向量与解析几何结合解答题精选

向量与解析几何结合解答题精选
向量与解析几何结合解答题精选

向量与解析几何结合解答题精选

平面向量与解析几何的结合通常涉及到夹角、平行、垂直、共线、轨迹等问题的处理,目标是将几何问题坐标化、符号化、数量化,从而将推理转化为运算。或者考虑向量运算

的 几何意义,利用其几何意义解决有关问题。

1.已知1OF =(-3,0),2OF =(3,0),(O 为坐标原点),动点M 满足:||1+||2MF =10。(1)求动点M 的轨迹C ;(2)若点P 、Q 是曲线C 上任意两点,且·=0,求

2

2

2

OQ

OP ?的值

【解】(1)由||1MF +||2MF =10知: 动点M 到两定点F 1和F 2的距离之和为10

根据椭圆的第一定义:动点M 的轨迹为椭圆:

1

2

2=+y x (2)∵点P 、O 是

116

252

2=+y x 上任意两点 设P(ααsin 4,cos 5),Q(ββsin 4,cos 5)

(注意:这是点在椭圆上的一种常规设法,也是椭圆的参数方程的一个应用) ∵OP ·OQ =0 得:βαβαsin sin 16cos cos 25+=0 ①

而2

、2

2

?都可以用α、β的三角函数表示,利用①可以解得:

2

2

2

?=

400

41

2.已知:过点A (0,1)且方向向量为=(1,k )的直线l 与⊙C :

1)3()2(2

2

=-+-y x 相交与M 、N 两点。(1)求实数k 的取值范围;(2)求证:AM ·AN 为定值;

(3)若O 为坐标原点,且OM ·

ON =12,求k 的值。 【解】∵直线l 过点A (0,1)且方向向量为=(1,k )

∴直线l 的方程为:y =kx +1 (注意:这里已知方向向量即已知直线的斜率) 将其代入⊙C :1)3()2(2

2

=-+-y x ,得:07)1(4)1(2

2

=++-+x k x k ①

由题意:△=07)1(4)]1(4[2

>?+?-+-k k 得:

3

7

4374+<<-k (注意:这里用了直线和方程组成方程组,方程有两根;本题还可以用圆与直线有两个交

点,d

(2)利用切割线定理可以证明|AM |·|AN |=|AT |2=7,AT 为切线,T 为切点。 根据向量的运算:AM ·AN =||·|AN |·cos00=7为定值。

(注意:本题也可以设出M (11,y x )、N (22,y x )的坐标,把AM 、用坐标表示,由①利用韦达定理来证明)

(3)设M (11,y x ),N (22,y x ),则由①得:

???

???

?+=

++=+2212

2117144k x x k k x x ∴OM ·

ON =21x x +21y y =1)()1(21212

++++x x k x x k =

81)

1(42

+++k

k k =12?k =1(代入①检验符合题意) 3.已知:O 为坐标原点,点F 、T 、M 、P 1满足OF =(1,0),OT =(-1,t),FM =MT , P 1⊥,P 1∥OF 。

(1)当t 变化时,求点P 1的轨迹方程; (2)若P 2是轨迹上不同与P 1的另一点,且垂直非零实数λ,使得1=λ·2FP |

|1FP ||2FP =1

【解】设P 1(x ,y ),则由:FM =得M 是线段FT 的中点,得M )2

1

,0( ∴P 1=(-x ,

2

1

-y ), 又∵FT =OT -OF =(-2,t ),T P 1=(-1-x ,t -y ) ∵M P 1⊥FT ∴2x +t(

2

t

-y)=0 ① ∵P 1∥OF ∴(-1-x )

·0+(t -y )·1=0化简得:t =y ② 由①、②得:x y 42

= (注意:①这里用了参数方程的思想求轨迹方程;②也可以利用

向量的几何意义,利用抛物线的定义判断轨迹为抛物线,从而求解。) (2)易知F (1,0)是抛物线x y 42

=的焦点,由1FP =λ·2FP , 得F 、P 1、P 2三点共线,即直线P 1P 2为过焦点F 的弦

设P 1(11,y x )、P 2(22,y x ),直线P 1P 2的方程为:y =k(x -1)代入x y 42

=得:

0)2(22

2

2

2

=++-k x k x k 则1x ·2x =1,1x +2x =2

242k k +

|

|1FP ||2FP 111+x +11

2+x =1)(22

12121+++++x x x x x x =1

(注意:①这里利用抛物线的定义,把到焦点的距离转化为到准线的距离;②利用了韦达

定理进行证明。)

经检验:当斜率k 不存在时,结论也成立。

4..已知=)1,3(,(O 为坐标原点),||=1,且与的夹角为600,A 、O 、B 顺时针排列,点E 、F 满足=λ,=λ1,点G 满足=2

1

(1)当λ变化时,求点G 的轨迹方程; (2)求||的最小值。

【解】∵=

21

,∴点G 是EF 的中点, ∴=21(+OF )=21(λ+λ

1

)

∵与的夹角为600,||=2, ∴OA ·OB =|OA |·||OB ·cos600=1

设=(00,y x ),则?????=+=+1

132

02000y x y x ???==?1000y x 或???

????-==2123

00y x (不合,舍) OG =)]1

,0(),3[(21λ

λλ+=))1(21,23(λλλ+

设G (x ,y ),则???

?

??

?

+==)1(2123

λ

λλ

y x 消去λ得:033442=+-xy x

(2)2||OG =)214(412222++=

λy x ≥41×(4+2)=23 ∴||OG 的最小值为

26(当λ=2

1

±时等号成立) 5.如图,点F (a ,0)(a>0),点P 在y 轴上运动,点M 在x 轴上运动,点N 为动点,

且·

=0,PM +=(1)求点N 的轨迹C ; (2)过点F (a ,0)的直线l (不与x 轴垂直)与曲线C 交于A 、B 两点,设点K (-a ,0),

与的夹角为θ,求证0<θ<

2

π

. 【解】(1)设点P (0,p ),M (m,0),则=(m ,-p ),=(a ,-p )

∵·=0 ∴02

=+p am ∴a

p m 2

-=

设N (x ,y ),由PM +0=PN 得0),(),0(=-+--p m p y x

∴???=-=+020p y m x 即??

???==p

y a p x 22

消去p 得:ax y 42= (2)设AB 的方程为:y =k(x -a),代入

2

0)2(22

2222=++-a k x k a x k ,

设A (11,y x )、B (22,y x ),则:

????

?=+=

+22

122

21)2(2a x x k k a x x KA =(1x +a ,1y )KB =(2x +a ,2y ) ·=2121))((y y a x a x +++

=)4()(12

2121ax a x x a x x -++++·(24ax )

=222

22

22

44)2(2k

a a a k k a a a =-+++>0 与的夹角为θ,与不共线,则θ≠0

∵cos |

|||KB KA ?>0 ∴0<θ<

2

π

6.设平面内向量=(x ,0)、=(1,y ),满足:(+3)⊥(-3)(1)求点P (x ,y )的轨迹方程;(2)若直线l :y =kx +m (km ≠0)与所求曲线C 交于A 、B 两点,D (0,-1)且||AD =||BD ,求m 的取值范围。

【解】(1)∵(+3)⊥(-3) ∴(+3)·(-3)=0

∴2

a -32

b =0 ∴0)1(32

2

=+-y x

即13

22

=-y x 为所求曲线的轨迹方程。 (2)设A (11,y x )、B (22,y x ),

由?????=-+=13

2

2y x m kx y 得:0)1(36)31(222=+---m kmx x k ①

则???

????

-+-=-=+22

2122131)1(3316k m x x k km x x ② ∵)1,(11y x AD ---=,)1,(22y x BD ---= ∵||AD =||BD ∴2

12

1)1(y x ++=2

222)1(y x ++

即:0))(2())((21212121=-+++-+y y y y x x x x

∴0)2(2121=++++++m kx m kx k x x 把②代入,解得m =4

1

32-k ③

由①得:△=)1)(31(12362

2

2

2

+-+m k m k =12(2231k m -+)>0 把③代入化简得:m m 42->0 m>4或m<0

又∵m =4132-k 4

1

-> (k ≠0)

∴0>m 4

1

-

>或m>4为所求的m 的取值范围。 7.已知点H (-3,0),点P 在y 轴上,点Q 在x 轴正半轴上,点M 在直线PQ 上,

且·

PM =0,PM =-2

3

MQ (1)当P 在y 轴上移动时,求点M 的轨迹方程; (2)过点T (-1,0)作直线l 交轨迹C 与A 、B 两点,若在x 轴上垂直一点E )0,(0x ,

使||AE =||AB ,且与的夹角为600,求0x 的值 【解】设M (x ,y ),由PM =-

23得P (2,0y -)

、Q (0,3

x

) 由HP ·

PM =0得:x y 42

= ∵点Q 在x 轴正半轴上,∴x>0

即所求的轨迹方程为:x y 42

=(x>0)(抛物线去掉顶点) (2)设直线l :y =k(x +1)(k ≠0),代入x y 42

=得:

0)2(22222=+-+k x k x k 设A (11,y x )、B (22,y x ),则

?????=--=+1

422

12221x x k k x x ① ∴线段AB 的中点坐标为(k k k 2,22

2

-) 线段AB 的垂直平分线方程为:k k y 1

2-=-(x -2

22k

k -) ② 在②中,令y =0,得12

20+=

k

x ③ (与x 轴的交点) ∵||=||,且与的夹角为600,∴△ABE 为等边三角形

∴点E 到直线AB 的距离为

2

3

|AB| 而|AB|=2

2

2114k k k +?- ∴||12)1(3222

4k k k k +=- 解得:432=

k 代入③ 从而3

110=x 8.在坐标平面内,设O 是坐标原点,1OF =)0,3(-,2OF =)0,3(,点A 满足1

AF +2AF =(-4,-2),点集S ={P|P 为平面内的点且满足条件:|PF 1|-|PF 2|=2} (1)求点A 的坐标;

(2)若P 1、P 2∈S ,且1∥21P P ,又点Q 满足P 1=-

2

1

·12P ,求点Q 的轨迹方程。 【解】设A ),(00y x ,则1AF =),3(00y x ---,2AF =),3(00y x -- ∴1AF +2AF =)2,2(00y x --=(-4,-2) ∴1,200==y x ,即A (2,1)

(2)由|PF 1|-|PF 2|=2得点P 的轨迹是以F 1、F 2为焦点的双曲线的一支

(即集合S 所表示的图形)其方程为:12

2

2

=-y x ∵P 1、P 2∈S ,∴P 1、P 2都在双曲线上。 ∵1∥21P P ,即点A 、P 1、P 2三点共线 又∵P 1=-

2

1

·12P 知:Q 是线段P 1P 2的中点。 问题转化为:过点A 作直线交双曲线与P 1、P 2两点,求P 1P 2的中点Q 的轨迹方程。按求弦的中点的轨迹方法可得;0422

2

=+--y x y x

9.如图,抛物线2

2

1x y -

=上有两点A

(11,y x )、B (22,y x ),且·=0,又OM =(0,-2),(1)求证:∥(2)若=-2·,求AB 所在直线方程。 【解】由题意得:A (21121,x x -)

、B (2

222

1,x x -)∵·=0, ∴0)(4

1

22121=+

x x x x (021≠x x ) ∴421-=x x =(221,211+-x x ),=(221,2

22+-x x )

∵1x ·(22122+-x )-2x ·(22

12

1+-x )

=(1x -2x )·(2

1

1x ·2x +2)=0 ∴∥即:∥

【解题回顾】①本题体现了向量方法证明三点共线问题的一般方法。

②本题的实质是课本上一道题的改编,原题为:过抛物线px y 22

=的顶点O 作两条互相垂直的弦OA 、OB ,与抛物线交于A 、B 两点,求证AB 必过定点(定点为AB 与x 轴的交点) (2)∵=-2·

∴?????+--=+--=)221(222

122

2212

1x x x x ∴4222222-=+-x x ∴22±=x ∴B 为)1,2(-或)1,2(--,得22=

AB k 或-2

2

∴AB 的方程为:y =±

2

2

x -2

10.直线l 过点(1,0),且方向向量a =(2,-2),直线m 过原点O ,其方向向量

为=(1,k ),且·

=1,中心在原点,焦点在x 轴上的椭圆E 与直线l 相交于A 、B 两点,点M 满足+=,直线m 过点M ,椭圆E 上存在一点N ,与椭圆的右焦点关于直线l 对称,求椭圆E 的方程。 【答案】

19

16982

2=+y x 思考题:

1.已知椭圆12222=+b

y a x (a>b>0)的右焦点为F ,直线l 经过点E(0,2

c a ),直线l 的方向向量为=(0,1),其中c =2

2b a -,A 、B 为椭圆上的两点,且=λ·(λ<0),点C 在l 上,且BC ∥OF 。线段EF 的中点为N ,求证:

2.已知)0,(c OF =→

,),(n n OG =→

(n∈R), |→

FG | 的最小值为1,若动点P 同时满足下列三

个条件:①||||→→

=PE a

c PF (a>c>0); ② →→=OF PE λ (其中),0),,(2

R t t c a

OE ∈≠=→λ

③动点P 的轨迹C 经过点B (0,-1)。

(1)求c 的值;(2)求曲线C 的方程;

(3)是否存在方向向量→

0a =(1,k )(k≠0)的直线L,使L 与曲线C 交于两个不同的点M 、N ,且||||→

=BN BM ? 若存在,求出k 的取值范围;若不存在,请说明理由。

用向量方法解立体几何题(老师用)

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线 l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos |||| a b a b

法二、设12,,n n 是二面角l αβ --的两个半平面的法向量, 其方向一个指向内侧,另一个指向外侧,则二面角l α β --的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设A O α ⊥于O,利用A O α ⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||A O . (2)求异面直线的距离 法一、找平面β使b β?且a β ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥ ,n b ⊥ ),则 异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ== (此方法移植 于点面距离的求法).

向量与解析几何相结合专题复习

向量与解析几何相结合专题复习 平面向量与解析几何的结合通常涉及到夹角、平行、垂直、共线、轨迹等问题的处理,目标是将几何问题坐标化、符号化、数量化,从而将推理转化为运算。或者考虑向量运算的几何意义,利用其几何意义解决有关问题。 一:将向量及其运算的几何意义转化为平面图形的位置关系或数量关系 【例1.】已知△ABC 中,A 、B 两点的坐标分别为(-4,2)、(3,1),O 为坐标原点。已知||=λ·||,||=λ·||,∥ = (1,2)求顶点C 的坐标。 【解】如图:∵||=λ·||,∴λ=0 | |>CB ∵||=λ·||,∴A 、D 、B 三点共线,D 且λ=0 | |>DB ∴||CB =||DB ∴CD 是△ABC 中∠C 的角平分线。 ∴A 、D 、B 三点共线∥∴O 、C 、D 三点共线,即直线CD 过原点。 ~ 又∵直线CD 的方向向量为=(1,2),∴直线CD 的斜率为2 ∴直线CD 的方程为:y =2x (注意:至此,以将题中的向量条件全部转化为平面解析几何条件,下面用解析几何的方法解决该题) 易得:点A (-4,2)关于直线y =2x 的对称点是A ’ (4,-2), (怎样求对称点) ∵A ’ (4,-2)在直线BC 上 ∴直线BC 的方程为:3x +y -10=0 由?? ?=-+=01032y x x y 得C (2,4) 【解题回顾】本题根据向量共线的条件将题设中的||=λ·||和∥转化

为三点共线,实现了向量条件向平面位置关系的转化;而由λ=||CB =||DB ,实现了向量条件向平面图形的数量关系的转化,从而从整体上实现了由向量条件向平几及解条件的转化。 \ 【例2】.已知1OF =(-3,0),2OF =(3,0),(O 为坐标原点),动点M 满足:||1MF +||2MF =10。 (1)求动点M 的轨迹C ; (2)若点P 、O 是曲线C 上任意两点,且OP ·=0,求2 2 2 OQ OP ?的值 【解】(1)由||1MF +||2MF =10知: 动点M 到两定点F 1和F 2的距离之和为10 根据椭圆的第一定义:动点M 的轨迹为椭圆:116252 2=+y x \ (2)∵点P 、O 是1 16252 2=+y x 上任意两点 设P(ααsin 4,cos 5),Q(ββsin 4,cos 5) (注意 ∵OP ·=0 得:βαβαsin sin 16cos cos 25+=0 ① 而2 、2 2 ?都可以用α、β的三角函数表示,利用①可以解得: 2 2 2 PQ ?=40041 【例3.】在△ABC 中,A(2,3),B(4,6),C(3,-1),点D 满足:CA ·CD =CD ·CB (1)求点D 的轨迹方程; ~

第7章 向量代数与空间解析几何 习题 7- (4)

第四节 空间直线及其方程 习题 7-4 1. 求过点(1,1,2)?且与平面20x y z +?=垂直的直线方程. 解 取已知平面的法向量(1,2,1)=?n 为所求直线的方向向量, 则直线的对称式方程为 112 .121 x y z ?+?==? 2. 求过点(1,3,2)??且平行两平面35202340x y z x y z ?++=+?+=及的直 线的方程. 解 因为两平面的法向量12(3,1,5)(1,2,3)=?=?n n 与不平行, 所以两平面相交 于一直线, 此直线的方向向量为 1231 5(7,14,7)7(1,2,1),1 2 3 =×=?=?=??i j k s n n 故可取所求直线的方向向量为(1,2,1)?, 由题设, 所求的直线方程为 132 .121 x y z ++?==? 3. 用点向式方程及参数方程表示直线 10 2340 x y z x y z +++=?? ?++=?. 解 先在直线上找一点. 令1x =, 解方程组2, 36,y z y z +=????=? 得0,2y z ==?, 故(1,0,2)?是直线上一点. 再求直线的方向向量s . 交于已知直线的两平面的法向量为: 12(1,1,1),(2,1,3)==?n n , 12,,⊥⊥s n s n ∵

121 11(4,1,3),213 ∴=×==???i j k s n n 故所给直线的点向式方程为 12 ,413x y z ?+==?? 参数方程为 14,,23.x t y t z t =+?? =???=??? 4. 求过点(2,0,3)?且与直线2470, 35210x y z x y z ?+?=?? +?+=? 垂直的平面方程. 解 要求所求平面垂直于直线, 所以直线的方向向量为所求平面的法向量, 取 1212 4(16,14,11),3 5 2 ==×=?=??i j k n s n n 由点法式可得 16(2)14(0)11(3)0,x y z ??+?++= 即161411650x y z ???=为所求的平面方程. 5. 求过点(3,1,2)?且通过直线 43521 x y z ?+==的平面的方程. 解 法1 所求平面过点0(3,1,2)M ?及1(4,3,0)M ?, 设其法向量为n , 则01,M M ⊥⊥ n n s , 其中(5,2,1)=s . 取01(1,4,2)(5,2,1)(8,9,22)M M =×=?×=?n s , 则平面方程为 8(3)9(1)22(2)0,x y z ??+?++= 即8922590x y z ???=. 法2 直线L 的交面式方程为25230, 230,x y y z ??=???+=? 过L 的平面束方程为 (23)(2523)0.y z x y λ?++??= 点(3,1,2)?在平面上, 因此(143)(6523)0λ+++??=, 解得4 11 λ=, 因此平面的方程为

空间解析几何与向量代数论文

空间解析几何与向量代数 呼伦贝尔学院 计算机科学与技术学院 服务外包一班 2013级 2014.5.4 小组成员: 宋宝文 柏杨白鸽 李强白坤龙

空间解析几何与向量代数 摘要:深入了解空间解析几何与向量代数的概念,一一讲述他们的区别和用途。向量的集中加减乘法和运算规律,还有空间直线与平面的关系。 关键词:向量;向量代数;空间几何 第一部分:向量代数 第一节:向量 一.向量的概念: 向量:既有大小,又有方向的量成为向量(又称矢量)。 表示法:有向线段a 或a 。 向量的模:向量的打小,记作|a |。 向径(矢径):起点为原点的向量。 自由向量:与起点无关的向量。 单位向量:模为1的向量。 零向量:模为0的向量,记作.0或0 若向量a 与b 大小相等,方向相同,则称a 与b 相等,记作a =b ; 若向量a 与b 方向相同或相反,则称a 与b 平行,记作a //b 规定:零向量与任何向量平行;与a 的模相同,但方向相反的向量称为a 的负向量, 记作-a ;因平行向量可平移到同一直线上,故两向量平行又称两向量共线。若K 3 个向量经平移可移到同一平面上,则称此K 个向量共面。 二.向量的线性运算 1.向量的加法 平行四边形法则: b a +b a 三角形法则: a + b b

a 运算规律:交换律a + b =b +a a 与b 结合律:(a +b )+c =a +(b +c ) 三角形法则可推广到多个向量相加。 2.向量的减法 b -a =b +(a ) a b -a b b -a a 特别当b =a 时,有a -a =a (a )=0 ; 三角不等式:|b +a |; |a -b |; 3.向量与数的乘法是一个数,与a 的乘积是一个新向量,记作a 。 规定: a 与a 同向时,|a |=|a |; 总之:|a | | |a | 三.向量的模、方向角 1.向量的模与两点间的距离公式 设r (x,y,z ),作om r ,则有r op oq or R Z Q O Y P X 由勾股定理得: |r | |OM| B A 对两点A ()与B ()因AB OB OA () 得两点间的距离公式: |AB| |AB | 第二节:数量积 向量积

第八章向量代数与空间解析几何教案(同济大学版高数)

第八章 向量代数与空间解析几何 第一节 向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。 教学重点:1.空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点:1.空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2. 量的表示方法有: a 、i 、F 、OM 等等。 3. 向量相等b a =:如果两个向量大小相等,方向相同,则说(即经过平移后能完全重合的向量)。 4. 量的模:向量的大小,记为a 。 模为1的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5. 量平行b a //:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6. 负向量:大小相等但方向相反的向量,记为a - 二、向量的线性运算 1.加减法c b a =+: 加法运算规律:平行四边形法则(有时也称三角形法则),其满足的运算规律有交换率和结合率见图7-4

2.c b a =- 即c b a =-+)( 3.向量与数的乘法a λ:设λ是一个数,向量a 与λ的乘积a λ规定为 0)1(>λ时,a λ与a 同向,||||a a λλ= 0)2(=λ时,0a =λ 0)3(<λ时,a λ与a 反向,||||||a a λλ= 其满足的运算规律有:结合率、分配率。设0 a 表示与非零向量a 同方向的单位向量,那么 a a a 0= 定理1:设向量a ≠0,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ, 使b =a λ 例1:在平行四边形ABCD 中,设a =AB ,b =AD ,试用 a 和 b 表示向量MA 、MB 、MC 和MD ,这里M 是平行 四边形对角线的交点。(见图7-5) 图7-4 解:→→==+AM AC 2b a ,于是)(2 1 b a +- =→ MA 由于→ → -=MA MC , 于是)(21 b a += → MC 又由于→→==+-MD BD 2b a ,于是)(2 1 a b -=→MD 由于→→-=MD MB , 于是)(2 1 a b --=→MB 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维)如图7-1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以2 π 角度转向正向y 轴时,大拇指的指向就是z 轴的正向。

向量代数与空间解析几何期末复习题高等数学下册

第七章 空间解析几何 一、选择题 1. 在空间直角坐标系中,点(1,-2,3)在[ D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限 2.方程2222=+y x 在空间解析几何中表示的图形为[ C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 3.直线3 1 2141: 1+= +=-z y x l 与?? ?=-++=-+-0 20 1:2z y x y x l ,的夹角是 [ C ] A. 4 π B. 3π C. 2 π D. 0 4. 在空间直角坐标系中,点(1,2,3)关于xoy 平面的对称点是[ D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 5.将xoz 坐标面上的抛物线x z 42=绕z 轴旋转一周,所得旋转曲面方程是[B ] A. )(42y x z += B. 2224y x z +±=

C. x z y 422=+ D. x z y 422±=+ 6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是[B ] A. 13 - B. 13 C. 23 - D. 23 7. 在空间直角坐标系中,点(1,2,3)关于yoz 平面的对称点是[ A ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 8.方程22 222x y z a b +=表示的是 [ B ] A.椭圆抛物面 B.椭圆锥面 C. 椭球面 D. 球面 9. 已知a ={0, 3, 4}, b ={2, 1, -2},则=b proj a [ C ] A. 3 B.3 1- C. -1 10.已知,a b 为不共线向量,则以下各式成立的是 D A. 222()a b a b =? B. 222()a b a b ?=? C. 22()()a b a b ?=? D. 2222()()a b a b a b ?+?= 11.直线1l 的方程为0 3130290 x y z x y z ++=?? --=?,直线2l 的方程为

向量与空间解析几何讲解学习

向量与空间解析几何

第九章空间解析几何 一、本章学习要求与内容提要 (一)学习要求 1.理解空间直角坐标系的概念,掌握两点间的距离公式. 2.理解向量的概念、向量的模、单位向量、零向量与向量的方向角、方向余弦概念. 3.理解向量的加法、数乘、数量积与向量积的概念. 4.理解基本单位向量,熟练掌握向量的坐标表示,熟练掌握用向量的坐标表示进行向量的加法、数乘、数量积与向量积的运算. 5.理解平面的点法式方程和空间直线的点向式方程(标准方程)、参数方程,了解平面和空间直线的一般式方程. 6.理解曲面及其方程的关系,知道球面、柱面和旋转曲面的概念,掌握球面、以坐标轴为旋转轴、准线在坐标面上的旋转曲面及以坐标轴为轴的圆柱面和圆锥面的方程及其图形. 7.了解空间曲线及其方程,会求空间曲线在坐标面内的投影. 8.了解椭球面、椭圆抛物面等二次曲面的标准方程及其图形. 重点向量的概念,向量的加法、数乘、数量积与向量积的概念,用向量的坐标表示进行向量的加法、数乘、数量积与向量积的运算,平面的点法式方程,空间直线的标准式方程和参数方程,球面、以坐标轴为轴的圆柱面和圆锥面方程及其图形,空间曲线在坐标面内的投影.

难点 向量的概念,向量的数量积与向量积的概念与计算,利用向量的数量积与向量积去建立平面方程与空间直线方程的方法,利用曲面的方程画出空间图形. (二)内容提要 1. 空间直角坐标系 在空间,使三条数轴相互垂直且相交于一点O ,这三条数轴分别称为x 轴、y 轴和z 轴,一般是把轴轴和y x 放置在水平面上,z 轴垂直于水平面.z 轴的正向按下述法则规定如下:伸出右手,让四指与大拇指垂直,并使四指先指向x 轴的正向,然后让四指沿握拳方向旋转900指向y 轴的正向,这时大拇指所指的方向就是z 轴的正向(该法则称为右手法则).这样就组成了右手空间直角坐标系Oxyz .在此空间直角坐标系中,x 轴称为横轴,y 轴称为纵轴,z 轴称为竖轴,O 称为坐标原点;每两轴所确定的平面称为坐标平面,简称坐标面.x 轴与y 轴所确定的坐标面称为xOy 坐标面,类似地有yOz 坐标面,zOx 坐标面。这些坐标面把空间分为八个部分,每一部分称为一个卦限. 在空间直角坐标系中建立了空间的一点M 与一组有序数),,(z y x 之间的一一对应关系。有序数组),,(z y x 称为点M 的坐标;z y x ,,分别称为x 坐标,y 坐标,z 坐标. 2. 向量的基本概念 ⑴向量的定义 既有大小,又有方向的量,称为向量或矢量. ⑵向量的模 向量的大小称为向量的模,用a 或 AB 表示向量的模. ⑶单位向量 模为1的向量称为单位向量. ⑷零向量 模为0的向量称为零向量,零向量的方向是任意的.

利用法向量解立体几何题

利用法向量解立体几何题 一、运用法向量求空间角 向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量 ''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ= '''' AA BB AA BB ??, 不需 要用法向量。 1、运用法向量求直线和平面所成角 设平面α的法向量为n =(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为 sin θ= cos( 2 π -θ) = |cos| = AB AB n n ?? 2、运用法向量求二面角 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角。 二、运用法向量求空间距离 1、求两条异面直线间的距离 设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点A 、B ,则异面直线a 、b 的距离 d =AB ·cos ∠BAA ' = || || AB n n ? 略证:如图,EF 为a 、b 的公垂线段,a '为过F 与a 平行的直线, 在a 、b 上任取一点A 、B ,过A 作AA '// EF ,交a '于A ' , A

则?ˉ //AA n ,所以∠BAA ' =<,BA n >(或其补角) ∴异面直线a 、b 的距离d =AB ·cos ∠BAA ' = || || AB n n ? * 其中,n 的坐标可利用a 、b 上的任一向量,a b (或图中的,AE BF ),及n 的定义得 0n a n a n b n b ??⊥?=?????⊥?=??? ? ① 解方程组可得n 。 2、求点到面的距离 求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B ,则A 点到平面α的距离为 d = || || AB n n ?,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设 (1,,0)n y =,下同)。 3、求直线到与直线平行的平面的距离 求直线a 到平面α的距离,设平面α的法向量法为(,,1)n x y =,在直线a 上任取一点A , 在平面α内任取一点B ,则直线a 到平面α的距离 d = || || AB n n ? 4、求两平行平面的距离 设两个平行设平面α、β的公共法向量法为(,,1)n x y =,在平面α、β内各任取一点A 、 B ,则平面α到平面β的距离 d = || || AB n n ? 三、证明线面、面面的平行、垂直关系 设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则 1a//a n α?⊥ 1a a//n α⊥? 12////n n αβ? 12n n αβ⊥?⊥

空间解析几何与向量代数复习题答案

第八章 空间解析几何与向量代数答案 一、选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是(A ) A 5 B 3 C 6 D 9 2. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B ) A (-1,1,5). B (-1,-1,5). C (1,-1,5). D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是( C ) A 2π B 4π C 3 π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3 π D π 6. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( A ) A 138 B 118 C 158 D 1

7. 设,23,a i k b i j k =-=++r r r r r r r 求a b ?r r 是:( D ) A -i -2j +5k B -i -j +3k C -i -j +5k D 3i -3j +3k 8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A ) A 2 B 364 C 3 2 D 3 9. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D ) A 2x+3y=5=0 B x-y+1=0 C x+y+1=0 D 01=-+y x . 10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C ); A -+a b =a b ; B =a b ; C 0?a b =; D ?a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b 12、已知()()2,1,21,3,2---a =,b =,则Pr j b a =( D ); A 5 3; B 5; C 3;

三角法与向量法解平面几何题(正)

第27讲 三角法与向量法解平面几何题 相关知识 在ABC ?中,R 为外接圆半径,r 为内切圆半径,2 a b c p ++=,则 1,正弦定理: 2sin sin sin a b c R A B C ===, 2,余弦定理:2 2 2 2cos a b c bc A =+-,2 2 2 2cos b a c ac B =+-,2 2 2 2cos c a b ab C =+-. 3,射影定理:cos cos a b C c B =+,cos cos b a C c A =+,cos cos c a B b A =+. 4,面积:211sin 2sin sin sin 224a abc S ah ab C rp R A B C R = ==== = (sin sin sin )rR A B C ++ 2 221(cot cot cot )4 a A b B c C = ++. A 类例题 例1.在ΔABC 中,已知b =asinC ,c =asin (900 -B ),试判断ΔABC 的形状。 分析 条件中有边、角关系, 应利用正、余弦定理, 把条件统一转化为边或者是角的关系, 从而判定三角形的形状。 解 由条件c = asin (900 - B ) = acosB = c b c a ac b c a a 222 22222-+=-+ 2 2222c b c a =-+? 是直角A b c a ?+=?2 22 1sin sin sin =?=A A C c A a 是直角?? ?C a c C c a sin sin =?=?. Q C a b sin =?=? c b ΔABC 是等腰直角三角形。 例2.(1)在△ABC 中,已知cosA =13 5,sinB =53 ,则cosC 的值为( ) A .6516 B .6556 C .65566516或 D . 65 16- 解 ∵C = π - (A + B ),∴cosC = - cos (A + B ),又∵A ∈(0, π),∴sinA = 13 12,而sinB =53 显然sinA > sinB ,∴A > B , ∵A 为锐角, ∴B 必为锐角, ∴ cosB = 5 4 ∴cosC = - cos (A + B ) = sinAsinB - cosAcosB =65 1654135531312=?-?.选A . 说明 △ABC 中,sinA > sinB ?A > B . 根据这一充要条件可判定B 必为锐角。 (2)在Rt △ABC 中,C =90°,A =θ,外接圆半径为R ,内切圆半径为r ,

高中数学知识点总结之平面向量与空间解析几何(经典必看)

56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 ()向量的模——有向线段的长度,2||a → ()单位向量,3100|||| a a a a →→ → → == ()零向量,4000→ → =|| ()相等的向量长度相等方向相同5???? =→→ a b 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 b a b b a → → → → → → ≠?=∥存在唯一实数,使()0λλ (7)向量的加、减法如图: OA OB OC →+→=→ OA OB BA →-→=→ (8)平面向量基本定理(向量的分解定理) e e a → → → 12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一

实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→ =+ 的一组基底。 (9)向量的坐标表示 i j x y →→ ,是一对互相垂直的单位向量,则有且只有一对实数,,使得 ()a x i y j x y a a x y → →→→→ =+=,称,为向量的坐标,记作:,,即为向量的坐标() 表示。 ()()设,,,a x y b x y → → ==1122 ()()()则,,,a b x y y y x y x y → →±=±=±±11121122 ()()λλλλa x y x y →==1111,, ()()若,,,A x y B x y 1122 ()则,AB x x y y → =--2121 ()()||AB x x y y A B →= -+-212212,、两点间距离公式 57. 平面向量的数量积 ()··叫做向量与的数量积(或内积)。1a b a b a b →→→→→→ =||||cos θ []θθπ为向量与的夹角,,a b → → ∈0

高等数学 向量代数与空间解析几何复习

第五章 向量代数与空间解析几何 5.1向量 既有大小又有方向的量 表示:→ -AB 或a (几何表示)向量的大小称为向量的模,记作||AB 、|a |、||a 1. 方向余弦:??? ? ??=||,||,||)cos ,cos ,(cos r r r z y x γβα r =(x ,y ,z ),| r |=2 22z y x ++ 2. 单位向量 )cos ,cos ,(cos γβα=→ a 模为1的向量。 3. 模 → →→ ?=++=a a z y x a 2 22|| 4. 向量加法(减法) ),,(212121z z y y x x b a ±±±=±→ → 5. a ·b =| a |·| b |cos θ212121z z y y x x ++= a ⊥ b ?a ·b =0(a ·b =b ·a ) 6. 叉积、外积 |a ?b | =| a || b |sin θ= z y x z y x b b b a a a k j i a // b ?a ?b =0.( a ?b= - b ?a ) ? 2 12 12 1z z y y x x == 7. 数乘:),,(kz ky kx ka a k ==→ → 例1 1||,2||==→ → b a ,→ a 与→ b 夹角为 3 π ,求||→ →+b a 。 解 2 2 ||cos ||||2||2)()(||→ →→→ → →→ →→ →→ → → → → → ++= ?+?+?= +?+=+b b a a b b b a a a b a b a b a θ 713 cos 12222 = +???+= π 例2 设2)(=??c b a ,求)()]()[(a c c b b a +?+?+。 解 根据向量的运算法则 )()]()[(a c c b b a +?+?+

用向量方法解立体几何题

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 a l ⊥,在β内 b l ⊥,其方向如图,则二 方法一:在α内 平面角α=arccos |||| a b a b 面角l αβ--的 方法二:设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角 α=12 12arccos |||| n n n n

2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到 α的距离|| |||cos ||| AB n d AB n θ== 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 方法一:找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 方法二:在a 上取一点A, 在b 上取一点B, 设a 、b 分别为异面直 线a 、b 的方向向量,求n (n a ⊥, n b ⊥),则异面直线a 、b 的距离 || |||cos ||| AB n d AB n θ== (此方法移植于点面距离的求法). 例1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是 棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角; (II )求1BC 和面EFBD 所成的角; (III )求1B 到面EFBD 的距离 记异面直线1DE FC 与所成的角为α, 解:(Ⅰ) 则α 等于向量 1 DE FC 与的夹角或其补角, 1 1 ||||111111cos || ()() ||||||DE FC DE FC DD D E FB B C DE FC α∴=++=

向量代数与空间解析几何相关概念和例题

空间解析几何与向量代数 向量及其运算 目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算; 重点与难点 重点:向量的概念及向量的运算。难点:运算法则的掌握 过程: 一、向量 既有大小又有方向的量称作向量 通常用一条有向线段来表示向量.有向线段的长度表示向量的大小,有向线段的方向表示向量的方向. 向量的表示方法有两种:→a、 →AB 向量的模:向量的大小叫做向量的模.向量→a、→AB的模分别记为| |→a、| |→AB. 单位向量:模等于1的向量叫做单位向量. 零向量:模等于0的向量叫做零向量,记作→0.规定:→0方向可以看作是任意的. 相等向量:方向相同大小相等的向量称为相等向量 平行向量(亦称共线向量):两个非零向量如果它们的方向相同或相反,就称这两个向量平行.记作a // b.规定:零向量与任何向量都平行. 二、向量运算 向量的加法 向量的加法:设有两个向量a与b,平移向量使b的起点与a的终点重合,此时从a 的起点到b的终点的向量c称为向量a与b的和,记作a+b,即c=a+b . 当向量a与b不平行时,平移向量使a与b的起点重合,以a、b为邻边作一平行四边形,从公共起点到对角的向量等于向量a与b的和a+b. 向量的减法: 设有两个向量a与b,平移向量使b的起点与a的起点重合,此时连接两向量终点且指向被减数的向量就是差向量。 →→→→→ A O OB OB O A AB- = + =, 2、向量与数的乘法 向量与数的乘法的定义: 向量a与实数λ的乘积记作λa,规定λa是一个向量,它的模|λa|=|λ||a|,它的方向当λ>0时与a相同,当λ<0时与a相反. (1)结合律λ(μa)=μ(λa)=(λμ)a; (2)分配律(λ+μ)a=λa+μa; λ(a+b)=λa+λb. 例1在平行四边形ABCD中,设 ?→ ? AB=a, ?→ ? AD=b.

(完整版)§7空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数 A 一、 1、 平行于向量)6,7,6(-=a 的单位向量为______________. 2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角. 3、 设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴 上的投影,及在y 轴上的分向量. 二、 1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(??-??及; 及(3)a 、b 的夹角的余弦. 2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.

3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、 1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 2、方程02422 2 2 =++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22 =绕x 轴旋转一周,生成的曲面方程为 __ _____________,曲面名称为___________________. 2)将xOy 坐标面上的x y x 22 2 =+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________. 3)将xOy 坐标面上的36942 2 =-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________. 4)在平面解析几何中2x y =表示____________图形。在空间解析几何中 2x y =表示______________图形. 5)画出下列方程所表示的曲面 (1))(42 22y x z += (2))(42 2 y x z += 四、

向量与解析几何交汇例题解析

向量与解析几何交汇例题解析 上海市新场中学 周青 教学内容:1.会用向量法解决解析几何问题 2.会解决与向量有关的解析几何问题 教学目标:1.灵活运用平面向量的运算的几何意义及圆锥曲线的定义; 2.掌握平面向量的坐标运算及解析几何的基本解题方法; 3.通过运用向量解题,培养学生生善于思考、乐于探究、敢于创新 的思想品质。 教学重点:平面向量的运算的几何意义及坐标运算 教学难点:灵活运用平面向量处理解析几何问题。 教学过程: 向量具有代数形式和几何形式的“双重身份”,能融数形于一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,数学高考重视能力立意,在知识网络的交汇点上设计试题,因此,解析几何与平面向量的融合交汇是高考命题改革的发展方向和创新的趋势之一。有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。上海二期课改教材注重于虽然利用向量解决解析几何问题,但课本上例题还不是很多,因此学生对于利用向量解决解析几何问题的能力还不高,本节课通过将向量与解析几何相结合处理问题,旨在使学生树立并增强应用向量的意识和能力。 回归课本 引例:(高二课本例题)已知椭圆14 92 2=+y x 的焦点为F ,1F 2,椭圆上的点P 的坐标(,)P P x y ,且∠F 1P F 2为钝角,求P x 点P 横坐标的取值范围 解:因为点(,)P P P x y 在椭圆上,所以22 4 49 P P y x =- 焦点12(F F , 1,)P P PF x y =--(,25,)P P PF x y =-( 21PF F ∠ 为钝角 ∴ 12,),)0P P P P PF PF x y x y ?-?-<=( 化简得22 5P P x y +< 2 24459 P P x x +-< 得259P x < 解得:P x << ∴点P 横坐标的取值范围是(5 5 3,553- ) 例题1:已知常数0m > ,向量(0,1),(,0)a b m = =,经过点(,0)A m ,以a b λ+为方向向量的直线与经过点(,0)B m -,以4b a λ-为方向向量的直线交于点P ,其中R λ∈.求点P 的轨迹

平面向量及解析几何

六、平面向量 考试要求:1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。2、掌握向量的加法和减法。3、掌握实数与向量的积,理解两个向量共线的充要条件。4、了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直问题,掌握向量垂直的条件。6、掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用,掌握平移公式。 1、已知向量与不共线,且0||||≠=,则下列结论中正确的是 A .向量-+与垂直 B .向量-与垂直 C .向量b a +与a 垂直 D .向量b a b a -+与共线 2.已知在△ABC 中,?=?=?,则O 为△ABC 的 A .内心 B .外心 C .重心 D .垂心 3.在△ABC 中设a AB =,b AC =,点D 在线段BC 上,且3BD DC = ,则AD 用b a ,表 示为 。 4、已知21,e e 是两个不共线的向量,而→→→ →→ → +=-+=2121232)2 51(e e b e k e k a 与是两个共线 向量,则实数k = . 5、设→ i 、→ j 是平面直角坐标系内分别与x 轴、y 轴方向相同的两个单位向量,且 →→+=j i 24,→ →+=j i 43,则△OAB 的面积等于 : A .15 B .10 C .7.5 D .5 6、已知向量OB OA OC OB OA +==--=),3,2(),1,3(,则向量OC 的坐标是 , 将向量按逆时针方向旋转90°得到向量,则向量的坐标是 . 7、已知)3,2(),1,(==k ,则下列k 值中能使△ABC 是直角三角形的值是 A . 2 3 B .21- C .-5 D .31- 8、在锐角三角形ABC 中,已知ABC ?==,1||,4||的面积为3,则=∠BAC ,?的值为 . 9、已知四点A ( – 2,1)、B (1,2)、C ( – 1,0)、D (2,1),则向量与的位置关系是 A. 平行 B. 垂直 C. 相交但不垂直 D. 无法判断 10、已知向量OB OA CA OC OB 与则),sin 2,cos 2(),2,2(),0,2(αα===夹角的范围

巧用平面向量解解析几何问题

巧用平面向量解析几何问题 一:课堂教学设计: 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。所以本节课就这一方面做一归纳。 二:教学目标:利用平面向量的加法,减法,数量积的几何意义解决解析几何问题。 三:教学方法:启发式教学 四:重点难点:把解析几何问题转化为向量问题。 五:例题解析 例1、椭圆14 92 2=+y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是 。 解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ) 21PF F ∠Θ为钝角 ∴ 123cos ,2sin )3cos ,2sin )PF PF θθθθ?= -?-u u u r u u u u r ( =9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0 解得:55cos 55<<-θ ∴点P 横坐标的取值范围是(5 53,553-) 点评:解决与角有关的一类问题,总可以从数量积入手。本题中把条件中的角为钝角转化为向量的数量积为负值,通过坐标运算列出不等式,简洁明了。 例2、已知定点A(-1,0)和B(1,0),M 是圆1)1(2 2=-+y x 上的一动点, +的最大值和最小值; ②求22MB MA +的最大值和最小值 分析:因为O 为AB 的中点,所以MO MB MA 2=+的最值。

相关文档
最新文档