件尺寸精度,表面质量等方面的要求也更加严格,故探索轻轿车复杂弯轴类锻件的合理锻造方法,显得尤为重要。根据一汽轻轿车生产实际需求,在试验研究的基础上,我们采用了辊锻制坯—摩擦压力机模锻复合工艺替代传统的锤上模锻,生产了轻型车左转向节臂,奥迪轿车左、右下控制臂等五种复杂弯轴类锻件,其锻件技术水平达到了轻型车、奥迪轿车原图纸设计要求,各项技术经济指标均达到了预期目标。 二、工艺分析与方案确定 轻轿车复杂弯轴类锻件,其特点是轴线呈空间曲线形,多向弯曲,截面差与落差大,外形复杂,锻造成形与模具加工难度较大。以左转向节臂(图1)为例,按传统的锤上模锻工艺,一般要采用拨长—滚压—弯曲—锻造等工步。其突出缺点是锻件精度较差,工作时震动噪音大,材料消耗与能耗大,劳动条件差。如采用较先进的热模锻压力机成形法,虽然工人劳动条件好,生产率及锻件尺寸精度较高,也便于实现机械化和自动化,但其突出缺点是制造成本高,不便于拔长、滚压等制坯工步,需配其它辅助设备制坯。 图1 针对现有锻造工艺的诸多问题及复杂弯轴类锻件自身的技术特点,我们确定了辊锻——摩擦压力机模锻复合锻造工艺的方案,其工艺流程为:下料→中频感应加

锻件尺寸计算

二)计算坯料质量与尺寸 【坯料质量】坯料质量可按下式计算 G 坯料=G 锻件+G 烧损+G 料头 式中G 坯料——坯料质量 G 锻件——锻件质量 G 烧损——加热时由于坯料表面氧化而烧损的质量。第一次加热取被加热金属的2~3%,以后每次加热取1.5~2.0% G 料头——在锻造过程中冲掉或切掉的那部分金属的质量。如冲孔时坯料中部的料芯,修切端部的料头等。 当锻造大型锻件时,如采用钢锭作坯料,还要考虑应切掉的钢锭头部和尾部的质量。2.坯料尺寸根据坯料质量即可确定坯料尺寸。在计算坯料尺寸前,先要考虑锻造比。【锻造比】是指坯料在锻造前后的断面积的比值。 对于拔长工序来说,其锻造比R d 可按下式计算: R d =A 0 /A 1 或L 1 /L 0 式中A 0 、A 1 ——拔长前、后坯料的断面积; L 0 、L 1 ——拔长前、后坯料的长度。 对于镦粗工序来说,其锻造比(R u )可按下式计算: R u =A 1 /A 0 或H 0 /H 1 式中A 0 、A 1 ——镦粗前、后坯料的断面积; H 0 、H 1 ——镦粗前、后坯料的高度。 确定坯料的尺寸时,应满足对锻件的锻造比要求,并应考虑变形工序对坯料尺寸的限制。采用镦粗法锻造时,为避免镦弯,坯料的高径比(H 0 /D 0 <2.5)。但为下料方便,坯料高径比还应大于1.25。 根据坯料质量,由下式求出坯料体积V 坯。 V 坯=m 坯/ ρ ρ——金属密度。对于钢铁ρ =7.85kg/dm 3 。 然后,求出坯料横截面积A 0 。 采用拔长法锻造时,由公式: A 0 =R d A 1

因锻后横截面积A 1 可知,故可求出A 0 ( 坯料为钢锭时,锻造比R d 取2.3~3. 0;坯料为轧材时,R d 取l.3~1.5),最后可求出坯料直径或边长。 (三)制定锻造工序 根据不同类型的锻件选用不同的锻造工序。工序确定后,尚须确定所用的工夹具、加热设备、加热和冷却规范及根据锻件质量确定锻造设备。 (四)自由锻件的锻造工艺规程举例。 自由锻件的锻造工艺规程举例见下表。

锻造

1.锻造工艺的定义 锻造是一种在一定温度下借助工具或模具在冲击或压力作用下加工金属机械零件或零件毛坯的方法,锻件的生产率最高,锻件的形状,尺寸稳定性好,并有最佳的综合力学性能 2.锻造分类,按照成型方式分?按照温度划分? 锻造根据使用工具和生产工艺的不同而分为自由锻,模锻和特种锻造。 3.模锻冲孔连皮以及各种形式的应用情况 模锻不能直接锻出透空,因此在设计热锻件图时必须在孔内保留一层连皮,然后在切边压力机上冲除掉。冲孔连皮分为平底连皮,斜底连皮,带仓连皮,拱底连皮和压凹。 ①平底连皮:常用的脸皮形式 ②斜底连皮:当锻件内孔较大时(d﹥2.5h或d﹥60mm) ③带仓连皮:若锻件形状复杂,需经预锻和终锻成型,可在预锻型槽中安排斜底连皮,而在终锻型槽中则改用带仓连皮,以便于切边时冲除 ④拱底连皮:若锻件内孔很大(d﹥15h),而高度又很小,金属向外流动困难,这时采用拱底连皮或带仓连皮 ⑤压凹:当锻件内孔直径较小(d﹤25mm),不宜锻出连皮,应该有压凹形式,其目的是使锻件饱满成型 4.锻造时考虑锻件胚料的失稳问题:坯料的高径比H/D>3坯料镦粗时容易产生失稳,导致纵向弯曲。尤其在坯料端面不平,或坯料本身轴线不直,或坯料温度不均匀,或锤砧面不平行,都会使H/D>3得坯料产生纵向弯曲。弯曲了的坯料若不及时校正而继续镦粗,就可能产生折叠。因此在镦粗时,对坯料的高径比应有所限制。通常,圆截面坯料 H/D不宜超过2.5-3;方形或矩形截面坯料H/A不大于3.5-4 5.自由锻和模锻的特点各是什么?优缺点 自由锻:坯料在平砧上面或工具之间经逐步的局部变形而完成 模锻:①工艺灵活,适用推广②锤头行程打击速度或打击能量可调节③充填型槽能力强④提高锻件的使用寿命⑤生产率高⑥机械加工余量小,成本较低 自由锻优缺点:①工具简单通用性强,灵活性大,适用单件和小批量锻件,适用于新产品试制等②锻件精度低加工余量大,生产效率低,劳动强度大 6.精压锻件的目的:①提高锻件精度,降低表面粗糙度②使锻件表面产生硬化,可提高零件的表面强度和耐磨性能 7.锤上锻模的安装:(工序)①模锻工序:使坯料得到锻件所要求的形状和尺寸②制坯工序:改变毛坯的形状,合理分配毛坯体积③切断工序:当采用一料多件的模锻时,切断已锻好的锻件 8.材料的缺陷 铸锭:划痕,折叠,发裂,结疤,碳化物偏析,白点,非金属夹杂流线,粗晶环钢锭:偏析夹杂气体缩孔疏松贱疤 9.锻件图的绘制 确定分模面,确定锻件的机械加工余量和公差,模锻斜度,圆角半径,肋和腹板,冲孔连皮,模锻锻件图及锻件技术条件。 10.锻前加热的目的,变化,缺陷,以及避免措施 目的:提高金属塑性,降低变形抗力,即增强金属的可锻性,从而使金属易于流动成形,并使锻件获得良好的组织和力学性能。 变化与缺陷:组织结构方面,大多数金属不但发生组织转变,其晶粒还会长大,严重时会造成过热过烧 力学性能方面,总的趋势是金属塑性提高,变形抗力降低,残余应力逐步消失,但也可能产生新的内应力,过大的内应力会引起金属开裂。 物理性能当面,金属的导热系统,导温系统,膨胀系数,密度等均随温度的升高而变化。 化学变化方面,金属表层与炉气或其他周围介质发生氧化,脱碳,吸氢等化学反应,结果产生氧化皮与脱碳层等。 避免措施,按照加热规范进行加热 11.平锻机上模锻特点,适用范围(P204计算必考;注意课本上的步骤不对) 特点:①锻造过程中坯料水平放置,其长度不受设备工作空间的限制②有两个分模面,因而可以锻出一般锻压设备难以锻成的在两个方向上有凹槽凹孔的锻件,锻件形状更接近零件形状③平锻机导向性好,行程固定,锻件长度方向尺寸稳定性比锤上模锻高。但是,平锻机传动机构受力产生的弹性变形随压力增大而增加。所以,要合理预调必和尺寸,否则将影响锻件长度方向的精度④平锻机可以进行开式和闭式模锻,可以进行终锻成型和制坯,也可以进行弯曲,压扁,切料,穿孔,切边等工布 缺点:①平锻机是模锻设备中结构最复杂的一种,价格贵投资大②靠凹模加紧棒料进行锻造成型,一般要用高温度热轧钢材或冷拔整径刚才,否则会夹不紧或在凹模间产生大的纵向毛刺③锻前必须用特殊装置清除坯料上的氧化皮,否则锻件粗糙度比锤上锻件高④平锻机工艺适用性差,不适宜模锻非对称锻件 适用范围:平锻机用于镦锻各种螺栓,铆钉类锻件,大批量生产汽门,汽车半轴,环类锻件

锻造加热规范

1 范围 本规范规定了本厂生产、供本厂锻造用的电炉锭、电渣锭与钢坯炉窑加热工艺的编制要素、导则和方法。本规范适用于冷热钢锭于钢坯。 2 引用标准 下列标准所包含的条文,通过本标准中引用而构成本标准的条文。本标准出版时所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 DYⅡ-39-93 热送钢锭冷处理工艺守则 DYⅡ-3-39 水压机自由锻锻后冷却及锻后热处理工艺守则 QGSHYZ 22-93 热加工工艺文件制定规程 3 名词说明和定义 3.1 钢锭和钢坯 钢锭锭身锻比<1.5的成钢锭,锭身锻比≥1.5的称钢坯。(简称“锭”、“坯”) 3.2 冷、热锭(坯) 装炉时锭{坯}表面温度<400℃(且内部温度肯定低于表面温度)的称冷锭(坯),表面温度≥400℃(且内部温度肯定高于表面温度)的称热锭(坯)。 表面温度以钢锭冒口端进锭身200mm凹(圆)面处、坯料离端口200mm平面处的实际温度为准。3.3 锻造温度保温时间 指炉温(一般指炉窑顶部电偶所测温度)进入工艺规定温度公差范围、开始保持此温度,使钢锭(坯)变形区与此温度趋于基本一致所需时间。 3.4 最少保温时间 指钢锭(坯)在进行表面区域变形或精锻(如倒棱、滚圆、校直、整型等)前加热到锻造温度时开始保温所需的最少时间。 3.5 普通保温时间 指钢锭(坯)在进行常规锻造或粗锻(如拔长、冲孔、平整、剥边、扭曲、错移、弯曲等等)前加热到锻造温度时开始保温所需时间。但镦粗须在此保温时间基础上延长20%。 4 要素确认 按本规范编审有关钢锭(坯)的加热工艺前,一般应确定下列基本要素 4.1 锻造工艺和产品技术质量要求; 4.2 钢锭(坯)的规格、质量、形状、及其相关现状; 4.3 加热炉规格及其工作可靠性; 4.4 装炉单、装炉方式和合炉要求; 4.5 有关作业方法及其有效性; 4.6 测温形式及显示的正确,及时,统一性; 4.7 工装,附件的匹配; 4.8 作业环境适应性。

锻造比的计算方法

锻造比的计算方法 锻造比是锻造时金属变形程度的一种表示方法。锻件的组织和机械性能与很多因素有关,而锻造比是影响锻件质量的最主要因素之一。 锻造比以金属变形前后的横断面积的比值来表示。不同的锻造工序,锻造比的计算方法各不相同。 1、拔长时,锻造比为y=F0/F1 或y=L1/L0 式中F0,L0 —拔长前钢锭或钢坯的横断 面积和长度; F1 ,L0 —拔长后钢锭或钢坯的横截面积和长度。 2、镦粗时的锻造比,也称镦粗比或压缩比,其值为 y=F1/F0 或y=H0/H1 F0, H0 —镦粗前钢锭或钢坯的横截面积和高度; F1, H1 —镦粗后钢锭或钢坯的横截面积和高度。 3、对于用铸锭(包括有色金属铸锭)锻制的大型锻件和莱氏体钢锻件,正确选取锻 造比有较大的实际意义;对于某些大型锻件的中间坯料,如涡轮盘、压气机盘等的圆饼坯料,轴、框、梁等的预制锻坯,锻造比也有重要的实际意义。 锻造比永远是正的,变形前后的面积之比的计算永远是对的,即大面积变形成小面积时,用变形前的面积除以变形后的面积;反之类推。 用长度比较时要当心:同形状变形时是可以拿长的除以短的(体积不变定律),不同形状变形时是绝对不可以的,例如八角锭拔长成方形时,只能用八角形除以方形面积。 4、以上还应补充:锻造比分为工序锻造比、火次锻造比和总锻造比。 5、当只用拔长或只用镦粗,而进行几次锻造时,则总锻造比等于各次锻造比的乘 积,即 y 总= y1 * y2 * y3 , 6、如两次拔长中间镦粗或两次镦粗中间拔长时,总锻造比规定为两次锻造比相加, 即 y 总=y1 + y2 + , 此式中未将中间镦粗或中间拔长的锻造比计算在总锻造比之内。 锻造比是自由锻里的一个重要指标,但不是唯一的,在大型锻件锻造中,更注 重锻造状态:应变场、温度场等等。

钻孔灌注桩批混凝土数量计算方法

钻孔灌注桩批混凝土数量计算方法 根据《公路桥梁桥涵施工技术规范》(JTJ041—2011)及施工设计图纸,钻孔灌注桩首批混凝土量计算如下: 首批灌注混凝土的数量应满足导管初次埋置深度(≥1.0m)和填充导管底部间隙的需要,钻孔桩所需首批混凝土数量可进行计算。 c H D h d V 4 4 2 1 2π π + ≥ 式中V──首批混凝土所需数量(m3); 1 h──井孔混凝土面高度达到Hc时,导管内混凝土柱需要 的高度(m),h1≥γwHw/γc c H──灌注首批混凝土时所需井孔内混凝土面至孔底的高 度(m),Hc=h2+h3,=(1+0.3=1.3m); w H──井孔内混凝土面以上水或泥浆深度 D──井孔直径(m) d──导管内径(m),0.30m γc──混凝土拌合场的容重(kN/m3),取24kN/m3 γw──井孔内水或泥浆的容重(kN/m3),取10.5kN/m3 2 h──导管初次埋置深度,h2≥1.0m; 3 h──导管底端至钻孔底间隙,约为0.3m。 桩径为1.5m时,H W =28.0-1-0.1=26.7m V≥3.14×0.3×0.3×11.0/4+3.14×1.5×1.5×1.3/4=3.07m3由于孔径的不均匀,该式计算出首批混凝土后,需根据现场情况适当增大混凝土数量。 为防止钢筋骨架因混凝土压力而上浮,当混凝土顶面接近钢筋笼底部时,适当降低混凝土灌注速度,至钢筋笼埋深4m以上时,可恢复正常灌注。随着混凝土的继续灌注,导管也相应上拔,提升时应保持轴线竖直和位置居中,逐步提升(如导管法兰盘卡住钢筋管架,可转动导管,使其脱开钢筋骨架后,移到钻孔中

锻造比的选择

锻造比的选择 锻造比的选择主要应考虑到金属材料种类、锻件性能要求、工序种类及锻件的形状尺寸等因素。 合金结构钢钢锭比碳素结构钢钢锭的铸造缺陷严重,所需的锻造比要大些。 电渣钢的质量比一般冶炼钢的质量好,所需的锻造比可小些。 锻造比的选择主要应考虑到金属材料种类、锻件性能要求、工序种类及锻件的形状尺寸等因素。 合金结构钢钢锭比碳素结构钢钢锭的铸造缺陷严重,所需的锻造比要大些。 电渣钢的质量比一般冶炼钢的质量好,所需的锻造比可小些。 为了使锻件内部缺陷焊合,纵向得到较合适的机械性能指标,随着钢锭规格的不同,最小必须满足的锻造比为:1t钢锭为2.5,3t钢锭为2.7,5t钢锭为2.8,10t钢锭为3,30t钢锭为4。 当锻件受力方向与纤维方向不一致时,为了保证横向性能,避免明显的各向异性,可取锻造比为2.0~2.5;当锻件受力方向与纤维方向基本一致时,锻造比可取2.5~3.0;当锻件受力方向与纤维方向完全一致时(例如水压机立柱),为提高纵向性能,可取锻造比为4或更高。对航空工业用高速旋转、传递力矩的高应力轴类件(例如涡轮轴、旋翼轴等),其锻造比选6~8以上比较合适,且原材料最好用轧材。当对大型重要锻件既要求较大的锻造比,又不允许性能的各项异性太大时,可增加中间镦粗工序,采用反复镦粗拔长的组合工艺。

对于用棒材锻制的较小锻件(莱氏体钢除外),因为经锻轧或挤压的棒材已有很大的变形程度,组织与性能均有较大改善,故只需考虑工序间的变形量要求,一般不再考虑总的锻造比。 用作模具的亚共析合金工具钢钢锭的锻造,一般都必须有镦粗工序。镦粗变形程度不应小于50%。模块最小的锻造比应为3。用作模具的过共析合金工具钢,一般都有形成网状碳化物的倾向。为了保证网状碳化物充分破碎,除正确控制锻造温度外,锻造比应等于或大于10。引用网址:https://www.360docs.net/doc/2e1605824.html,/zhishi/jc/181089.htm 对于碳素结构钢而言 锻比=0~2时,钢锭内部的气泡、疏松、微裂缝等在压应力作用下被焊合,材料致密性有所提高,其密度由铸态的7.82g/cm³约增至7.82582g/cm³;粗大的树枝状结晶组织被破碎,并再结晶成较细小的晶粒,提高了钢材的塑性和冲击韧性;晶界处集聚的碳化物和非金属夹杂物的形态开始发生改变:碳化物得以分散,非金属夹杂物有的被打碎(如脆性的氧化物),有的随金属一起变形(如塑性的硫化物)。 锻比=2~5时,锻比继续增加时,晶界处的碳化物和杂质随金属流动逐渐形成纤维状组织,使钢料的性能呈现方向性,此时钢料的纵向塑性指标仍随锻比的增加略有提高。 锻比>5时,钢料中形成了一致的纤维组织。此时纵向强度与塑

冲孔灌注桩试桩方案样本

目录 一、工程概况 ............................................................................. 错误!未定义书签。 二、编制依据 ............................................................................. 错误!未定义书签。 三、试桩目的和试桩位置的选择 ............................................. 错误!未定义书签。 1、试桩目的.......................................................................... 错误!未定义书签。 2、试桩位置及设备的选择 ................................................. 错误!未定义书签。 3、试桩数量.......................................................................... 错误!未定义书签。 4、主要工艺参数.................................................................. 错误!未定义书签。 四、主要人员及设备配置 ......................................................... 错误!未定义书签。 1、人员配备.......................................................................... 错误!未定义书签。 2、施工设备配置.................................................................. 错误!未定义书签。 五、施工方法及技术措施 ......................................................... 错误!未定义书签。 1、施工准备.......................................................................... 错误!未定义书签。 2、施工工艺流程.................................................................. 错误!未定义书签。 3、施工方法.......................................................................... 错误!未定义书签。 4、关键工序质量控制 ......................................................... 错误!未定义书签。 六、安全保证措施 ..................................................................... 错误!未定义书签。 1、项目安全管理组织机构体系 ......................................... 错误!未定义书签。 2、组织措施.......................................................................... 错误!未定义书签。 3、施工安全措施.................................................................. 错误!未定义书签。 4、安全用电.......................................................................... 错误!未定义书签。 七、文明施工管理 ..................................................................... 错误!未定义书签。

掌握模锻压力机选择的方法

掌握模锻压力机选择的方法 [摘 要] 对模锻件变形力进行准确地计算,选择适当的模锻压力机是模锻加工过程中非常重要和必要的环节。本文解析了一个有关模锻压力机吨位选择的案例,旨在让大家能够理解和掌握模锻压力机选择的方法。 [关键词] 模锻 压力机 选择 一、引言 模锻(模型锻造)是把金属毛坯放在一定形状的锻模模膛进行锻压变形,模膛与锻件形状一致,金属变形流动充满模膛后得到模锻件的一种机械加工工艺。由于模锻件具有形状、尺寸比较精确,切削加工量少,材料利用率高,加工成本低,成品率高,机械性能优等特点,模锻加工已经被广泛应用到机械加工制造的各个领域,发展迅速,对我国汽车工业的快速发展起到推动作用。对模锻件变形力进行准确计算,选择适当的模锻压力机是模锻加工过程中非常重要和必要的环节。 二、案例 2006年7月3日,某锻造企业锻压车间使用德国辛佩坎普(Siempelkamp)公司制造的NPS1600T型高能压力机模锻齿轮(Dy202)时,滑块压下后不能向上自动回位,经设备维修人员检查后,发现压 力机的传动件螺旋副——螺杆、螺母上的一段螺纹根部出现环状裂纹,开裂处中的一段矩形螺纹已经断裂、脱落(见照片1)。锻造企业据 此向已投保的某保险公司提出理赔要求。该螺旋副是在2005年5月更 换的,至损坏时仅使用了一年多。为了查明螺旋副损坏的原因,保险

公司分别进行如下检测和计算: a. 委托D理工大学材料实验室对NPS1600T高能压力机螺母、螺杆 的损坏进行失效分析,得出结论: 1. 螺杆钢材及热处理等加工工艺正常,螺杆及螺母无质量问题; 2. 螺杆及螺母的螺纹断裂是疲劳引起的脆性断裂,疲劳源位于 螺纹根部的应力集中区,螺纹工作表面形成大范围多处疲劳 开裂,造成螺丝头多处断裂; 3. 压力机超负荷运行中的高压力是造成螺杆及螺母疲劳断裂 的直接原因。 b. 委托H大学锻压专业教授提供齿轮精锻选用压力机吨位的计算 结论为:锻造齿轮(Dy202)所需压力机吨位为3493~4722(吨); c. 螺旋副损坏后,锻造企业技术部提供给保险公司事故原因分析报告中的计算打击力为5500吨。 综上分析,保险公司的鉴定结论为:该NPS1600T高能压力机(公称压力为16000kN,最大工作压力为20000kN)损坏的原因是模锻齿轮(Dy202)所需的锻压力超过压力机的工作范围,导致压力机超负荷 工作,引起传动螺杆、螺母上的螺纹疲劳脆断。由于该公司技术部门选择设备不当,造成设备损坏,因此,拒绝理赔。 锻造企业对保险公司拒绝理赔的决定持有异议,诉讼至某市中级人民法院。法院委托辽宁省大连市产品质量监督检验所对NPS1600高 能压力机能否用于锻造模锻齿轮(Dy202)进行司法鉴定。通过深入 细致的调查、研究和分析,笔者发现保险公司的鉴定结论是错误的,

管道应力分析和计算

管道应力分析和计算

目次 1 概述 1.1 管道应力计算的主要工作 1.2 管道应力计算常用的规范、标准1.3 管道应力分析方法 1.4 管道荷载 1.5 变形与应力 1.6 强度指标与塑性指标 1.7 强度理论 1.8 蠕变与应力松弛 1.9 应力分类 1.10 应力分析 2管道的柔性分析与计算 2.1管道的柔性 2.2管道的热膨胀补偿 2.3管道柔性分析与计算的主要工作2.4 管道柔性分析与计算的基本假定2.5 补偿值的计算 2.6 冷紧 2.7 柔性系数与应力增加系数 2.8 作用力和力矩计算的基本方法2.9 管道对设备的推力和力矩的计算

3 管道的应力验算 3.1管道的设计参数 3.2钢材的许用应力 3.3管道在内压下的应力验算 3.4 管道在持续荷载下的应力验算 3.5管道在有偶然荷载作用时的应力验算3.6 管系热胀应力范围的验算 3.7力矩和截面抗弯矩的计算 3.8 应力增加系数 3.9 应力分析和计算软件

1 概述 1.1 管道应力计算的主要工作 火力发电厂管道(以下简称管道)应力计算的主要工作是验算管道在内压、自重和其他外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力;判断计算管道的安全性、经济性、合理性,以及管道对设备产生的推力和力矩应在设备所能安全承受的范围内。 管道的热胀应力应按冷、热态的应力范围验算。管道对设备的推力和力矩应按冷状态下和工作状态下可能出现的最大值分别进行验算。 1.2 管道应力计算常用的规范、标准 (1)DL/T 5366-2006火力发电厂汽水管道应力计算技术规程(2)ASME B 31.1-2004动力管道 在一般情况下,对国内工程采用DL/T 5366进行管道应力验算。对涉外工程或顾客有要求时,采用B 31.1进行管道应力验算。 1.3 管道应力分析方法 管道应力分析方法分为静力分析和动力分析。 对于静荷载,例如:管道内压、自重和其他外载以及热胀、冷缩和其他位移荷载作用的应力计算,采用静力分析法。DL/T 5366和B31.1规定的应力验算属于静力分析法。同时,它们也用简化方法计及了地震作用的影响,适用于火力发电厂管道和一般动力管道。 对于动载荷,例如:往复脉冲载荷、强迫振动载荷、流动瞬态冲击载荷和地震载荷作用的应力计算采用动力分析法。核电站管道和地震烈度在9度及以上地区的火力发电厂管道应力计算采用动力分析法。 1.4 管道荷载

锻造工高年级试题答案

锻造工高级试题答案 一、填空题 1、一切物质度时由原子构成的,根据原子在物质内部排列的不同,固态物质分为(晶体)和 (非晶体)两大类,晶体有规则的外形,有(一定的熔点)和各向异性,非晶体则与其相反,没有固定的熔点,并呈各向同性。 2、金属坯料在外力作用下,发生尺寸和性状改变的现象,成为(变性),变形分为(弹性变 形)和塑性变形(破裂变形)。 3、变形程序改善金属的组织状态有很大的影响。在锻造钢锭是,它可以消除(铸造组织)对 于无相变的合金要避开(临界变形程度),防止锻后晶力粗大。 4、金属组织决定于所含合金成分、主要元素的晶格类别和(晶粒的大小)形状及均匀性,以 及所含(杂质)的性质、状态分布等情况。 5、金属和合金常见的晶格有(体心立方晶格)、(面心立方晶格)和密排立方晶格三种基本 类型。 6、由于铸造组织粗大的树枝状结晶和不可避免的铸造缺陷,致使金属材料塑性显著下降,甚 至导致(金属破坏),因此在锻造钢锭时要特别小心谨慎,开坯倒棱要(轻压快压)。 7、摔模是一种最简单的胎模,一般是由锻造工用反印法制造。要求摔模(不夹料)、不卡 模、(坯料转动方便),摔出的锻件表面光滑。 8、扣模的种类分为(单扣模)、(双扣模)和连续扣模。 9、合模是由飞翅的胎模,须按照锻件形状的复杂程度,分模面(形状特点),、(导向位 置)所能承受的错移的能力以及生产批量等情况,分别选择能与互相适应的和模结构。 10、锻造高速钢选用的锻造比,要根据原材料碳化物不均匀度级别,和产品对(碳化物不均匀 度)级别的要求来决定,其总的锻造比取(5~14)。 11、常用的高速钢的锻造方法有,单向镦粗、单向拔长、轴向反复镦粗、径向十字锻造、综合 锻造法和滚边锻造法等。 12、高锰无磁钢的终锻温度应控制在900℃以上,通过控制热锻过程的在结晶,可使奥氏体的晶 粒(细化)、和(均匀)化,当变形温度为950℃,变形温度为10%~20%,可以获得比较均匀的(细晶组织)。 13、互环锻造过程中,镦粗比应在2.5~3范围以内,冲孔时冲头直径与冲头直径之比应(≥ 2.5)以防止冲裂。镦促和冲孔应在(高温)下进行,最好分为两火。 14、镁合金(塑性较低),变形抗力(较高),流动性差且粘度大。 15、钛合金具有(强度高),(耐热性较高),耐腐蚀性(较强)密度小等优越性能,广泛应 用于航空和造船工业。 16、铜合金最好在(电阻炉)中加热,也可以用火焰加热,但要用文火,为防止火焰直接加热 铜料引起局部过烧,应用(薄钢板)垫盖,这样还可以防止铜屑落入加热炉底影响钢料加热。17、镦粗后拔长锻造比小者,切向力学性能会发生显著改善,若敦促后拔长锻造比(大于5) 时,将呈轴向纤维流向,镦粗对(切向力学)性能的影响已很小。 18、液压传动中的控制阀分为压力控制阀、(流量控制法)、和(方向控制阀)三种。 19、油缸按运动形式不同,可分为(推力油缸)和(摆动油缸)两大类。 20、利用(压油液)作为工作介质,借助运动着的(压力油)来传递运动和力的传动方式称为 液压传动。 21、以单位产品所需时间多少来表示的定额形式,称为(工时定额)。

压力设备吨位计算

1 总述 模锻锤、螺旋压力机、热模锻压力机是锻造行业的三大主力模锻设备,尽管多年来各自技术均得到相应的发展,但由于其各自的性能特点,因而具有不同的适应性! 2 模锻设备的性能特点及选型 2.1 模锻锤 2.1.1性能特点 模锻锤是在中批量或大批量生产条件下进行各种模锻件生产的锻造设备,可进行多型模锻,由于它具有结构简单、生产率高、造价低廉和适应模锻工艺要求等特点,因此它是常用的锻造设备。 锻锤在现代锻造工业中的地位取决于如下几个方面: a结构简单,维护费用低; b 操作方便,灵活性强; c 模锻锤可进行多模镗锻造,无需配备预锻设备,万能性强; d 成形速度快,对不同类别的锻件适应性强; e 设备投资少(仅为热模锻压力机投资的1/4)。 锻锤的特出优点在于打击速度快,因而模具接触时间短,特别适合要求高速变形来充填模具的场合。例如带有薄筋板、形状复杂的而且有重量公差要求的锻件。由于其快速、灵活的操作特性,其适应性非常强,有人称之为“万能”设备。因而特别适合多品种、小批量的生产。锻锤是性能价格比最优的成形设备。 特别是百协程控锻锤的出现,使锻锤在现代锻造工业发展中又一次得到了复兴。 百协程控锻锤是充分发挥传统锻锤灵活自如、成型速度快的优势,综合运用了液压、电器等现代传动、控制技术,不仅具有简单可靠的结构,而且具有极为周到的运行监测系统、故障诊断系统、能量自控系统及程序打击控制系统,是当今锻造工业中符合高效、节能、环保要求的具有高精度、高可靠、高性价比特点并具有广泛适应性的现代化精密锻造设备。

百协程控锻锤具有如下特点: A. 高效 由于其独特的液压传动结构,使锤头在较短行程内获得巨大能量成为可能,即短行程高速锻造和高频率的连续锻造成为现实,这就为锻件的高效率快速成形创造了先决条件,程控锻锤的这一优势是其它锻造设备所无可比拟的。 B. 节能 节能是液压锤得到快速发展的最主要原因,程控锻锤传动效率可达65%,而传统蒸汽锤能量利用率为2%,能量利用率提高了几十倍,节能效果十分显著。程控锻锤的节能效益还体现再打击能量的有效控制,多余能量的打击也是一种能源的浪费。 C. 环保 该项目生产过程中无“三废”排放,打击能量的自动控制,避免了由于富余打击能量带来的噪音问题;程控全液压模锻锤采用液压阻尼隔振器,避免了由于打击带来的振动问题,其隔振效率可达85%,工作环境大为改善。程控锻锤是真正意义上符合环保要求的现代化锻造设备。 D . 高精度 整体U形铸钢砧座床身,可方便拆换的宽导轨结构,以及便于对模的模具固定、调整结构,为锻件的高精度要求提供了保证。打击能量的精确控制、程序打击的实现可避免由于操作者技术水平的差异造成产品质量的不稳定。可控制的打击能量,可保证模具不承受多余能量的打击。 E. 高可靠 高度集成化的锥阀控制技术,液压系统结构大为简单。简单的结构是锻锤具有较高可靠性的前提条件。现代电子技术的应用极大地提高了设备的控制性能及运行的可靠性,为其在锻造行业中成功地得到应用奠定了坚实的基础。 F、高质量 如果锻锤是由人操作,不管多么熟练的工人,也难保持100%的一致,特别换班操作,对同一种锻件更难以得到一致的打击能量和打击次数。百协程控锻锤

相关文档
最新文档