非线性动力学分析方法

非线性动力学分析方法
非线性动力学分析方法

第一章非线性动力学分析方法(6学时)

一、教学目标

1、理解动力系统、相空间、稳定性的概念;

2、掌握线性稳定性的分析方法;

3、掌握奇点的分类及判别条件;

4、理解结构稳定性及分支现象;

5、能分析简单动力系统的奇点类型及分支现象。

二、教学重点

1、线性稳定性的分析方法;

2、奇点的判别。

三、教学难点

线性稳定性的分析方法

四、教学方法

讲授并适当运用课件辅助教学

五、教学建议

学习本章内容之前,学生要复习常微分方程的内容。

六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。

相空间和稳定性

一、动力系统

在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。

假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时

间t 的函数而且也是空间位置r

的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。

),,,(2111

n X X X f dt

dX ),,,(2122

n X X X f dt

dX (1.1.1)

),,,(21n n n

X X X f dt

dX 其中 代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是 i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于 i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若 i f 明显地依赖时间t ,则称方程组为非自治动力系统。非自治动力系统可化为自治动力系统。

对于非自治动力系统,总可以化成自治动力系统。

例如:)cos(t A x x

令y x

,t z ,上式化为

.

cos , z

z A x y y x 上式则是一个三维自治动力系统。

又如: ).,,(),,,(t v u g v

t v u f u

令t w ,则化为

.

1),,,(),,,(w w v u g v w v u f u

它就是三微自治动力系统.

对于常微分方程来说,只要给定初始条件方程就能求解。对于偏微分方程,不但要给定初始条件而且还要给定边界条件方程才能求解。

能严格求出解析解的非线性微分方程组是极少的,大多数只能求数值解或近似解析解。

二、相空间

由n 个状态变量 i X =(X 1,X 2,…X n )描述的系统,可以用这n 个状态变量为坐标轴支起一个n 维空间,这个n 维空间就称为系统的相空间。在t 时刻,每个状态变量都有一个确定的值,这些值决定了相空间的一个点,这个点称为系统状态的代表点(相点),即它代表了系统t 时刻的状态。随着时间的流逝,代表点在相空间划出一条曲线,这样曲线称为相轨道或轨线。它代表了系统状态的演化过程。

三、稳定性

把方程组(1.1.1)简写如下

),,,(21n i i

X X X f dt

dX , i =l ,2,…n (1.1.2) 设方程组(1.1.2)在初始条件00)(i i X t X 下的解为)(t X i ,如果用与原来略有差别的初始条件i i i X t X 00)(,i 是一个小扰动,就会得到方程组的新解)(t X i 。如果对于任意给定的 >0,存在 >0,并且 i ,当0t t 时也满足 )()(t X t X i i ,i =l ,2,…n

(1.1.3)

则称方程组(1.1.2)的解)(t X i 是稳定的,否则它就是不稳定的。这样定义的稳定性称为Lyapunov 稳定性。

如果)(t X i 是稳定的,并且满足极限条件 0)()(lim

t X t X i i t ,i =l ,2,…n

(1.1.4)

则称)(t X i 是惭近稳定的。

上述抽象的数学定义可以直观理解为:方程组对于不同的初始条件有不同的解,如果原初始条件)(0t X i 和受扰动后的初始条件)(0t X i 之差限定在一定的范围内,即

)()(00t X t X i i ,未扰动解)(t X i 和扰动解)(t X i 之差也不超出一定的范围,即 )()(t X t X i i ,则末扰动解)(t X i 就是稳定的;如果)(t X i 渐渐趋近于)(t X i ,最终变得和)(t X i 一致,则称)(t X i 是渐近稳定的;如果)(t X i 与)(t X i 之差不存在一个有限范围,即)(t X i 远离)(t X i ,则称)(t X i 是不稳定的。

由上述Lyapunov 稳定性的定义可以看到,要对动力系统的解的稳定性做出判断,必须对动力学方程组求解,然而对于非线性动力系统是很难获得解析解的,即使获得近似解析解也是如此。那么,我们能否象最小熵产生原理那样,不用对方程组具体求解就能对系统的稳定性作出判断。Lyapunov 发展了这种判断方法,通常称为Lyapunov 第二方法。这种方法主要是寻找(或构造)一个Lyapunov 函数,利用这个函数的性质对系统的稳定性作出判断。

线性稳定性分析

通过上节对稳定性的定义我们知道,要对非线性微分方程组的解的稳定性作出判断,最好是求出它的解析解。然而,对于大多数非线性微分方程组很难得到它们的解析解,甚至求近似解析解都是不可能的。虽然Lyapunov 方法避开了这一困难,但寻找一个Lyapunov 函数仍存在着相当的困难。那么我们能否不去对非线性方程组去求解,而采取一种既简单又有效的方法对非线性方程组定态解的稳定性作出定性的判断。这样的方法是存在的,那就是线性稳定性分析方法。它的主要思想是,在非线性微分方程组定态解的小邻域,把非线性微分方程组线性化,用线性微分方程组来研究定态解对小扰动

的稳定性。因为线性微分方程组是容易求解的,而且在定态解的小邻域,用线性微分方程组近似取代非线性微分方程组是合理,所以线性稳定性分析方法既简单又有效,是一种常用的稳定性分析方法。

首先通过一个简单的例子来了解线性稳定性分析的思路。设有一非线性微分方程 )(12X f X dt

dX

(1.2.1)

在定态X 0,00

dt

dX ,有

01)(200 X X f

(1.2.2)

由此得到定态解

101 X ,102 X

(1.2.3)

设)(t x 是定态附近的小扰动,即

)()(0t x X t X

(1.2.4) 10

X x

(1.2.5)

把方程(1.2.4)代入方程,有

202

021x x X X dt

dx (1.2.6)

考虑到定态方程(1.2.2),并忽略小扰动x 的二次项,得

x x X

f

x X dt dx 00)(2 (1.2.7)

其中

002)(

X X

f

(1.2.8)

是线性化系数。方程(1.2.7)是非线性方程的线性化方程,容易求出它的解为

t e x t x 0)(

其中)0(0x x 是初始扰动。

讨论:定态解的稳定性取决于 的符号。(1)如果 <0,定态解附近的扰动会随时间指数衰减,最后回到该定态,说明这个定态是稳定的;(2)如果 >0,定态附近的扰动会随时间指数增加,最后离开这个定态,表明该定态是不稳定的。

对于定态101 X ,0220 X ,01X 是稳定的;

对于定态102 X ,0220 X ,02X 是不稳定的。

图 方程(1.2.2)的定态解的稳定性

我们可以很容易求得方程(1.2.1)的精确解析解(为一双曲函数)

)()(k t th t X

)0(1X th k ,1)0( X (1.2.9)

对于不同的初始条件)0(X ,可以得到一系列的)(t X 曲线,它们随时间的演化行为如图所示,曲线族趋于X 01=1,离开X 02=-1。这证明我们采用线化方程得到的定性结论是正确的。

上述例子虽然简单,但具有一般性,数学家对此作了证明,并形成线性稳定性定理。 设有非线性方程组

),(j i i

X f dt

dX ,n j i ,,2,1, (1.2.10)

并设)(t x i 是定态解 0i X 附近的小扰动,即

)()(0t x X t X i i i

10

i i

X x ,n i ,,2,1 (1.2.11)

非线性方程组(1.2.10)在定态解 0i X 附近的线性化方程为

n

j j j

i i x x f dt dx 10)(

(1.2.12)

定理 如果线性化方程组(1.2.12)的零解(021 n x x x )是渐近稳定的,则非线性方程组的定态解 0i X 也是渐近稳定的;如果零解是不稳定的,则定态解 0i X 也是不稳定的。

线性稳定性定理保证了利用线性的方法来研究非线性方程定态解稳定性的有效性。利用线性稳定性定理来研究非线性方程定态解稳定性的过程称为线性稳定性分析。这种

分析方法在处理实际问题中经常被用到。值得提及的是,线性稳定性定理只是对线性化方程的零解是渐近稳定的或是不稳定的情形给出了结论,而对于零解是Lyapunov 稳定的并不是浙近稳定的情形没有给出任何信息。这在下节会给予讨论。

奇点分类和极限环

现在我们考虑只有两个状态变量(X ,Y)的非线性动力系统,即

)

,(),(21Y X f dt

dY Y X f dt

dX

(1.3.1)

现在相空间变为分别以X 和Y 为坐标轴的二维相平面。如果方程(1.3.1)的解存在且唯一,那么它的解在相平面上就表现为一条线。轨线的斜率是

)

0(,),(),()0(,),(),(2

21112f Y X f Y X f dY

dX f Y X f Y X f dX dY (1.3.2)

只要),(1Y X f 和),(2Y X f 不同时为零且连续可微,轨线的斜率就是唯一的,它意味着轨线不相交。如果轨线在相平面中某一点相交,则这一点的斜率就不是唯一的。换句话说,数学上的解的存在与唯一性定理要求相空间中的轨线不能相交。 如果),(1Y X f 和),(2Y X f 同时为零,即

0),(0

),(0

02001Y X f Y X f (1.3.3)

则有

0 dX dY (1.3.4)

这表明轨线的斜率不唯一。我们把在相平面中使),(1Y X f 和),(2Y X f 同时等于零的点),(00Y X 称为奇点。在相平面上除奇点之外的所有其他点都叫做正则点。根据方程(1.3.3)我们知道,奇点就是非线性方程组的定态解。因此,我们通过研究相空间中奇点的稳定性就可以知道定态解的稳定性。只要我们弄清楚奇点附近轨线的分布及其流向,就能对奇点的稳定性作出判断。

为此我们设x(t)和y(t)是奇点),(00Y X 附近的小扰动,即

)()(0t x X t X )()(0t y Y t Y

(1.3.5)

10 X x ,10

Y y

把非线性方程组(1.3.1)的右边在奇点),(00Y X 附近按Taytor 级数展开,并保留线性项,有

y Y f x X f Y X f dt dx 0101001)()(),( ,y Y

f x X f Y X f dt dy 0202002)()(),( (1.3.6)

根据定态方程(1.3.3),方程式变为

y a x a dt dx 1211 ,y a x a dt

dx

1211 (1.3.7)

其中

01120111)(,)(

Y f a X f a ,022120221)(,)(Y

f

a X f a (1.3.8)

下标0表示在定态取值。方程(1.3.7)可以方便地写为矩阵形式

y x a a a a y x dt d 22211211 (1.3.9)

由方程(1.3.9)的线性结构,它允许有如下的形式解

t e x x 0 ,t e y y 0

(1.3.10)

这样的解称为简正模。把方程(1.3.10)代入可以得到对 (00,y x )为一阶的齐次代数方程组

0022211211

00y x a a a a y x (1.3.11)

这个方程组具有非零解的条件为

02221

1211

a a a a

(1.3.12)

02 T

(1.3.13)

其中

2211a a T ,21122211a a a a

(1.3.14)

方程(1.3.13)称为线性化方程组的特征方程, 称为线性化方程组的特征值。 特征方程(1.3.13)是一个一元二次方程,它允许有两个不同的特征根1 和2 ,即

)4(2

1

22,1

T T (1.3.15)

这时线性化方程组(1.3.9)有两组如下形式的线性无关解

t e x x 101 ,

t e x x 202 ,t e y y 202

(1.3.16)

其中 0101y x 和

0202y x 分别是方程组(1.3.11)系数矩阵(ij a )的特征值1 和2 对应的特征向

量。这样,线性化方程组的一般解应是两个线性无关解的线性组合,即

t e x c x 1011 t e x c 2022 t e y c y 1011 t e y c 2022

(1.3.17)

其中1c 和2c 由初始条件确定。

从方程(1.3.15)可以看到,特征值i (i =1,2)可能为复数,而奇点(X 0,Y 0)的稳定性只取决于特征值实部i Re 的符号。由此可以根据方程直观地得到如下稳定性判据: (a)如果两个0Re i (i =l ,2),则奇点(X 0,Y 0)是渐近稳定的; (b)如果至少有一个0Re ( =1或2),则奇点(X 0,Y 0)是不稳定的; (c)如果至少有一个0Re ( =1或2),而另一个0Re ( =2或1),则奇点(X 0,Y 0)是Lyapunov 稳定的,而不是渐近稳定的。我们称这种情况为临界稳定性。 所谓奇点就是行为异常的点。虽然这样的点在相空间的分布是极为稀少的,但它们却是人们关注的热点。通常按奇点的性质把它分为四类:结点;鞍点;焦点;中心点。现在分别对它们加以介绍。 (1)结点

当042 T 和0 时,对应的奇点称为结点。此时两个特征根不但都是实的,而且同号(T 21 , 21 ),即

)4(21

21

T T 和T 同号 )4(2

1

22 T T 也和T 同号

因此,可以根据T 的符号来判断结点的稳定性: T <0,渐近稳定结点 T >0,不稳定结点

例 若线性化方程(1.3.7)中的02112 a a ,02211 a a a ,则042 T ,

02 a ,奇点(X 0,Y 0)为结点。这时方程变为

ax dt dx

ay dt

dy

(1.3.18)

它们的解为 at e x x 0

at e y y 0

(1.3.19)

在结点附近轨线的斜率

x y dx dy =常数 (1.3.20)

对于不同的初始条件(00,y x ),会有不同的常数,也就有不同的斜率。同时,因为T =a 2,所以结点的稳定性取决于a 的符号,0 a 对应于渐近稳定结点,0 a 对应不稳定结点。这些可用图来表示。图显示另一种结点附近的轨线分布及其流向的状况。从这些图我们看到,稳定结点是相平面的汇,不稳定结点是相平面的源。

(a)

(b)

图 渐近稳定星形结点(a) 不稳定星形结点(b)

(a)

(b)

图 渐近稳定星形结点(a) 不稳定星形结点(b)

(2)鞍点

当042 T 和0 时,相应的奇点称为鞍点。这种情形的特征根总是异号的实根,(T 21 , 21 )即

0)4(21

21

T T 0)4(2

1

22 T T

无论T>0或T<0

所以鞍点总是不稳定的。

例 若方程(1.3.7)中的02112 a a ,011 a ,022 a ,则0)(4222112 a a T ,

02211 a a ,奇点(X 0,Y 0)为鞍点。这时线性化方程取形式

x a dt dx

11 y a dt

dy

22 (1.3.21)

它的形式解为

t a e x x 110 t a e y y 220

(1.3.22)

鞍点附近轨线的斜率不但与初始条件(00,y x )有关,而且还与线性化系数11a 和22a 有关,即

110

22x a y a dx dy (1.3.23)

其中已忽略了因子exp[t a a )(1122 ),因它不影响我们要讨论的结论。根据斜率在不同象限的符号,可以得到如图所示的轨线分布形式。由于它与马鞍曲面在平面上的投影相类似,故得鞍点这个名字。

图 鞍点附近轨线的分布情形及流向

(3)焦点

当042 T ,0 T 时,对应的奇点称为焦点。这时特征根为两个共扼复根。

i 1

(1.3.24)

其中

2T

, 242

1T (1.3.25)

分别是共轭复根的实部和虚部。焦点的稳定性取决于实部 的符号。 T <0,渐近稳定焦点 T >0,不稳定焦点

复根的虚部 是周期振荡的频率。

例 当01221 b a a ,a a a 2211时,有04422 b T ,02 a T 则奇点(X 0,Y 0)为焦点。这时线生化方程(1.3.7)变为

by ax dt dx

ay bx dt

dy

(1.3.26)

iy x z (1.3.27)

方程(1.3.26)变为

z bi a dt

dz

)( (1.3.28)

它的解为

t ib a e z z )(0 )sin (cos )(00bt i bt e iy x at

(1.3.29)

其中利用了公式

sin cos i e i

(1.3.30)

0x 和0y 是初始条件。通过令方程(1.3.29)两边的实部和虚部相等,得

)sin cos (00bt y bt x e x at )cos sin (00bt y bt x e y at

(1.3.31)

cos 0q x sin 0q y

(1.3.32)

)cos( bt qe x at

)sin( bt qe y at

(1.3.33)

由此得到焦点附近的轨线方程 at e q y x r 22222

(1.3.34)

这是一个螺线方程,q 与初始条件有关,a 的符号决定着螺线的旋转方向。如图2.5所示,0 a 螺线旋向焦点,它代表一种衰减振荡;0 a 螺线旋离焦点,它代表一种放大振荡。

图 渐近稳定焦点(a)和不稳定焦点(b)

(4)中心点

当042 T ,0 T 时,对应的奇点(X 0,Y 0)称为中心点。此条件表明 必大于零,所以两个特征根是异号的纯虚数,即

i 1

i 2

(1.3.35)

这种奇点附近的轨线代表无阻尼振荡,因此这些轨线是一些闭合曲线,奇点被这些闭合曲线围绕在中间,所以把这种奇点称为中心点。中心点附近的轨线既不无限地趋势于它也不无限地远离它,所以中心点是Lyapunov 稳定的,而不是渐近稳定的。(如图所示)

图 围绕中心点的闭轨线

例 取02211 a a ,b a a 1221时,有0 T ,02 b ,则相应的奇点是中心点。这时线性化方程(1.3.7)变为

by dt

dx

bx dt

dy

(1.3.36)

iy x z (1.3.37)

方程(1.3.36)变为

ibz dt

dz

(1.3.38)

其解为

ibt e z z 0 )sin (cos 0bt i bt z

(1.3.39)

其中

000iy x z

(1.3.40)

0x 和0y 是初始条件,如果令

cos 0q x sin 0q y

(1.3.41)

我们会得到 )cos( bt q x

)sin( bt q y

(1.3.42)

最后得到中心点附近的轨线方程为 222q y x

(1.3.43)

这是一个圆方程,圆的半径q 依赖于初始条件,初始条件稍有不同,轨线就会表现为一个新的圆。中心点附近的轨线分布如图所示。因此.中心点既不是相平面中的汇也不是它的源,而是一种中介情形,所以又把它叫做临界稳定性。

上述四种奇点称为简单奇点。根据方程(1.3.15),令 42T D

(1.3.44)

它们被总结归纳于图。渐近稳定结点和渐近稳定焦点是相空间的汇,其周围的轨线都以它们为极限最后趋于它们,这些奇点好象是它们周围轨线的吸引中心,故把它们称为吸引子。相应地把不稳定结点和不稳定焦点称为排斥子。系统的演化一旦达到吸引子就不

会再运动,所以有时把吸引子又称为不动点。吸引子只有在耗散系统中才可能出现,因为吸引子是衰减运动的极限状态,而耗散是衰减运动的原因。在耗散系统中,二维相平面中的各种轨线最后都归并到零维的吸引子上,这称为相空间收缩。相反,对于守恒系统相空间不会收缩,而保持相体积不变。同时,我们也可以看出,耗散是维持系统稳定的因素。

图 四种简单奇点的分布

上述分析都是针对奇点附近的小邻域而言的,并用线性化方程得到奇点附近的轨线分布及其演化趋势,它们给奇点的性质提供了直观的图象。然而,在远离奇点时线性近似不再适用,必须考虑完整的非线性方程,这时轨线的演化趋势不外乎如下几种情形;如果相平面只有一个吸引子,则相平面中所有轨线都流向于它;如果只有一个排斥子,则相平面中所有轨线都会从它出发流向无穷远;如果相平面中不但有吸引子而且还有排斥子,则大部分轨线会从排斥子出发流向吸引子,一小部分轨线可能自排斥子流向无穷远,最后一情形是,排斥子附近的轨线向四周流去,而远方的轨线向排斥子流来,两套流线必然在某个环形区域交锋,交锋的结果是在环形区域中出现一条闭合曲线,这条闭曲线是内外两套轨线演化的共同极限集,这条闭合曲线称为极限环。极限环是一条孤立的闭合执线,也就是在它的周围不存在无限接近于它的另一条闭合轨线,这一点是和中心点周围的闭合轨线有着本质差别。如果极限环内外的轨线都渐近地趋于它,则是渐近稳定极限环(图(a)),否则,是不稳定极限环(图(b))。如果极限环内部(或外部)轨线渐近趋于它,而外部(或内部)轨线离开它,则称为半稳定极限环(图2.8(c))。半稳定极限环也是不稳定极限环的一种。

图 极限环

(a)渐稳定极限环;(b)不稳定极限环;(c)半稳定极限环 例 设有一非线性系统

)](1[22y x x y dt dx

)](1[22y x y x dt

dy

(1.3.45)

不难看出奇点为相平面(x ,y)的原点(0,0)。方程(1.3.45)在奇点附近的线性化方程为

y x dt dx

y x dt

dy

(1.3.46)

因为02 T ,0442 T ,所以该奇点(0,0)为一不稳定焦点,它附近的轨线为一外旋的螺线。

非线性方程(1.3.45)可以严格求解。为此,令

cos r x

sin r y

(1.3.47)

对方程(1.3.45)的两边分别乘x 和y ,并利用式容易把它化为极坐标中的形式

)1(21222

r r dt

dr 1 dt

d

(1.3.48)

利用公式

2

22211

1)1(1r r r r

(1.3.49)

容易得到方程(1.3.48)的积分

t

ce

r 211

t

(1.3.50)

其中c 是由初始条件决定的积分常数。因此

t

ce t x 21cos

t ce

t y 21sin (1.3.51)

由方程(1.3.50)可知,相平面中所有轨孰线的演化极限是半径

1)( t r

(1.3.52)

的单位圆。如果0 c ,初始轨线在单位圆内,如果01 c ,初始轨线在单位圆外。在 t 时,内外轨线都渐渐地进入单位圆(图2.9)。这个单位圆就是一个渐近稳定的

极限环,因为它代表一种持续稳定的周期振荡,所以又把它称为周期吸引子。 自然界中无外源强迫的持续稳定周期振荡现象都对应一个渐近稳定的极限环。从上面的例子我们看到.极限环不可能在线性系

图 方程(1.3.45)产生的极限环

统中产生,只可能在非线性系统中产生。因此,自然界中的持续振荡是一非线性现象。但是,并不是每个非线性系统都能产生极限环,即非线性是产生极限环的必要条件,并不是充分条件。所以,判断一个非线性系统能否产生极限环十分重要。如果能够得到非线性系统的解析解,就会很容易地作出判断。然而,对于大多数非线性系统获得解析解是不可能的,所以采用定性的方法推断极限环是否存在及其在什么位置就成为必要的了。由于非线性的复杂性,目前还没有一种普适的判断方法。这里只对数学上的一些定性结论作以介绍。

(1)如果极限环内只有一个简单奇点,这个苛点绝对不是鞍点。

(2)如果极限环内有多个简单奇点,则一定有奇数个,并且鞍点的数目比其他奇点的数目少一个。

(3)Bendixson 否定判据:对于非线性系统(2.3.1)如果y

f x f 2

1在相平面区域D 内不变号,则系统(2.L1)在D 内无极限环。

根据Bendixson 否定判据可以直接证明线性系统不会产生极限环。因为对于线性系统

y

f x f a a T

2

12211 (1.3.53)

它是不会变号的。

(4)如果系统(1.3.1)的轨线在相平面环形区域D 的边界上总是自外向内(图2.10),又在D 内无奇点,则在D 内至少有一个渐近稳定的极限环。

(5)如果系统(1.3.1)的轨线在相平面区域D 的边界上总是自外向内,又在D 内除有不稳定焦点或不稳定结点之外无其他奇点,则在D 内至少有一个渐近稳定的极限环(图2.11)。

由上述讨论我们看到,一个渐近稳定的极限环代表着一种稳定的周期行为。所谓的时空有序结构实际上主要指在系统内部自发形成的在时间或空间上的周期行为。要想知道形成时空有序结构的动力学条件,必须研究极限环的形成条件,这是下一节要讨论的主要内容之一。

结构稳定性与分支现象

前几节的讨论都未涉及非线性方程组包含的控制参数 对系统行为的影响,换言之,我们是在假定控制参数不变的前提下讨论了系统的稳定性问题。然而,有时控制参数的一个微小变化都会对系统的行为引起质的跃变。一个模型往往要包含若干参数,有的参数起关键作用,有的参数对系统行为没有实质性作用。起关键作用的参数在其临界值附近的一个微小变化都会使系统的演化行为发生质的改变。如在Benard 实验中的温差T 就是一控制参数,当它达到临界值c T 时,一个微小变化就会使液体由分子热运动的无序行为突然转变为自组织的有序行为。因此,控制参数对系统稳定性的影响十分重要,它是本节要讨论的主要内容。

1、结构稳定性

考虑双变量的非线性动力系统

),,(1Y X f dt dX

),,(Y

2Y X f dt

d (1.4.1)

其中 代表某一控制参数,并且把它看作是可变的。这样,方程(1.4.1)的定态解(X 0,Y 0)应是 的函数,即 )( 00X X

( 00Y Y (1.4.2)

因为1f 和2f 是X 和Y 的非线性函数,所以定态解是多重的。但由于 的变化可能使一些原来有物理意义的定态解失去物理意义,因此, 的变化可能会引起定态解的数目发生变化。根据方程(1.3.8)可知,方程的线性化系数11a 、12a 、21a 和22a 是在定态取值,因此有

)(

)( (1.4.3)

这意味着 的变化不但会使相平面中奇点的数目发生变化,而且还会引起奇点稳定性的变化,即引起相平面中轨线分布的结构发生变化。

定义 如果控制参数 发生一微小变化,方程(1.4.1)的奇点数目及其稳定性不发生变化,则称系统是结构稳定的;否则,系统是结构不稳定的。这样定义的稳定性称为结构稳定性。

2、分支过程

由上述分析可见,控制参数 固定,相空间中奇点的数目及其稳定性就是确定的。因此,相空间轨线的流型结构(拓朴结构)也是确定的。如果某一参数 发生一个小扰动,相空间轨线的流型结构未发生变化,我们称这样的参数为普通参数。如果某一参数 在达到c 时,一个微小的扰动就会使相空间轨线的流型结构发生根本性的改变,这时我们称系统发生了分支现象, 称为分支参数, 称为分支点或临界点。

分支现象是参数 在分支点c 处引发的,要么它使一种奇点由稳定变为不稳定,要

么它使一种稳定奇点变为另一种不稳定奇点。这两种作用都会使相空间轨线的流形结构发生质的改变。因此,由稳定奇点变为不稳定奇点的条件就形成了确定分支点 的基本条件。根据上节的讨论可知:在实特征根的情形,0 T 和0 对应渐近稳定结点,0 对应不稳定的鞍点,在复特征根的情形,0 T 对应渐近稳定焦点,0 T 对应不稳定焦点。所以,确定奇点稳定性发生改变的分支点方程为

0)(0

)(c c T (1.4.4)

在详细研究分支点条件之前,先讨论一下分支过程。在参数 达到分支点c 时原吸引子( c 时的渐近稳定奇点)失去稳定性,取而代之的不仅仅是不稳定奇点,而且还会产生出新的吸引子,如定态吸引子和周期吸引子等。也就是说在分支点附近不稳定奇点和吸引子是成对出现的。这些新产生出来的吸引子和不稳定奇点统称为方程(1.4.1)的新分支解。如果新分支解出现在 c 区域就称为亚临界分支;如果它出现在 c 区域就称为超临界分支(图。我们把新老分支解与分支参数 的关系图称为分支图。

图 分支图:超临界分支(a)和亚临界分支(b)

(实线:渐近稳定解,虚线:不稳定解)

上述是以分支点存在的前提下讨论的,但是满足条件(1.4.4)并不能完全断定c 就一定是分支点。要能完全确定c 是分支点还需要一些补充条件。 首先讨论一下特征根为重根的情况。为此,令

y Y Y x

X X 00

(1.4.5)

其中

y x z 是定态解(00,Y X )上的小扰动。把方程(1.4.5)代入,得

),()(z h z I dt

dz

(1.4.6)

其中

22211211

)(a a a a

I (1.4.7)

是线性化系数矩阵,也可称为线性化算子,而),(z h 代表所有的非线性项。线性化方程

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性的概念; 2、掌握线性稳定性的分析方法; 3、掌握奇点的分类及判别条件; 4、理解结构稳定性及分支现象; 5、能分析简单动力系统的奇点类型及分支现象。 二、教学重点 1、线性稳定性的分析方法; 2、奇点的判别。 三、教学难点 线性稳定性的分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 学习本章内容之前,学生要复习常微分方程的内容。 六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。 1.1相空间和稳定性 一、动力系统 在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。 假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时间t 的函数而且也是空间位置r 的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。 ),,,(2111 n X X X f dt dX ???=λ ),,,(2122 n X X X f dt dX ???=λ (1.1.1) … ),,,(21n n n X X X f dt dX ???=λ 其中λ代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是{}i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于{}i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若{}i f 明显地依赖时间t ,则称方程组(1.1.1)为非自治动力系统。非自治动力系统可化为自治动力系统。 对于非自治动力系统,总可以化成自治动力系统。 例如:)cos(t A x x ω=+

动力学分析方法

1动力学分析方法 结构动力学的研究方法可分为分析方法(结构动力分析)和试验方法(结构动力试验)两大类。[7-10] 分析方法的主要任务是建模(modeling),建模的过程是对问题的去粗取精、去伪存真的过程。在结构动力学中,着重研究力学模型(物理模型)和数学模型。建模方法很多,一般可分为正问题建模方法和反问题建模方法。正问题建模方法所建立的模型称为分析模型(或机理模型)。因为在正问题中,对所研究的结构(系统)有足够的了解,这种系统成为白箱系统。我们可以把一个实际系统分为若干个元素或元件(element),对每个元素或元件直接应用力学原理建立方程(如平衡方程、本构方程、汉密尔顿原理等),再考虑几何约束条件综合建立系统的数学模型。如果所取的元素是一无限小的单元,则建立的是连续模型;如果是有限的单元或元件,则建立的是离散模型。这是传统的建模方法,也称为理论建模方法。反问题建模方法适用于对系统了解(称黑箱系统——black box system)或不完全了解(称灰箱系统——grey box system)的情况,它必须对系统进行动力学实验,利用系统的输入(载荷)和输出(响应——response)数据,然后根据一定的准则建立系统的数学模型,这种方法称为试验建模方法,所建立的模型称为统计模型。 在动力平衡方程中,为了方便起见一般将惯性力一项隔离出来,单独列出,因此通常表达式为: u I M&& (2) = - +P 其中M为质量矩阵,通常是一个不随时间改变的产量;I和P是与位移和速度有关的向量,而与对时间的更高阶导数无关。因此系统是一个关于时间二级导数的平衡系统,而阻尼和耗能的影响将在I和P中体现。可以定义: + = (3) I&& C u Ku 如果其中的刚度矩阵K和阻尼矩阵C为常数,系统的求解将是一个线性的问题;否则将需要求解非线性系统。可见线性动力问题的前提是假设I是与节点位移和速度是线性相关的。 将公式(2)代入(1)中,则有

非线性动力学和混沌理论

非线性动力学和混沌理论 非线性动力学 随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。 非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。 经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。 混沌理论是谁提出的? 混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。 美国气象学家洛伦茨在2O世纪 6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。 1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。 1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。 1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。 与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。混沌的理论 要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。 假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。 1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。 那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何物理系统中所作出的最精确的测量,对大约10位或12位小数来说是正确的。 但拉普拉斯的陈述只有在我们使测量达到无限精度即无限多位小数,当然那是办不到的时才正确。 在拉普拉斯时代,人们就已知道这一测量误差问题,但一般认为,只要作出初始测量,比如小数点后10位,所有相继的预言也将精确到小数点后10位。误差既不消失,也不放大。 不幸的是,误差确实放大,这使我们不能把一系列短期预言串在一起,得到一个长期有效的预言。例如,假设我知道精确到小数点后10位的头3滴水的滴落时刻,那么我可以精确到小数点后9位预言下一滴的滴落时刻,再下一滴精确到8位,以此类推。 误差在每一步将近放大10倍,于是我对进一步的小数位丧失信心。所以,向未来走10步,我对下一滴水的滴落时刻就一无所知

第2章电路的基本分析方法

第2章电路的基本分析方法 一、填空题: 1. 有两个电阻,当它们串联起来的总电阻为10Q,当他们并联起来的总电阻为 2.4 Q 这两个电阻的阻值分别为_4Q _和__6Q — 2. 下图所示的电路,A B之间的等效电阻R= 1Q 电路的等效电阻R A B=60Q R CD 5. _______________________________________________________ 下图所示电 路中的A B两点间的等效电阻为12KQ _______________________________ 图中所示 的电流l=6mA则流经6K电阻的电流为2mA ;图中所示方向的电压U为12V 此 6K电阻消耗的功率为24mW 。 4. 3.下图所示的电路, 下图所示电路,每个电阻的阻值均为30 Q, B o B之间的等效电阻R A E=3Q O 6Q 3Q 2Q 2 Q 2 Q 2Q

鼻s Ik 10k皐 A Q T 1 L__JI 1_ () --------------------- 10kQ知 ]6k j L + B O ------ o

6. 下图所示电路中,ab 两端的等效电阻为12Q , cd 两端的等效电阻为4 Q 8.下图所示电路中,ab 两点间的电压U ab 为io V 。 + iov a 24V 已知U F 3V, I S = 3 A 时,支路电流I 才等于2A 。 10. 某二端网络为理想电压源和理想电流源并联电路, 则其等效电路为 理想电压 源。 11. 已知一个有源二端网络的 开路电压为20V,其短路电流为5A,则该有源二端 网络外接4 Q 电阻时,负载得到的功率最大, 最大功率为 25W 12. 应用叠加定理分析线性电路时, 对暂不起作用的电源的处理,电流源应看作 开路,电压 7?下图所示电路a 、 6 Q a i — 5 Li b 间的等效电阻Rab 为4" 9.下图所示电路中, d 15 Q b Hi BO

非线性动力学数据分析

时间序列分析读书报告与数据分析 刘愉 200921210001 时间序列分析是利用观测数据建模,揭示系统规律,预测系统演化的方法。根据系统是否线性,时间序列分析的方法可分为线性时间序列分析和非线性时间序列分析。 一、 时间序列分析涉及的基本概念 1、 测量 对于一个动力系统,我们可以用方程表示其对应的模型,如有限差分方程、微分方程等。如果用t X 或)(t X 表示所关心系统变量的列向量,则系统的变化规律可表示成 )(1t t X f X =+或)(X F dt dX = 其中X 可以是单变量,也可以是向量,F 是函数向量。通过这类方程,我们可以研究系统的演化,如固定点、周期、混沌等。 在实际研究中,很多时候并不确定研究对象数据何种模型,我们得到的是某类模型(用t X 或)(t X 表示)的若干观测值(用t D 或)(t D 表示),构成观测的某个时间序列,我们要做的是根据一系列观测的数据,探索系统的演化规律,预测未来时间的数据或系统状态。 2、 噪声 测量值和系统真实值之间不可避免的存在一些误差,称为测量误差。其来源主要有三个方面:系统偏差(测量过程中的偏差,如指标定义是否准确反映了关心的变量)、测量误差(测量过程中数据的随机波动)和动态噪音(外界的干扰等)。 高斯白噪声是一类非常常见且经典的噪声。所谓白噪声是指任意时刻的噪声水平完全独立于其他时刻噪声。高斯白噪声即分布服从高斯分布的白噪声。这类噪声实际体现了观测数据在理论值(或真实值)周围的随机游走,它可以被如下概率分布刻画: dx M x dx x p 2222)(exp 21 )(σπσ--= (1) 其中M 和σ均为常数,分别代表均值和标准差。 3、 均值和标准差 最简单常用的描述时间序列的方法是用均值和标准差表示序列的整体水平和波动情况。 (1)均值 如果M 是系统真实的平均水平,我们用观测的时间序列估计M 的真实水平方法是:认为N 个采样值的水平是系统水平的真实反映,那么最能代表这些观测值(离所有观测值最近)的est M 即可作为M 的估计。于是定义t D 与est M 的偏离为2 )(est t M D -,所以,使下面E 最小的M 的估计值即为所求: 21)(∑=-=N t est t M D E (2)

土的非线性动剪切模量比和阻尼比不确定性分析

第32卷 第8期 岩 土 工 程 学 报 Vol.32 No.8 2010年8月 Chinese Journal of Geotechnical Engineering Aug. 2010 土的非线性动剪切模量比和阻尼比不确定性分析 孙 锐1,3,陈红娟2,袁晓铭1 (1. 中国地震局工程力学研究所,黑龙江 哈尔滨150080;2. 北京工业大学建筑工程学院,北京100124; 3. 哈尔滨工程大学,黑龙江 哈尔滨 150001) 摘要:利用实验资料研究了中国常规土类动剪切模量比及阻尼比随剪应变变化非线性关系的不确定性问题,包括典型应变下分布形态、概率统计指标以及不同概率水准下变化范围和规律。以中国17个省份42个城市和地区588组土样实验为基础数据,对8个典型剪应变进行的动剪切模量比及阻尼比不确定性的概率进行分析,结果表明:常规土类动剪切模量比和阻尼比的变异性以偏态分布为主,其概率统计指标呈现良好规律;各种土类动剪切模量比及阻尼比的标准差和变异系数都很大,而标准差最大值恰出现在土层地震反应计算的敏感区间内;各种土类动剪切模量比及阻尼比的外包线与其95%参考值都有较大差别,体现了实验结果显著的离散性;动剪切模量比的变异系数随剪应变而明显增大,阻尼比的变异系数随剪应变的增大而显著减小;大应变时动剪切模量比不确定性大,而小应变时阻尼比离散显著;阻尼比的变异系数要明显大于动剪切模量比的变异系数,表明阻尼比具有更大的不确定性。 关键词:常规土;动剪切模量比;动阻尼比;不确定性 中图分类号:TU43 文献标识码:A 文章编号:1000–4548(2010)08–1228–08 作者简介:孙 锐(1972– ),女,研究员,从事土动力学研究。E-mail: iemsr@https://www.360docs.net/doc/fa17564909.html,。 Uncertainty of non-linear dynamic shear modular ratio and damping ratio of soils SUN Rui1,3,CHEN Hong-juan2,YUAN Xiao-ming1 (1. Institution of Engineering Mechanics, CEA, Harbin 150080, China; 2. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China; 3. Harbin Engineering University, Harbin 150001, China) Abstract:By using the test data, the uncertainty of the dynamic modular ratio G/G max and damping ratio λversus dynamic shear strain γfor the conventional soils in China is studied. The characteristics of the uncertainty distribution, the probability indexes as well as the range of G/G max and λfor the typical strains under different probabilities are presented. Based on 588 groups of test results from 42 cities and districts in 17 provinces in China, the uncertainty of the modular ratio and damping ratio versus 8 typical shear strains is analyzed. The results indicate that most of the uncertainty distribution of G/G max and λis abnormal and that the statistic indexes for the probability are regular. The standard deviation and the variation coefficient of G/G max and λare both significant, and meanwhile the maximum of the standard deviation just appears in the sensitive range for the seismic analysis of soil layers. The 95% reference values of G/G max and λare quite different from the envelopes of G/G max and λ for all types of soils. The variation coefficients of G/G max increase with the increase of the shear strain, but the variation coefficients of λdecrease with the increase of the shear strain. The uncertainty of G/G max is obvious at the large strain, while that of λis obvious at the small strain. The variation coefficients of λare larger than those of G/G max, indicating the uncertainty of the dynamic damping is more remarkable than the dynamic modulus. Key words:soil; dynamic shear modular ratio; dynamic damping ratio; uncertainty 0 引 言 岩土工程的可靠性分析中,土性参数的概率统计分析是基本内容之一,结果的可信性直接影响到可靠度指标的求解结果[1]。 岩土材料最重要的特征是具有复杂的变异性和参数的不确定性,从而使可靠度分析的精度在很大程度上依赖于岩土参数统计的结果。同时,土性指标的不确定性在概率设计方法中的影响远远超过计算方法的不确定性影响[2]。因此,岩土参数不确定性的研究具有重要的理论意义和工程应用价值。 ─────── 基金项目:中央级公益性研究所基本科研业务费专项项目(2009B01); 黑龙江省自然科学基金项目(E200603);国家科技支撑计划项目(2006BAC13B01) 收稿日期:2009–04–29

《从非线性动力学到复杂系统》

《从非线性动力学到复杂系统》 段法兵 系统理论博士生课程

第一讲动态系统的发展 系统是一些相互关联的客体组成的集合,动态(动力dynamical)系统是系统状态变量,比如温度、位移、价格、信号幅值等,随着时间变化的。它的描述可以用微分方程或者离散方程。 微分方程历史悠久,可追溯到牛顿、伽利略、欧拉、雅克比等人,用以描述行星的运动轨迹。研究中发现即使满足牛顿引力定律的三体运动也非常复杂,其微分方程是非线性的,非线性是指不满足叠加定律的方程,解无法利用已知函数进行描述,如果能够描述的我们称为显式解。因此,庞加莱在1880年-1910年期间,试图利用解的拓扑几何性质来解释动态系统的运动规律,发现即使确定性系统,其运动规律也会出现随机性态,非常复杂(确定性系统是指其外力是确定的不随机,只要知道初始条件和演化方程,其运动是可预先确定的)。 非线性系统运动的复杂性:李雅普诺夫研究了系统平衡点?的稳定性?问题,随后本迪尔松等发现系统的解包含(1)平衡态(静止不动);(2)周期运动(比如行星)(3)拟周期,就是几个频率不可公约周期之和。 接着1975年Li和Yorke提出了混沌的概念,即系统的解是非周期的一种类似随机运动的现象,这其中就包含了洛伦兹提出的“蝴蝶效应”,根源在于这类非线性动力系统对于初始条件的极其敏感性,初始条件的微小变化导致了系统状态的巨大改变,从此有关非线性科学的发展异常迅速,形成了现代动力学理论,其最重要的贡献是揭示了一个简单的模型可能蕴含了无比复杂的动力学性态。 例子:Van der Pol(范德波尔)方程 1920年Van der Pol利用电子震荡管研究心脏的跳动问题,比如人工心脏起

二维logistic离散动力系统的参数分析

二维logistic离散动力系统的参数分析 【摘要】提出了一种二维logistic离散动力系统,讨论了系统参数对系统基本动力行为的影响,得到了相关的定理。同时对系统的分叉进行了分析,并通过数值示例进行仿真,对文中论述进行了强有力的验证。 【关键词】logistic映射;混沌系统;超浑沌系统;分叉 1. 引言非线性动力系统大体分为连续系统和离散系统两大类,连续系统可以根据庞克莱截面方法转换为离散系统,所以对离散混沌系统的控制问题进行研究具有普遍意义。Logistic映射[1-3]是1976年由数学生态学家R. May在英国《自然》杂志上发表的一篇后来影响深广的综述中提出的,后来经过Feigenbaum的出色研究,得出系统一旦发生倍周期分岔[4-9],必然导致混沌现象的产生。对于一维Logistic映射及其推广的形式,研究的比较早也比较详细。但是一维Logistic 映射仅有一个自由度,利用它只能产生一条直线或者曲线,为了绘制一幅图像,至少需要两个及两个以上的自由度,为此就需要构造二维及更高维的系统,分析图形与吸引子的结构特征,探讨了图形与吸引子之间的联系等。文献[4,,5]对一类三维混沌系统研究了它的hopf分叉,文献[7]对同类的共轭lorenz系统进行了控制,文献[6]对一类耦合Logistic离散动力系统进行了动力学分析,研究了相应的分叉值等。在此基础上,本文对二维Logistic离散动力系统[6]。 xn+1=axn(1-λxn) yn+1=(b+cxn)yn(1-λyn)(1) 进行了参数动力学分析,并对通过计算机对系统的在不同参数下的分叉作了仿真。 2. 参数分析系统(1)的Jacobian矩阵为 J(x,y)=a(1-2λx)0 cy(1-λy)(b+cx)(1-2λy)(2) 由于(2)式是对角的,所以可以给出Lyapunov指数为 定理1 n∈N ,当a∈[0,4λ],x0∈[0,a4λ] ,则xn∈[0,a4λ] 定理2 n∈N ,当a∈[0,4λ] ,x0∈[0,a4λ] ,y0 ∈[0,4λb+ac16λ2],b ∈[0,4λ-ac4λ], c ∈[0,16λ2a],则yn∈[0,4λb+ac16λ2] 证明:当n=0 时,0≤y0 ≤4λb+ac16λ2,假设当n=k 时,有0≤yk ≤4λb+ac16λ2 ,下证当n=k+1 时,有0≤yk+1 ≤ 4λb+ac16λ2 因为16λ24λb+ac(b+cxk)yk(4λb+ac16λ2-yk)≥0,所以(b+cxk)yk(1- 16λ24λb+acyk)≥0,又因为00,e2 3.5699457,b=3.5 ,c=0.5 时,x和y都达到浑沌状态,即系统为超浑沌系统。从图3,图6中更能看到当a>3.5699457 ,b=4 ,c=-1 时,系统亦为超浑沌系统。 4. 结论本文在经典logistic映射的基础上,提出了一种二维logistic离散动力系统,通过对系统参数变化的讨论,得到了有关系统基本动力行为随参数变化而被影响的几个定理。同时对该离散系统的分叉进行了分析,并通过数值示例进行仿真,对文中论述进行了强有力的验证。

电路的基本分析方法

第2章电路的基本分析方法 电路的基本分析方法贯穿了整个教材,只是在激励和响应的形式不同时,电路基本分析方法的应用形式也不同而已。本章以欧姆定律和基尔霍夫定律为基础,寻求不同的电路分析方法,其中支路电流法是最基本的、直接应用基尔霍夫定律求解电路的方法;回路电流法和结点电压法是建立在欧姆定律和基尔霍夫定律之上的、根据电路结构特点总结出来的以减少方程式数目为目的的电路基本分析方法;叠加定理则阐明了线性电路的叠加性;戴维南定理在求解复杂网络中某一支路的电压或电流时则显得十分方便。这些都是求解复杂电路问题的系统化方法。 本章的学习重点: ●求解复杂电路的基本方法:支路电流法; ●为减少方程式数目而寻求的回路电流法和结点电压法; ●叠加定理及戴维南定理的理解和应用。 2.1 支路电流法 1、学习指导 支路电流法是以客观存在的支路电流为未知量,应用基尔霍夫定律列出与未知量个数相同的方程式,再联立求解的方法,是应用基尔霍夫定律的一种最直接的求解电路响应的方法。学习支路电流法的关键是:要在理解独立结点和独立回路的基础上,在电路图中标示出各支路电流的参考方向及独立回路的绕行方向,正确应用KCL、KVL列写方程式联立求解。支路电流法适用于支路数目不多的复杂电路。 2、学习检验结果解析 (1)说说你对独立结点和独立回路的看法,你应用支路电流法求解电路时,根据什么原则选取独立结点和独立回路? 解析:不能由其它结点电流方程(或回路电压方程)导出的结点(或回路)就是所谓的独立结点(或独立回路)。应用支路电流法求解电路时,对于具有m条支路、n个结点的电路,独立结点较好选取,只需少取一个结点、即独立结点数是n-1个;独立回路选取的原则是其中至少有一条新的支路,独立回路数为m-n+1个,对平面电路图而言,其网孔数即等于独立回路数。 2.图2.2所示电路,有几个结点?几条支路?几个回路?几个网孔?若对该电路应用支

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性得概念; 2、掌握线性稳定性得分析方法; ?3、掌握奇点得分类及判别条件; ?4、理解结构稳定性及分支现象; 5、能分析简单动力系统得奇点类型及分支现象. 二、教学重点 1、线性稳定性得分析方法; ?2、奇点得判别。 三、教学难点 ?线性稳定性得分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 ?学习本章内容之前,学生要复习常微分方程得内容。 六、教学过程 本章只介绍一些非常初步得动力学分析方法,但这些方法在应用上就是十分有效得。 1、1相空间与稳定性 ?一、动力系统 在物理学中,首先根据我们面对要解决得问题划定系统,即系统由哪些要素组成。再根据研究对象与研究目得,按一定原则从众多得要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量得微分方程,这些微分方程构成得方程组通常称为动力系统。研究这些微分方程得解及其稳定性以及其她性质得学问称为动力学. 假定一个系统由n个状态变量,,…来描述。有时,每个状态变量不但就是时间t得函数而且也就是空间位置得函数。如果状态变量与时空变量都有关,那么控制它们变化得方

程组称为偏微分方程组.这里假定状态变量只与时间t有关,即X =X i(t),则控制它们 i 得方程组为常微分方程组。 ?????(1。1.1) … 其中代表某一控制参数.对于较复杂得问题来说,(i=l,2,…n)一般就是得非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于不明显地依赖时间t,故称方程组(1。1.1)为自治动力系统。若明显地依赖时间t,则称方程组(1、1、1)为非自治动力系统.非自治动力系统可化为自治动力系统. 对于非自治动力系统,总可以化成自治动力系统。 例如: 令,,上式化为 上式则就是一个三维自治动力系统。 又如: 令,则化为 它就就是三微自治动力系统、 对于常微分方程来说,只要给定初始条件方程就能求解。对于偏微分方程,不但要给定初始条件而且还要给定边界条件方程才能求解。 能严格求出解析解得非线性微分方程组就是极少得,大多数只能求数值解或近似解析解。 二、相空间 ,X2,…Xn)描述得系统,可以用这n个状态变量为坐标轴支由n个状态变量=(X 1 起一个n维空间,这个n维空间就称为系统得相空间。在t时刻,每个状态变量都有一个确定得值,这些值决定了相空间得一个点,这个点称为系统状态得代表点(相点),即它代表了系统t时刻得状态。随着时间得流逝,代表点在相空间划出一条曲线,这样曲线称为相轨道或轨线.它代表了系统状态得演化过程。 三、稳定性 把方程组(1。1.1)简写如下

利用ADAMS进行动态仿真分析的一般方法和过程111

基于ADAMS软件进行动态仿真分析的一般方法和过程 摘要: 本文通过对相关资料的总结归纳,介绍了虚拟样机的发展现况、ADAMS软件、特点以及利用其进行动态仿真的一般方法和过程。并结合多功能开沟机液压系统进行了建模与仿真分析。 关键词:仿真 ADAMS 优化虚拟样机 1、前言 随着近代科学技术的发展,工程设计的理论、方法和手段都发生了很大的变化。从计算机辅助工程(CAE)的广泛应用,到并行工程(CE)思想的提出与推行,从根本上改变了传统的设计方法,极大地促进了制造业的发展和革命。但与此同时,人们已清楚地认识到:即使系统中的每个零部件都是经过优化的,也不能保证整个系统的性能是良好的,即系统级的优化绝不是系统中各部件优化的简单叠加。于是,由CAX/DFX等技术发展而来,以系统建模、仿真技术为核心的虚拟样机技术(Virtual Prototyping)得到了迅速发展,并正成为各国纷纷研究的新的热点。 虚拟样机技术(Virtual Prototyping Technology)是当前设计制造领域的一项新技术,其应用涉及到汽车制造、工程机械、航空航天、造船、航海、机械电子、通用机械等众多领域。它利用计算机软件建立机械系统的三维实体模型和运动学及动力学模型,分析和评估机械系统的性能,从而为机械产品的设计和制造提供依据。虚拟样机技术可使产品设计人员在各种虚拟环境中真实地模拟产品整体的运动及受力情况,快速分析多种设计方案,进行物理样机而言难以进行或根本无法进行的试验,直到获得系统的最佳设计方案为止。虚拟样机技术的应用贯穿着整个设计过程中,它可以用在概念设计和方案论证中,设计者可以把自己的经验与想象结合在虚拟样机里,让想象力和创造力得到充分地发挥。用虚拟样机替代物理样机,不但可以缩短开发周期而且设计效率也得到了很大的提高。本文以ADAMS为平台,简单说明一下进行虚拟样机的动态仿真分析的一般方法和过程。 2、ADAMS软件简介及特点 ADAMS(Automatic Dynamic Analysis of Mechanical System)软件,是由美国机械动力公司(Mechanical Dynamics Inc,现已经并入美国MSC公司)开发的最优秀的机械系统动态仿真软件,是目前世界上最具权威性的,使用范围最广的机械系统动力学分析软件,在全球占有率最高。ADAMS软件可以广泛应用于航空航天、汽车工程、铁路车辆及装备、工业机械、工程机械等领域。国外的一些著名大学也开设了介绍ADAMS软件的课程,而将三维CAD软件、有限元软件和虚拟样机软件作为机械专业学生必须了解的工具软件。ADAMS 一方面是机械系统动态仿真软件的应用软件,用户可以运用该软件非常方便地对虚拟样机进行静力学、运动学和动力学分析;另一方面,又是机械系统动态仿真分析开发工具,其开放性的程序结构和多种接口,可以成为特殊行业用户进行特殊类型机械系统动态仿真分析的二次开发工具平台。ADAMS与先进的CAD软件(UG、Pro/ENGINEER)以及CAE软件(ANSYS)可以通过计算机图形交换格式文件相互交换以保持数据的一致性。ADAMS软件支持并行工程环境,节省大量的时间和经费。利用ADAMS软件建立参数化模型可以进行设计研究,试验设计和优化分析,为系统参数化提供了一种高效开发工具。 应用ADAMS进行动态仿真设计的过程如图1所示。

单摆非线性动力学

单摆的非线性动力学分析 亚兵 (交通大学车辆工程专业,,730070) 摘要:研究单摆的运动,从是否有无阻尼和驱动力方面来分析它们对单摆运动的影响。对于小角度单摆的运动,从单摆的动力学方程入手,借助雅普诺夫一次近似理论,推导出单摆的运动稳定性情况。再借助绘图工具matlab,对小角度和大角度单摆的运动进行仿真,通过改变参数,如阻尼大小、驱动力大小等绘出单摆运动的不同相图,对相图进行分析比较,从验证单摆运动的稳定性情况。关键词:单摆;振动;阻尼;驱动力 Abstract:The vibration of simple pendulum is studied by analyzing whether or not damp and drive force its influence of the simple pendulum. For small angle pendulum motion, pendulum dynamic equation from the start, with an approximate Lyapunov theory of stability of motion is derived pendulum situation. Drawing tools with help from matlab, small angle and wide-angle pendulum motion simulation, by changing the parameters, such as damping size, drive size draw simple pendulum of different phase diagram, analysis and comparison of the phase diagram, from the verification the stability of the situation pendulum movement. Key words: simple pendulum; vibration; damp; drive force 1 引言 单摆是一种理想的物理模型[1],单摆作简谐振动(摆角小于5°)时其运动微分方程为线性方程,可以求出其解析解,而当单摆做大幅度摆角运动时,其运动微分方程为非线性方程,我们很难用解析的方法讨论其运动,这个时候可以用MATLAB软件对单摆的运动进行数值求解,并可以模拟不同情况下单摆的运动。 θ=时, 随着摆角的减小,摆球的运动速率将越来越大,而加速度将单调下降,至0 加速度取极小值。本文从动力学的角度详细考察了这一过程中摆球的非线性运,得出了在运动过程中.,t θθθ --的关系。

24第20章_非线性动力分析_李永双概论

第二十章非线性动力分析 本书前面已经介绍了使用SAP2000进行线性动力分析的基本内容,线性动力分析主要任务是处理结构在多遇地震及一般动力荷载作用下的效应问题,在这阶段结构并没有进入到塑性发展阶段,因此结构的响应控制在线弹性的范围。 根据我国规范提出的结构抗震设计中“小震不坏、中震可修,大震不倒”三个设防水准,以及弹性阶段承载力设计和弹塑性阶段变形验算的两阶段设计理论,进入到大震状态(罕遇地震)是允许结构构件出现塑性发展的,并且需要程序能够进行一定深度的弹塑性分析并给出相关的效应结果。此外,目前很多实际工程中已经开始使用隔振器、阻尼器等复杂保护装置,这些装置一般需要使用非线性连接单元去模拟,而线性时程分析不能够考虑非线性连接单元的非线性属性。综上所述,特定工程需要进行相关条件下结构的非线性动力分析,也要求程序能够完成这一分析。 在SAP2000中可以进行非线性时程分析,在这一分析中可以考虑结构构件的塑性发展(塑性铰),可以考虑复杂的隔振器、阻尼器等非线性连接单元,也可以完成冲击、爆炸等复杂的动力荷载作用下结构效应分析,本章将结合这些非线性时程分析的具体问题阐述其定义方式及相关需要注意的问题。另外,需要注意的是,非线性时程分析本质上仍然是一种动力时程分析,不同之处在于它可以综合考虑结构中的非线性属性,因此部分参数选择和设置方式与线性时程分析是相同的,对于这类问题由于在线性时程分析中已经进行阐述,因此本章不会重复描述,本章的重点在于使用SAP2000进行非线性时程分析时所能够考虑的非线性属性及其意义。 20.1非线性时程分析工况的定义及相关概念 本章将分别介绍非线性时程分析的相关概念、快速非线性模态积分方法和几种常见的非线性分析类型。下面从非线性时程分析工况的定义出发,阐述非线性时程分析所涉及的几个基本概念。 20.1.1时程函数的定义 与线性时程分析相同,非线性时程分析首先需要定义时程函数曲线,定义方式与线性时程分析是相同的。如果需要进行罕遇地震作用下结构的非线性分析,需要选择地震波曲线,可以使用程序联机带有的常用地震波形式以及我国规范常用的几种场地状态下地震波曲线,可以通过峰值控制来得到罕遇地震的地震时程曲线。 除了罕遇地震作用以外,作用于结构更复杂的动力荷载一般需要提供该作用的数据形式,或工程师根据荷载特征构建荷载作用的数据形式,比如一定的冲击荷载作用或爆炸荷载作用。对于这类荷载数据形式的形成和使用方式与线性时程分析中所描述的时程曲线形成的方式相同,对于几种典型动力作用的时程曲线我们在本章后面相关专题将会再次涉及到。 20.1.2时程工况的定义 与线性时程分析相同,完成时程函数曲线定义之后,需要定义非线性时程分析工况。当选择添加新工况并在分析工况类型下拉菜单中选择Time History,可以弹出时程分析工况定义对话框。非线性分析工况定义对话框与线性时程分析对话框是相同的,见图20-1。

非线性力学和混沌简介

非线性力学和混沌简介 非线性科学是一门研究非线性现象共性的基础学科。它是自本世纪六十年代以来,在各门以非线性为特征的分支学科的基础上逐步发展起来的综合性学科,被誉为本世纪自然科学的“第三次革命”。非线性科学几乎涉及了自然科学和社会科学的各个领域,并正在改变人们对现实世界的传统看法。科学界认为:非线性科学的研究不仅具有重大的科学意义,而且对国计民生的决策和人类生存环境的利用也具有实际意义。由非线性科学所引起的对确定论和随机论、有序与无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻地影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 一线性与非线性的意义 线性”与“非线性”是两个数学名词。所谓“线性”是指两个量之间所存在的正比关系。若在直角坐标系上画出来,则是一条直线。由线性函数关系描述的系统叫线性系统。在线性系统中,部分之和等于整体。描述线性系统的方程遵从叠加原理,即方程的不同解加起来仍然是原方程的解。这是线性系统最本质的特征之一。“非线性”是指两个量之间的关系不是“直线”关系,在直角坐标系中呈一条曲。 最简单的非线性函数是一元二次方程即抛物线方程。简单地说,一切不是一次的函数关系,如一切高于一次方的多项式函数关系,都是非

线性的。由非线性函数关系描述的系统称为非线性系统。 线性与非线性的区别 定性地说,线性关系只有一种,而非线性关系则千变万化,不胜枚举。线性是非线性的特例,它是简单的比例关系,各部分的贡献是相互独立的;而非线性是对这种简单关系的偏离,各部分之间彼此影响,发生偶合作用,这是产生非线性问题的复杂性和多样性的根本原因。正因为如此,非线性系统中各种因素的独立性就丧失了:整体不等于部分之和,叠加原理失效,非线性方程的两个解之和不再是原方程的解。因此,对于非线性问题只能具体问题具体分析。 线性与非线性现象的区别一般还有以下特征: (1)在运动形式上,线性现象一般表现为时空中的平滑运动,并可 用性能良好的函数关系表示,而非线性现象则表现为从规则运动向不规则运动的转化和跃变; (2)线性系统对外界影响的响应平缓、光滑,而非线性系统中参数的极微小变动,在一些关节点上,可以引起系统运动形式的定性改变。在自然界和人类社会中大量存在的相互作用都是非线性的,线性作用只不过是非线性作用在一定条件下的近似。 非线性问题研究的历史概况

交通预测模型【对各种交通流预测模型的简要分析】

交通预测模型【对各种交通流预测模型的简要分析】 摘要:随着社会的发展,交通事故、交通堵塞、环境污染和能源消耗等问题日趋严重。多年来,世界各国的城市交通专家提出各种不同的方法,试图缓解交通拥堵问题。交通流预测在智能交通系统中一直是一个热门的研究领域,几十年来,专家和学者们用各种方法建立了许多相对精确的预测模型。本文在提出交通流短期预测模型应具备的特性的基础上,讨论了几类主要模型的结果和精确度。 关键词:交通流预测;模型;展望 20世纪80年代,我国公路建设项目交通量预测研究尚处于探索成长阶段,交通量预测主要采用个别推算法,又可分为直接法和间接法。直接法是直接以路段交通量作为研究对象;间接法则是以运输量作为研究对象,最后转换为路段交通量。 进入90年代后,我国的公路建设项目,特别是高速公路建设项目的交通量分析预测多采用“四阶段”预测,该法以机动车出行起讫点调查为基础,包括交通量的生成、交通分布、交通方式选择和交通量分配四个阶段。

几十年来,世界各国的专家和学者利用各学科领域的方法开发出了各种预测模型用于短时交通流预测,总结起来,大概可以分为六类模型:基于统计方法的模型、动态交通分配模型、交通仿真模型、非参数回归模型、神经网络模型、基于混沌理论的模型、综合模型等。这些模型各有优缺点,下面分别进行分析与评价。 一、基于统计方法的模型 这类模型是用数理统计的方法处理交通历史数据。一般来说统计模型使用历史数据进行预测,它假设未来预测的数据与过去的数据有相同的特性。研究较早的历史平均模型方法简单,但精度较差,虽然可以在一定程度内解决不同时间、不同时段里的交通流变化问题,但静态的预测有其先天性的不足,因为它不能解决非常规和突发的交通状况。线性回归模型方法比较成熟,用于交通流预测,所需的检测设备比较简单,数量较少,而且价格低廉,但缺点也很明显,主要是适用性差、实时性不强,单纯依据预先确定的回归方程,由测得的影响交通流的因素进行预测,只适用于特定路段的特定流量范围,且不能及时修正误差。当实际情况与参数标定时的交通状态相差较远时,

相关文档
最新文档