非线性动力学数据分析

非线性动力学数据分析
非线性动力学数据分析

时间序列分析读书报告与数据分析

刘愉 200921210001

时间序列分析是利用观测数据建模,揭示系统规律,预测系统演化的方法。根据系统是否线性,时间序列分析的方法可分为线性时间序列分析和非线性时间序列分析。

一、 时间序列分析涉及的基本概念

1、 测量 对于一个动力系统,我们可以用方程表示其对应的模型,如有限差分方程、微分方程等。如果用t X 或)(t X 表示所关心系统变量的列向量,则系统的变化规律可表示成

)(1t t X f X =+或)(X F dt dX

=

其中X 可以是单变量,也可以是向量,F 是函数向量。通过这类方程,我们可以研究系统的演化,如固定点、周期、混沌等。

在实际研究中,很多时候并不确定研究对象数据何种模型,我们得到的是某类模型(用t X 或)(t X 表示)的若干观测值(用t D 或)(t D 表示),构成观测的某个时间序列,我们要做的是根据一系列观测的数据,探索系统的演化规律,预测未来时间的数据或系统状态。

2、 噪声

测量值和系统真实值之间不可避免的存在一些误差,称为测量误差。其来源主要有三个方面:系统偏差(测量过程中的偏差,如指标定义是否准确反映了关心的变量)、测量误差(测量过程中数据的随机波动)和动态噪音(外界的干扰等)。

高斯白噪声是一类非常常见且经典的噪声。所谓白噪声是指任意时刻的噪声水平完全独立于其他时刻噪声。高斯白噪声即分布服从高斯分布的白噪声。这类噪声实际体现了观测数据在理论值(或真实值)周围的随机游走,它可以被如下概率分布刻画:

dx M x dx x p 2222)(exp 21

)(σπσ--= (1)

其中M 和σ均为常数,分别代表均值和标准差。

3、 均值和标准差

最简单常用的描述时间序列的方法是用均值和标准差表示序列的整体水平和波动情况。

(1)均值

如果M 是系统真实的平均水平,我们用观测的时间序列估计M 的真实水平方法是:认为N 个采样值的水平是系统水平的真实反映,那么最能代表这些观测值(离所有观测值最近)的est M 即可作为M 的估计。于是定义t D 与est M 的偏离为2

)(est t M D -,所以,使下面E 最小的M 的估计值即为所求:

21)(∑=-=N t est t

M D E (2)

经过求道计算,得到

∑==N t t

est D N M 11

(3)

即样本的均值即为系统真是均值的估计值。

(2)标准差

标准差代表了系统在均值两侧的波动情况。对时间样本有:

est t t M D V -= (4)

为了分析所有时间上平均的波动情况,我们也可以尝试对波动取平均,即:

∑∑===-???

? ??=-N t est N t t est t M D N M D N 1101)(1

(5) 我们发现,这样平均的结果是正负波动抵消了,波动的平均恒为零,为了避免这种情况,改用波动的平方的平均水平代替,即

∑∑==-==N t t est

N t t

D M N V N 12

122)(11

σ (6) σ即为标准差。

(3)均值的标准误差

我们用est M 估计M ,存在一定偏差或不确定性,即:

y uncerta M M est int += (7)

实际上,这种不确定性来自每次测量偏差的平均,通常每次测量偏差是服从高斯分布的,所以平均的不确定性计算得:

N σ

(8)

我们称之为均值的标准误差。

二、 线性时间序列分析方法及模型举例

对于线性时间序列,主要的分析方法有:均值和标准差、线性相关分析和功率谱分析。

1、 均值和标准差分析前面已经讲过;

例:模型一(模型本身是确定的(无外界干扰等随机波动),观测序列是真实值加上高斯白噪声;)

有限差分方程系统:t t x A x ρ+=+1,其平稳状态为M A x t =-=)1/(ρ;观测时间序列t t t W x D +=,其中,t W 独立的服从均值为0,标准差为σ的高斯分布。从系统的差分方程我们可以看到,系统本身不受外界干扰,是确定性模型。所以观测得到时间序列的波动完全来自于测量过程。

对于上述模型,可以通过均值、方差的估计即可估计模型、作出预测。

2、 线性相关分析

这种分析方法用于研究时间上相关的序列,即后一时刻的值完全或部分由前一时刻的或前几个时刻的值决定。在模型一中,我们假设t W 之间是独立的;当这种假设不成立时,取另一种极端,即后一时刻完全取决于前一时刻的值:

)(1t t V f V =+ (9)

我们以简单的线性函数为例:

t t V V ρ=+1 (10)

如果结合完全独立的情形与式(10),则有以下情况:

t t W V V +=+ρ1 (11)

ρ在-1到1之间取值,ρ越接近0,数据间越不相关;ρ接近1,表示线性正相关;ρ接近-1,表示线性负相关

通过时间序列的一系列观测值t D 减去均值得到t V ,我们可以通过以下公式计算相关系数,

∑∑-=-=+=11111N t t t N t t

t est V V V V ρ (12)

例:模型二(模型本身有不确定因素(外界干扰),观测序列是真实值加上高斯白噪声)

受外界因素影响的有限差分方程:t t t v x A x ++=+ρ1,引入的t v 是外界干扰造成的系统本身的波动,测量过程仍然像Model One 一样,t t t W x D +=,这是如果做1+t V 对t V 的变化图(见课本figure 6.7),发现二者之间有强烈的线性关系。对于这类模型,我们即可用线性相关分析来建模、预测。

如果将线性相关加以推广,可以得到自相关函数,它反映的是t V 与k t V +之间的关系:

∑∑-=-=+=k N t t t k N t t

k t V V V V k R 11)( (13)

3、 功率谱分析

(1)傅里叶变换

对线性系统,一个信号可以分解成为不同频率的正弦波。

(a )频率为ω的正弦输入,它的输出也是同频率的正弦信号,但是幅度和相位可能发生改变。输出正弦波的振幅与输入正弦波的振幅满足:

)()()(ωωωinput output A G A = (14)

输出相位相对输入相位在每个频率上有固定的偏移,即:

)

()()(ωφωφωφinput output -= (15)

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性的概念; 2、掌握线性稳定性的分析方法; 3、掌握奇点的分类及判别条件; 4、理解结构稳定性及分支现象; 5、能分析简单动力系统的奇点类型及分支现象。 二、教学重点 1、线性稳定性的分析方法; 2、奇点的判别。 三、教学难点 线性稳定性的分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 学习本章内容之前,学生要复习常微分方程的内容。 六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。 1.1相空间和稳定性 一、动力系统 在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。 假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时间t 的函数而且也是空间位置r 的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。 ),,,(2111 n X X X f dt dX ???=λ ),,,(2122 n X X X f dt dX ???=λ (1.1.1) … ),,,(21n n n X X X f dt dX ???=λ 其中λ代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是{}i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于{}i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若{}i f 明显地依赖时间t ,则称方程组(1.1.1)为非自治动力系统。非自治动力系统可化为自治动力系统。 对于非自治动力系统,总可以化成自治动力系统。 例如:)cos(t A x x ω=+

非线性动力学和混沌理论

非线性动力学和混沌理论 非线性动力学 随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。 非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。 经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。 混沌理论是谁提出的? 混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。 美国气象学家洛伦茨在2O世纪 6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。 1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。 1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。 1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。 与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。混沌的理论 要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。 假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。 1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。 那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何物理系统中所作出的最精确的测量,对大约10位或12位小数来说是正确的。 但拉普拉斯的陈述只有在我们使测量达到无限精度即无限多位小数,当然那是办不到的时才正确。 在拉普拉斯时代,人们就已知道这一测量误差问题,但一般认为,只要作出初始测量,比如小数点后10位,所有相继的预言也将精确到小数点后10位。误差既不消失,也不放大。 不幸的是,误差确实放大,这使我们不能把一系列短期预言串在一起,得到一个长期有效的预言。例如,假设我知道精确到小数点后10位的头3滴水的滴落时刻,那么我可以精确到小数点后9位预言下一滴的滴落时刻,再下一滴精确到8位,以此类推。 误差在每一步将近放大10倍,于是我对进一步的小数位丧失信心。所以,向未来走10步,我对下一滴水的滴落时刻就一无所知

非线性动力学数据分析

时间序列分析读书报告与数据分析 刘愉 200921210001 时间序列分析是利用观测数据建模,揭示系统规律,预测系统演化的方法。根据系统是否线性,时间序列分析的方法可分为线性时间序列分析和非线性时间序列分析。 一、 时间序列分析涉及的基本概念 1、 测量 对于一个动力系统,我们可以用方程表示其对应的模型,如有限差分方程、微分方程等。如果用t X 或)(t X 表示所关心系统变量的列向量,则系统的变化规律可表示成 )(1t t X f X =+或)(X F dt dX = 其中X 可以是单变量,也可以是向量,F 是函数向量。通过这类方程,我们可以研究系统的演化,如固定点、周期、混沌等。 在实际研究中,很多时候并不确定研究对象数据何种模型,我们得到的是某类模型(用t X 或)(t X 表示)的若干观测值(用t D 或)(t D 表示),构成观测的某个时间序列,我们要做的是根据一系列观测的数据,探索系统的演化规律,预测未来时间的数据或系统状态。 2、 噪声 测量值和系统真实值之间不可避免的存在一些误差,称为测量误差。其来源主要有三个方面:系统偏差(测量过程中的偏差,如指标定义是否准确反映了关心的变量)、测量误差(测量过程中数据的随机波动)和动态噪音(外界的干扰等)。 高斯白噪声是一类非常常见且经典的噪声。所谓白噪声是指任意时刻的噪声水平完全独立于其他时刻噪声。高斯白噪声即分布服从高斯分布的白噪声。这类噪声实际体现了观测数据在理论值(或真实值)周围的随机游走,它可以被如下概率分布刻画: dx M x dx x p 2222)(exp 21 )(σπσ--= (1) 其中M 和σ均为常数,分别代表均值和标准差。 3、 均值和标准差 最简单常用的描述时间序列的方法是用均值和标准差表示序列的整体水平和波动情况。 (1)均值 如果M 是系统真实的平均水平,我们用观测的时间序列估计M 的真实水平方法是:认为N 个采样值的水平是系统水平的真实反映,那么最能代表这些观测值(离所有观测值最近)的est M 即可作为M 的估计。于是定义t D 与est M 的偏离为2 )(est t M D -,所以,使下面E 最小的M 的估计值即为所求: 21)(∑=-=N t est t M D E (2)

分数阶非线性系统动力学特性及其图像处理应用研究

分数阶非线性系统动力学特性及其图像处理应用研究 非线性动力学在自然学科、社会学科、工程技术等诸多领域有着广泛的应用。而将非线性动力学理论引入图像处理领域,是非线性动力学理论应用的新思路,也是图像处理的新手段。 本文以分数阶非线性动力学和同步控制为理论基础,研究分析了新的非线性动力学特性,探索其与图像处理领域的契合点,在此基础上构建基于非线性动力学特性的图像处理模型。新模型的构建拓宽了非线性理论的应用领域,可为人脑感知系统的内部机制提供新的解释和预测,在图像处理领域和神经动力学方面都具有较好的理论意义和应用前景。 本文的主要工作及创新点包括以下几个方面:(1)基于分数阶蔡氏系统和变形蔡氏系统,构建了复分数阶(时滞)蔡氏系统和分数阶复变形蔡氏系统,利用相图、分岔图、最大Lyapunov指数等定性和定量的手段对两类复系统的动力学行为进行了分析讨论。首先将分数阶微积分定义扩展到复数阶,得到复数阶微积分定义的计算方法,并将其用于复分数阶(时滞)蔡氏系统的仿真。 对于分数阶复变形蔡氏电路系统的研究是将复系统转化为6变量的实系统实现的。在对两类系统的动力学行为分析中,通过改变系统阶次,观察到不同周期窗口、分岔、单涡卷等丰富的动力学行为。 最后讨论了两类复系统动力学行为的异同点及分数阶系统的动力学行为与构建图像处理模型之间的关系。(2)基于分数阶系统稳定性分析理论,研究了分数阶Relaxation振子对于不同外部刺激的稳定域和振荡域,结合相图、分岔图分析得到其产生的振荡为节律振荡;利用节律振荡特性构建图像增强模型,并用实验验证了新模型在图像增强方面的有效性。

首先利用分数阶稳定性理论分析分数阶Relaxation振子在不同外部刺激时其平衡点的稳定性,进而分析其对应的相图、分岔图,确定使分数阶Relaxation 振子产生节律振荡的外部刺激的范围。根据不同外部刺激使系统产生节律振荡的特性,构建了类Gamma曲线(QGC)。 将QGC和其相近模型进行比较,量化指标和直观效果均验证了我们所提模型在图像增强方面有较好的性能。另外,此模型模拟的增强机制也可能是人类视觉系统实现自动适应外界光线条件的机制。 (3)基于分数阶混沌系统的主动控制方法和分时同步策略,实现了单个分数 阶系统与多个分数阶复杂子网络的分时相同步。利用该方案构建了含中枢单元的两层图像目标选择模型,并用实验验证了该模型的可行性。 引入分数阶主动控制策略和分时同步思想,通过线性关系将子网络转化为混合系统,实现了单个混沌系统与子网络(混合系统)间的分时相同步。然后利用该方案构建包括中枢单元和分割单元两层的目标选择模型。 分割层是由相互耦合的分数阶神经元组成,通过相同步实现不同目标物的分割。中枢单元由一个振子构成,通过分时主动控制策略在不同时段与代表不同目标物的混合系统达到相同步,实现目标的选择与转移。 另外,此模型也是对人类视觉系统中目标物选择和转移机制一个很好的解释。 (4)基于分数阶系统的稳定性理论,实现了1+N分数阶复变量节点的复杂网络不 同系数的函数投影同步方案。 将此函数投影同步方案用于构建图像分形特征的识别模型,仿真结果验证了该模型的可行性。首先,构建了1+N节点(复混沌系统)驱动响应复杂网络模型。 根据分数阶系统稳定性理论,设计合理的控制器,实现了分数阶1+N节点复

《从非线性动力学到复杂系统》

《从非线性动力学到复杂系统》 段法兵 系统理论博士生课程

第一讲动态系统的发展 系统是一些相互关联的客体组成的集合,动态(动力dynamical)系统是系统状态变量,比如温度、位移、价格、信号幅值等,随着时间变化的。它的描述可以用微分方程或者离散方程。 微分方程历史悠久,可追溯到牛顿、伽利略、欧拉、雅克比等人,用以描述行星的运动轨迹。研究中发现即使满足牛顿引力定律的三体运动也非常复杂,其微分方程是非线性的,非线性是指不满足叠加定律的方程,解无法利用已知函数进行描述,如果能够描述的我们称为显式解。因此,庞加莱在1880年-1910年期间,试图利用解的拓扑几何性质来解释动态系统的运动规律,发现即使确定性系统,其运动规律也会出现随机性态,非常复杂(确定性系统是指其外力是确定的不随机,只要知道初始条件和演化方程,其运动是可预先确定的)。 非线性系统运动的复杂性:李雅普诺夫研究了系统平衡点?的稳定性?问题,随后本迪尔松等发现系统的解包含(1)平衡态(静止不动);(2)周期运动(比如行星)(3)拟周期,就是几个频率不可公约周期之和。 接着1975年Li和Yorke提出了混沌的概念,即系统的解是非周期的一种类似随机运动的现象,这其中就包含了洛伦兹提出的“蝴蝶效应”,根源在于这类非线性动力系统对于初始条件的极其敏感性,初始条件的微小变化导致了系统状态的巨大改变,从此有关非线性科学的发展异常迅速,形成了现代动力学理论,其最重要的贡献是揭示了一个简单的模型可能蕴含了无比复杂的动力学性态。 例子:Van der Pol(范德波尔)方程 1920年Van der Pol利用电子震荡管研究心脏的跳动问题,比如人工心脏起

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性得概念; 2、掌握线性稳定性得分析方法; ?3、掌握奇点得分类及判别条件; ?4、理解结构稳定性及分支现象; 5、能分析简单动力系统得奇点类型及分支现象. 二、教学重点 1、线性稳定性得分析方法; ?2、奇点得判别。 三、教学难点 ?线性稳定性得分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 ?学习本章内容之前,学生要复习常微分方程得内容。 六、教学过程 本章只介绍一些非常初步得动力学分析方法,但这些方法在应用上就是十分有效得。 1、1相空间与稳定性 ?一、动力系统 在物理学中,首先根据我们面对要解决得问题划定系统,即系统由哪些要素组成。再根据研究对象与研究目得,按一定原则从众多得要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量得微分方程,这些微分方程构成得方程组通常称为动力系统。研究这些微分方程得解及其稳定性以及其她性质得学问称为动力学. 假定一个系统由n个状态变量,,…来描述。有时,每个状态变量不但就是时间t得函数而且也就是空间位置得函数。如果状态变量与时空变量都有关,那么控制它们变化得方

程组称为偏微分方程组.这里假定状态变量只与时间t有关,即X =X i(t),则控制它们 i 得方程组为常微分方程组。 ?????(1。1.1) … 其中代表某一控制参数.对于较复杂得问题来说,(i=l,2,…n)一般就是得非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于不明显地依赖时间t,故称方程组(1。1.1)为自治动力系统。若明显地依赖时间t,则称方程组(1、1、1)为非自治动力系统.非自治动力系统可化为自治动力系统. 对于非自治动力系统,总可以化成自治动力系统。 例如: 令,,上式化为 上式则就是一个三维自治动力系统。 又如: 令,则化为 它就就是三微自治动力系统、 对于常微分方程来说,只要给定初始条件方程就能求解。对于偏微分方程,不但要给定初始条件而且还要给定边界条件方程才能求解。 能严格求出解析解得非线性微分方程组就是极少得,大多数只能求数值解或近似解析解。 二、相空间 ,X2,…Xn)描述得系统,可以用这n个状态变量为坐标轴支由n个状态变量=(X 1 起一个n维空间,这个n维空间就称为系统得相空间。在t时刻,每个状态变量都有一个确定得值,这些值决定了相空间得一个点,这个点称为系统状态得代表点(相点),即它代表了系统t时刻得状态。随着时间得流逝,代表点在相空间划出一条曲线,这样曲线称为相轨道或轨线.它代表了系统状态得演化过程。 三、稳定性 把方程组(1。1.1)简写如下

非线性动力学练习题

2013 “非线性振动” 练习题 1、简述绘制相轨线的原理及其作用。 2、用小参数摄动法求 )1(220<<=+εεωx x x x 的一阶近似解。 3、 用多尺度法或均值法求 (第三章16) )1(320<<=+εεωx x x 的一阶近似解。 4、 用多尺度法求周期激励范德波尔方程 0)0(,)0(,cos )1(220220=-+=+-=+x F A x t F x x x x ω ωωεω 的非共振解。 5、 设运动微分方程为 )1(cos 220<<+-=+εωεωt F x x x 试求0ωω≈的主共振解。 6、 简述非线性单自由度保守系统自由振动的主要特点及与线性系 统的区别。 7、 简述非线性单自由度系统在简谐激励下的强迫振动特点。 8、 简述自激振动产生的主要原因及其特点。 9、 以两自由度非线性系统为例,简述非线性多自由度系统振动的 主要特点。 10、 简述分岔和混沌的概念。(考试从中选取5题)

1、简述绘制相轨线的原理及其作用。 答:绘制相轨迹线的原理如下: 将系统的动力学方程... +(x,)=0x f x 转化为以状态变量表示的状态方程组 ..==-(x,y) y x y f (1) 在利用上式消去微分dt,得到y x 和的关系式 ,=-dy f dx y (x y ) (2) 这个式子所确定的平面(x,y )上的各点的向量场,就构成了相轨迹族。 绘制相轨迹线的方法有两种,第一是等倾线法。等倾线法的原理如下,令方程(2)右边等于常数C ,得到(x,y)相平面内以C 为参数的曲线族 (x,y)+Cy=0f (3) (3)称作相轨迹的等倾线族,族内每一曲线上的所有点所对应的由方程(2)确定的向量场都指向同一方向。 第二种方法是李纳法。其原理如下: 适当选择单位使弹簧的系数为1,设单位质量的阻尼力为-(y)?,则有f(x,y)=x+(y)?。相轨迹微分方程为 +(y)=-dy x dx y ? (4) 在平面上做辅助曲线=-(y)x ? 。此辅助曲线即上述零斜率等倾线,过某个相点 P (x,y )作x 轴的平行线与辅助曲线交与R 点,再过R 点作y 轴的平行线与x 轴交于S 点,连接PS ,将向量PS → 逆时针旋转90度后的方向就是方程(4)确定的相轨迹切线方向。 相轨迹线可以帮助我们定性地了解系统在不同初始条件下的运动全貌。当系统是强非线性振动的时候,近似解析法(如小参数摄动法,多尺度法)不再适用,此时可以采用相轨迹法来研究。(相轨迹线的作用) 非线性动力学主要研究非线性振动系统周期振动规律(振幅,频率,相位的变化规律)和周期解的稳定条件。其研究内容主要有:保守系统中的稳定性及轨道扩散问题;振动的定性理论;非线性振动的近似解析方法;非线性振动中混沌的控制和同步问题;随机振动系统和参数振动系统问题等。

单摆非线性动力学

单摆的非线性动力学分析 亚兵 (交通大学车辆工程专业,,730070) 摘要:研究单摆的运动,从是否有无阻尼和驱动力方面来分析它们对单摆运动的影响。对于小角度单摆的运动,从单摆的动力学方程入手,借助雅普诺夫一次近似理论,推导出单摆的运动稳定性情况。再借助绘图工具matlab,对小角度和大角度单摆的运动进行仿真,通过改变参数,如阻尼大小、驱动力大小等绘出单摆运动的不同相图,对相图进行分析比较,从验证单摆运动的稳定性情况。关键词:单摆;振动;阻尼;驱动力 Abstract:The vibration of simple pendulum is studied by analyzing whether or not damp and drive force its influence of the simple pendulum. For small angle pendulum motion, pendulum dynamic equation from the start, with an approximate Lyapunov theory of stability of motion is derived pendulum situation. Drawing tools with help from matlab, small angle and wide-angle pendulum motion simulation, by changing the parameters, such as damping size, drive size draw simple pendulum of different phase diagram, analysis and comparison of the phase diagram, from the verification the stability of the situation pendulum movement. Key words: simple pendulum; vibration; damp; drive force 1 引言 单摆是一种理想的物理模型[1],单摆作简谐振动(摆角小于5°)时其运动微分方程为线性方程,可以求出其解析解,而当单摆做大幅度摆角运动时,其运动微分方程为非线性方程,我们很难用解析的方法讨论其运动,这个时候可以用MATLAB软件对单摆的运动进行数值求解,并可以模拟不同情况下单摆的运动。 θ=时, 随着摆角的减小,摆球的运动速率将越来越大,而加速度将单调下降,至0 加速度取极小值。本文从动力学的角度详细考察了这一过程中摆球的非线性运,得出了在运动过程中.,t θθθ --的关系。

非线性力学和混沌简介

非线性力学和混沌简介 非线性科学是一门研究非线性现象共性的基础学科。它是自本世纪六十年代以来,在各门以非线性为特征的分支学科的基础上逐步发展起来的综合性学科,被誉为本世纪自然科学的“第三次革命”。非线性科学几乎涉及了自然科学和社会科学的各个领域,并正在改变人们对现实世界的传统看法。科学界认为:非线性科学的研究不仅具有重大的科学意义,而且对国计民生的决策和人类生存环境的利用也具有实际意义。由非线性科学所引起的对确定论和随机论、有序与无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻地影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 一线性与非线性的意义 线性”与“非线性”是两个数学名词。所谓“线性”是指两个量之间所存在的正比关系。若在直角坐标系上画出来,则是一条直线。由线性函数关系描述的系统叫线性系统。在线性系统中,部分之和等于整体。描述线性系统的方程遵从叠加原理,即方程的不同解加起来仍然是原方程的解。这是线性系统最本质的特征之一。“非线性”是指两个量之间的关系不是“直线”关系,在直角坐标系中呈一条曲。 最简单的非线性函数是一元二次方程即抛物线方程。简单地说,一切不是一次的函数关系,如一切高于一次方的多项式函数关系,都是非

线性的。由非线性函数关系描述的系统称为非线性系统。 线性与非线性的区别 定性地说,线性关系只有一种,而非线性关系则千变万化,不胜枚举。线性是非线性的特例,它是简单的比例关系,各部分的贡献是相互独立的;而非线性是对这种简单关系的偏离,各部分之间彼此影响,发生偶合作用,这是产生非线性问题的复杂性和多样性的根本原因。正因为如此,非线性系统中各种因素的独立性就丧失了:整体不等于部分之和,叠加原理失效,非线性方程的两个解之和不再是原方程的解。因此,对于非线性问题只能具体问题具体分析。 线性与非线性现象的区别一般还有以下特征: (1)在运动形式上,线性现象一般表现为时空中的平滑运动,并可 用性能良好的函数关系表示,而非线性现象则表现为从规则运动向不规则运动的转化和跃变; (2)线性系统对外界影响的响应平缓、光滑,而非线性系统中参数的极微小变动,在一些关节点上,可以引起系统运动形式的定性改变。在自然界和人类社会中大量存在的相互作用都是非线性的,线性作用只不过是非线性作用在一定条件下的近似。 非线性问题研究的历史概况

海洋生态系统非线性动力学研究

海洋技术 第28卷 1引言 自从上世纪90年代以来,海洋生态方面的研究日趋活跃,海洋生态系统动力学模型的研究成为本领域内的一个重要方向。本文通过参阅国内外大量相关学术资料,建立了新的海洋生态经济系统动力学模型,并运用非线性动力学理论分析了此模型。 2主要内容 2.1 模型介绍 考虑营养盐、自养浮游植物和食植鱼类相互作用关系,并添加人为经济因素对该体系的影响,建立了三者的新模型。 参考NPZ 模型[1],将浮游动物换为食植鱼类;在营养盐方程中,忽略浮游植物和食植鱼类的死亡以及食植鱼类取食浮游植物过程中非同化的浮游植物部分向营养盐的转化,加入外界污染对其的影响;在食植鱼类方程中加入捕捞项,建立模型如下: (1 )式中:N 为营养盐浓度;P 为浮游植物浓度;Z 为食植鱼类浓度;a 为浮游植物生长率;k N 为吸收营养盐的半饱和参 数;e 为污染强度;R m 为食植鱼类的最大摄食率;λZ 为食植鱼类摄食半饱和系数;εP 为浮游植物死亡率;εZ 为食植鱼类死亡率;γ为食植鱼类的营养转化率;h 为人类对食植鱼类的捕捞率。 模型中浮游动物对浮游植物的摄食采用Ivlev 公式[2]:参数 h 是本文着重讨论的分岔参数。并且其它各参数的默认取值如表1所示: 表1 参数意义及其取值范围[3~4] 2.2系统稳定性及分岔分析 根据模型方程的基本特征,注意到食物链模型中各元素的物理意义及在实际发生过程中相互影响、耦合。我们考虑运用Lyapunov 运动稳定性理论[5]来判断变量各状态的稳定 性。 首先求所建模型方程的平衡点,令方程(1)的左端为零,即: (2) 海洋生态系统非线性动力学研究 王洪礼,董占琢 (天津大学机械工程学院,天津300072) 摘 要:海洋生态经济系统非线性动力学模型的建立及分析,对我国海洋生态经济发展乃至社会经济的发展都具 有重要意义。建立了新的海洋生态经济系统动力学模型,研究了模型的稳定性和分岔现象,揭示了该系统的非线性动力学特性。 关键词:海洋生态经济系统;非线性;稳定性;分岔中图分类号:X82 文献标识码:A 文章编号:1003-2029(2009)01-0050-05 第28卷第1期2009年3月海洋技术OCEAN TECHNOLOGY Vol.28,No.1Mar ,2009收稿日期:2008-09-22 基金项目:国家自然科学基金资助项目(10772132);博士点基金资 助项目(20070056063) 作者简介:王洪礼(1945-),女,河北沧县人,天津大学教授,博生导 师。 符号 意义 默认取值 a 浮游植物的生长率 0.2k N 吸收营养盐的半饱和参数0.05Rm 食植鱼类的最大摄食率0.6γ 食植鱼类的营养转化率0.9λZ 食植鱼类摄食的半饱和系数 0.035εP 藻类的死亡率0.005εZ 食植鱼类死亡率 0.005

非线性动力学与混沌理论

非线性动力学 随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。 非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。 经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。 *混沌理论是谁提出的? 混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。 美国气象学家洛伦茨在2O世纪6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。 1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。 1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。 1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。 与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。 *混沌的理论 要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。 假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。 1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。 # 那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何

资本市场的非线性动力学特征与风险管理研究

资本市场的非线性动力学特征与风险管理研究资本市场及其风险管理问题一直是世人瞩目的焦点问题。无论是学术界、监管层,还是实际从业人员,都一直对资本市场股价行为及其本质特征饶有兴趣。学术界不惜花费了大量的时间与资源来研究股票价格波动行为;监管层当然对资本市场的有效性倍加关注;对于投资者而言,他们则希望从股票价格行为中挖掘出有价值的信息。迄今为止,对资本市场的研究与分析基本上都是在经典资本市场理论的线性分析范式下展开的。 在标准的分析框架下,研究人员假定投资者是理性的,市场是有效的,股票价格是“公平价格",已经反映了所有可获得的公开信息,价格的变化即收益率服从随机游走过程,金融市场的波动性来自于外部随机事件(白噪声)的干扰。然而,经典资本市场理论的线性化分析方法有其内在的局限性,它不能解释现实金融市场资产价格的复杂多变行为,更不能用来分析像美国股市“1987年股灾"等市场突变行为。在这样的背景下,资本市场的研究出现了从线性转向非线性分析,从均衡走向演化的新趋势。而事实上,资本市场普遍存在的“蝴蝶"效应、“诺亚”效应、收益分布的“胖尾”现象与金融时间序列的高度自相关等也清楚地表明了市场非线性力学特征的存在性。 因此,认识到资本市场的非线性(混沌)动力学特性,将为资本市场研究人员与风险管理人员提供一个全新的视角。本文正是从这一角度展开研究工作。 首先,本文全面地考察了股票价格行为特征。研究结果表明,基于有效市场的传统理论假设:正态分布、随机游走与独立性并不能准确刻画股票价格行为,而基于分形市场的理论假设:非正态稳定分布、分数布朗运动与长期相关性能够很好地描述实际资本市场的价格行为。 实际的金融时间序列服从一个有偏的随机游走过程,具有显著的分形特征与长期记忆效应。同时,本文的研究结果还表明资本市场存在低维混沌,我们从股票市场发现了正的李雅普诺夫指数与约为2.55的分数维。这说明资本市场的随机性与波动性具有内在确定性,使我们的认识超越了外部随机性的局限。基于资本市场作为虚拟经济系统的内在特性,本文提出了资本市场的非线性动力学分析原理,并形成了风险的整体观、内生观与过程观。 在非线性动力学分析原理的指导思想下,本文系统地考察了风险的来源以及

非线性转子 动力学

航空发动机非线性转子碰磨研究 XXX (XXXX 机械工程上海200072) 摘要:综述了国内外非线性转子动力学的研究现状,讨论了非线性转子动力学研究中的7个主要问题,并引述了大量相应的国内外文献,包括:非线性转子动力学研究的一般方法;求解非线性转子动力学问题的数值积分方法;大型转子-轴承系统高维非线性动力学问题的降维求解;基于微分流形的动力系统理论方法;转子非线性动力学行为的机理研究和实验研究;高速转子-轴承系统的非线性动力学设计,最后讨论了非线性转子动力学研究中存在的问题及展望。 关键词:非线性;高速转子;数值积分法 The research for Aeroengine nonlinear rotor WANG Qing-long (Shanghai university mechainal engineering 20072 shanghai) Abstract: Reviewed the research status of nonlinear rotor dynamics both at home and abroad, discusses the seven main in the study of nonlinear rotor dynamics. To questions, and cited a large number of relevant literature both at home and abroad, include: common methods of nonlinear rotor dynamics; To solve the non-linear. Rotor dynamics problems of numerical integral method; Rotor - bearing system of large dimension reduction solution for high dimensional nonlinear dynamics; In the theory of differential dynamic system of the manifold method; Rotor nonlinear dynamics behavior of mechanism research and experiment research; High speed rotor shaft. Bearing system of the nonlinear dynamics design, and finally discusses the problems of nonlinear rotor dynamics research and prospects. Key words: nonlinear; High speed rotor; The numerical integral method. 由于旋转机械系统中各种异常振动的存在,常常引发灾难性的事故。过去研究转子-轴承-基础系统大多采用基于线性转子动力学理论。例如传统转子动力学对转子-轴承系统稳定性问题的研究,一般采用8个线性化的刚度与阻尼特性系数的油膜力模型。对于大型旋转机械中存在的油膜力、密封力、不均匀蒸汽间隙力等严重的非线性激励源,由于数学模型不够完善,以致系统中存在的许多由非线性因素引起的多种复杂动力学行为尚没有彻底搞清,不能满足现代工程设计的需要,迫切需要建立转子-轴承系统的非线性动力学理论,揭示系统存在的各种非线性动力学行为,提出转子-轴承系统的非线性动力学设计方法,研究旋转机械中存在的各种实际问题,这对提高旋转机械运行的稳定性、安全性、可靠性具有重要的现实意义和实际工程背景。 随着非线性动力学理论的发展,非线性转子动力学理论和方法也受到了关注,大量的研究成果使转子动力学面貌一新。但现有的非线性动力学理论和方法在解决高维动力系统方面还存在困难,而工程实际中的转子-轴承-基础系统是一个复杂的高维系统,从而吸引了更多的研究者从事这方面的研究,特别是现代非线性动力学理论在转子动力学中的应用,已成为当今国

非线性动力学

即non-linear 是指输出输入既不是正比例也不是反比例的情形。如宇宙形成初的混沌状态。 自变量与变量之间不成线性关系,成曲线或抛物线关系或不能定量,这种关系叫非线性关系。 “线性”与“非线性”,常用于区别函数y = f (x)对自变量x的依赖关系。线性函数即一次函数,其图像为一条直线。其它函数则为非线性函数,其图像不是直线。 线性,指量与量之间按比例、成直线的关系,在空间和时间上代表规则和光滑的运动;而非线性则指不按比例、不成直线的关系,代表不规则的运动和突变。如问:两个眼睛的视敏度是一个眼睛的几倍?很容易想到的是两倍,可实际是 6-10倍!这就是非线性:1+1不等于2。 非线性关系虽然千变万化,但还是具有某些不同于线性关系的共性。 线性关系是互不相干的独立关系,而非线性则是相互作用,而正是这种相互作用,使得整体不再是简单地等于部分之和,而可能出现不同于"线性叠加"的增益或亏损。 激光的生成就是非线性的!当外加电压较小时,激光器犹如普通电灯,光向四面八方散射;而当外加电压达到某一定值时,会突然出现一种全新现象:受激原子好像听到“向右看齐”的命令,发射出相位和方向都一致的单色光,就是激光。 迄今为止,对非线性的概念、非线性的性质,并没有清晰的、完整的认识,对其哲学意义也没有充分地开掘。 线性:从相互关联的两个角度来界定,其一:叠加原理成立;其二:物理变量间的函数关系是直线,变量间的变化率是恒量。 在明确了线性的含义后,相应地非线性概念就易于界定: 其—,“定义非线性算符N(φ)为对一些a、b或φ、ψ不满足L(aφ+bψ)=aL(φ)+bL(ψ)的算符”,即叠加原理不成立,这意味着φ与ψ间存在着耦合,对(aφ+bψ)的*作,等于分别对φ和ψ*作外,再加上对φ与ψ的交叉项(耦合项)的*作,或者φ、ψ是不连续(有突变或断裂)、不可微(有折点)的。 其二,作为等价的另—种表述,我们可以从另一个角度来理解非线性:在用于描述—个系统的一套确定的物理变量中,一个系统的—个变量最初的变化所造成的此变量或其它变量的相应变化是不成比例的,换言之,变量间的变化率不是恒量,函数的斜率在其定义域中有不存在或不相等的地方,概括地说,就是物理变量间的一级增量关系在变量的定义域内是不对称的。可以说,这种对称破缺是非线性关系的最基本的体现,也是非线性系统复杂性的根源。 对非线性概念的这两种表述实际上是等价的,其—叠加原理不成立必将导致其二物理变量关系不对称;反之,如果物理变量关系不对称,那么叠加原理将不成立。之所以采用了两种表述,是因为在不同的场合,对于不同的对象,两种表述有各自的方便之处,如前者对于考察系统中整体与部分的关系、微分方程的性质是方便的,后者对于考察特定的变量间的关系(包括变量的时间行为)将是方便的。 非线性的特点是:横断各个专业,渗透各个领域,几乎可以说是:“无处不在时时有。”确实如此。 非线性动力学随着科学技术的发展,非线性问题出现在许多学科之中.传统的线性化方法已不能满足解决非线性问题的要求.非线性动力学也就由此产生. 非线性动力学联系到许多学科,如力学.数学.物理学.化学,甚至某些社会科学等. 非线性动力学的三个主要方面:分叉.混沌和孤立子.事实上,这不是三个孤立的方面.混沌是一种分叉过程.孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象. 经过

非线性系统的一些动力学与控制问题

釜七届全国非线性动力学学术会议和第九届全国非线性振动学术会议论文集南京,200410.28-29复杂非线性系统的一些动力学与控制问题。 陆启韶王士敏 f北京航空航天大学理学院北京10083) E-mail:qishaolu(岔hotraail.eom 摘要本文根据非线性动力学的研究现状和发展趋势,对复杂非线性系统动力学与控制的理论和应用研究中的一些重要问题进行探讨和展望 关键词非线性,复杂系统,动力学,控制 前言 非线性动力学研究非线性系统丰富的运动模式和演化过程,是非线性科学技术的重要理论基础。非线性动力学研究的最终目的在于深刻揭示非线性世界的复杂性和多样性。非线性系统运动的复杂性来源于多个方面,例如几何关系、本构关系、约束条件、拓扑结构、激励因素、耦合方式、时空尺度、演化机理等,它们都会带来复杂的运动模式。30多年来,尽管非线性动力学对单自由度简单振动系统和低维映射系统的研究已经取得一系列重要成果,发现了大量新的非线性现象。提出并发展了基本的理论方法,但是面对在理论和应用研究中遇到的高维复杂系统问题往往束手无策,仍然缺乏有效的分析策略和手段。因此,复杂非线性系统研究已成为当务之急。 本文根据当前非线性动力学的研究现状和发展趋势,针对复杂非线性系统动力学与控制的理论和应用研究中的一些重要问题进行探讨和展望,希望引起同行关注,共同开创该方面研究的新局面。1.多自由度非线性系统组合振动、全局分析和同步实际非线性振动系统通常是多自由度的,且存在多种外界激励,因此组合振动和模态相互作用是普遍的重要现象。对单自由度系统来说,组合共振只能在多种激励并存的情形下出现。但是对多自由度系统,由于可以存在内共振和自参数共振机理,因 ’国家自然科学基金(10172011)资助项目此在单个激励作用下也可能发生组合共振。内共振(或自参数共振)发生在其线性化系统的各模态的固有频率可以通约或接近通约的情况,其类型依赖于非线性项形式和相应的分岔类型。在没有内共振时,系统的共振响应只包含由外部激励直接激发的主共振或亚,超谐共振模态。但是内共振会引起与非线性项有关的间接激发模态,并导致多模态相互作用,产生诸如饱和、跳跃、锁相、周期调制、混沌调制等复杂现象,造成弹性结构中由高频激励引起的低频大幅共振事故。现在对多自由度系统的组合振动和模态相互作用动力学研究已经取得一些重要成果,并且扩展到梁、板、壳、弦线、悬索、传送带、流一固耦合结构等系统,涉及不同的本构关系(包括粘弹性材料、复合材料、智能材料等)、约束条件和控制方式,成为十分活跃的研究方向。但是,目前这方面的研究主要局限于具体问题,对于组合振动的一般规律和分析方法仍有待于深入探讨。 高维非线性振动系统的全局动力学分析是十分重要且难度很大的问题。目前仍然主要依靠数值模拟手段.成功地用于全局分析的理论方法不多,主要是高维Melnikov方法和Shilnikov方法。近年来,人们发现了大重新的非线性动力学现象,除了混沌激变、瞬态混沌、奇怪混沌不变集之外,还有超混沌、Wada吸引域、筛形吸引域、混沌鞍等,需要从机理上予以明确阐述。因此,当务之急是将动力系统理论、强非线性系统

相关文档
最新文档