气举采油法的名词解释

气举采油法的名词解释

气举采油法是一种常用于油田开发的提升技术。通过注入气体(通常是天然气)到井底,形成气体泡沫,在地层中产生压力,推动原油流向井口,从而实现油藏中的原油提升。这种方法不仅可以提高油田开采效果,还能有效降低开采成本,因此在油田行业得到广泛应用。

一、气举采油法的工作原理

气举采油法的工作原理是利用注入的气体产生的泡沫使原油浮起,并形成一定

的压力推动原油流向井口。在注入气体的过程中,气泡与原油颗粒相互作用,形成气油两相流,提高了原油的可流动性和提升效果。

当气体进入井底时,由于温度和压力的变化,气体溶解在原油中,形成气泡。

这些气泡会上升到地层中,进一步推动原油的流动。同时,气泡与原油颗粒摩擦产生的涡流作用也可以将原油从低渗透地层中提取出来。

二、气举采油法的优点和应用

1. 提高采油效率:气举采油法能够有效地提高原油的采收率,尤其对于高粘度

或高凝固点的油田来说效果显著。通过注入气体并形成气泡,原油的流动性得到改善,可以将更多的原油从地层中提取出来。

2. 降低开采成本:相比于传统的水驱或蒸汽驱采油法,气举采油法的投入成本

相对较低。注入气体所需要的设备和维护成本较低,节约了油田开发的经济成本。

3. 适用广泛:气举采油法适用于不同类型的油藏,包括低渗透、高粘度、高凝

固点等。而且,与其他采油方法相比,气举采油法对油藏的压力要求较低,从而可以开发更多的次生油藏。

4. 环保和可持续:相比于传统的提升方法,如水驱或热力驱动采油法,气举采

油法无需使用大量的水或能源资源。这使得气举采油法更加环保和可持续,符合可持续发展的理念。

三、气举采油法的挑战和发展趋势

1. 气体选择和输送:气举采油法中,选择合适的气体以及其输送的方式对于提

升效果至关重要。目前的技术仍然存在着选择气体和管道输送的一些局限性,未来需要不断改进和创新。

2. 气油相互作用的复杂性:气体与原油在地层中相互作用的过程涉及多种物理

和化学现象,如气泡形成、油水界面张力等。深入研究和理解这些相互作用的规律,可以更好地优化气举采油法的效果。

3. 利用二氧化碳进行气举采油:随着低碳经济和环境保护的要求日益提高,利

用二氧化碳进行气举采油成为一个热门领域。二氧化碳不仅可以提高采油效率,还可以实现二氧化碳的地质封存,减少温室气体排放。

综上所述,气举采油法作为一种常用的油田开发技术,通过注入气体形成气泡,提高了原油的可流动性和采收率。它具有提高采油效率、降低开采成本、适用广泛以及环保可持续的优点。未来的发展趋势包括优化气体选择和输送、深入研究气油相互作用的规律以及利用二氧化碳进行气举采油。这将进一步推动气举采油法的创新,提高油田开发的效益,同时也符合可持续发展的要求。

石油课堂采油工程名词解释

石油课堂采油工程名词解释 1.采油指数 采油指数是一个反映油层性质、厚度、流体参数、完井条件及泄油面积等与产量之间的关系的综合指标。其数值等于单位生产压差下油井的油井产油量。 2.折算液面(深度) 把一定套压下测得的液面折算成套管压力为零时的液面。或把套压不为零时的液面(深度)折算成套压为零时的液面(深度)。 3.吸水指数 表示单位注水压差下的日注水量。 4.米吸水指数 地层吸水指数除以油层有效厚度,表示1米厚地层在1MPa注水压差下的日注水量。 5. 酸岩复相反应速度 单位时间内酸浓度的降低值,或单位时间内岩石单位反应面积的溶蚀量来表示。 6.滑脱效应 在气液多相垂直管流中,由于气象密度小于液相密度,产生气相超越液相流动的现象叫滑脱效应。由滑脱效应产生的附加压力损失叫滑脱压力损失。 7.油嘴临界流动 指油气混合物通过油嘴的流动速度达到压力波在该流体介质中的传播速度。 8.滤失速度 地层综合滤失系数与时间t的开方的比值 9.光杆功率 通过光杆来提升液体和克服井下损耗所需要消耗的功率。 10.滤失百分数

压裂液滤失体积除以地面单元体积液在缝中的剩余体积。 11.砾石充填 将割缝衬管或是绕丝筛的管下入井内防砂层段处,用一定质量的流体携带地面选好的具有一定粒度的砾石,充填于管和油层之间,形成一定厚度的砾石层,以防止油层砂粒流入井内防砂方法。 12.酸液有效作用距离 酸液由活性酸变为残酸前所流经的裂缝距离。 13.泵的充满程度 泵工作过程中被液体充满的程度等于进入泵内的液体体积和柱塞让出的体积之比。 14.压裂井增产倍数 压裂后的采油指数与压裂前采油指数的比值。 15.酸岩反应速度 单位时间内酸浓度的降低值,或单位时间内岩石单位反应面积的溶蚀量。 16.动液面、静液面 静液面是关井后环形空间中液面恢复到静止(与地层压力相平衡)时的液面。可以用从井口算起的深度,也可以用从油层中部算起的液面高度来表示其位置。 动液面是油井生产时,油套环形空间的液面。可以用从井口算起的深度,亦可用从油层中部算起的高度来表示其位置。 17.面容比 岩石反应表面积与酸液体积之比。 18.吸水剖面 在一定的注入压力下沿井筒各射开层段的吸水量分布 19.气举井平衡点 气举时,油管内压力与套管内压力相等时的深度。 20. 流动效率 流动效率是指该井的理想生产压差与实际生产压差之比。 21.水力功率

采油设备

采油技术设备 引言 采油是石油工业上游中继钻井之后的工作流程。在油田开发过程中由于油层自身特点不同,所用的采油方法、采油设备也不同。而在采油过程中采油设备起到了致关重要的作用。本文就针对采油设备及相关方面内容进行介绍。 采油法及与之对应的设备 一、自喷采油机设备 自喷采油:油层物性好、压力高的油井,油气可自喷到地表。 二、自喷原理 自喷井的四种流动过程 1、渗流:从油层流到井底,流体在多孔介质中渗虑。如果井底的 压力大于油的饱和压力,为单向渗流;如果井底的压力小于油的饱和压力,为多向(混气)渗流。 2、垂直管流:从井底流到井口,流体在油管中上升,一般在油管 某断裂处压力已低于油的饱和压力,故属于单项流或多项流。 3、嘴流:通过控制自喷井产量的油嘴,一般流速较高。 4、水平管流:沿地面管线流到转油站,一般为多相管流。 四种流动过程是互相联系、制约的,是一个统一的动力学系统。 对于某一油层,在一定的开采阶段,油层压力稳定于某一数值不变,这时油井压力变大,油井的产量就会减少;油井压力变小,油井的产量就会增加。可见,在油层渗流阶段,井底压力是阻力,而对于垂直

管流阶段,井底压力是把油气举出地面的动力。井口油管压力对于垂直管流是阻力,而对嘴流是动力。 垂直管流中能量的来源与消耗 1、单向垂直管流的能量的来源是井底流动压力,能量消耗在克服 井深的液柱压力,及液体从井底流到井口过程中垂直管壁之间 的摩擦力。 2、多向垂直管流的能量的来源:1、进入井底的液气所具有的压力 (流压);2、随同油流进入井底的自由气及举升过程中从油中 分离出来的天然气所表现的气体膨胀能,能量消耗:1、气体作 用于液体上,垂直的推举液体上升,2、气体与液体之间的摩擦 作用,携带液体上升。 三、基本设备 1、井口设备 (1)套管头:在井口装置的下端,作用连接井内各层套管并密封套管间的环形空间。 (2)油管头:装在套管头的上面,包括油管悬挂器和套管四通。油管悬挂器作用是悬挂油管管柱,密封油管与油层套管间的环形空间;套管四通作用是正反循环洗井,观察套管压力以及通过油套环形空间进行各项作业。 (3)采油树:油管头以上的部分,包括总闸门、生产闸门、清蜡闸门、节流装置,作用控制和调节自喷井的生产,引导从井总喷出的油气进入出油管线。

气举采油法的名词解释

气举采油法的名词解释 气举采油法是一种常用于油田开发的提升技术。通过注入气体(通常是天然气)到井底,形成气体泡沫,在地层中产生压力,推动原油流向井口,从而实现油藏中的原油提升。这种方法不仅可以提高油田开采效果,还能有效降低开采成本,因此在油田行业得到广泛应用。 一、气举采油法的工作原理 气举采油法的工作原理是利用注入的气体产生的泡沫使原油浮起,并形成一定 的压力推动原油流向井口。在注入气体的过程中,气泡与原油颗粒相互作用,形成气油两相流,提高了原油的可流动性和提升效果。 当气体进入井底时,由于温度和压力的变化,气体溶解在原油中,形成气泡。 这些气泡会上升到地层中,进一步推动原油的流动。同时,气泡与原油颗粒摩擦产生的涡流作用也可以将原油从低渗透地层中提取出来。 二、气举采油法的优点和应用 1. 提高采油效率:气举采油法能够有效地提高原油的采收率,尤其对于高粘度 或高凝固点的油田来说效果显著。通过注入气体并形成气泡,原油的流动性得到改善,可以将更多的原油从地层中提取出来。 2. 降低开采成本:相比于传统的水驱或蒸汽驱采油法,气举采油法的投入成本 相对较低。注入气体所需要的设备和维护成本较低,节约了油田开发的经济成本。 3. 适用广泛:气举采油法适用于不同类型的油藏,包括低渗透、高粘度、高凝 固点等。而且,与其他采油方法相比,气举采油法对油藏的压力要求较低,从而可以开发更多的次生油藏。

4. 环保和可持续:相比于传统的提升方法,如水驱或热力驱动采油法,气举采 油法无需使用大量的水或能源资源。这使得气举采油法更加环保和可持续,符合可持续发展的理念。 三、气举采油法的挑战和发展趋势 1. 气体选择和输送:气举采油法中,选择合适的气体以及其输送的方式对于提 升效果至关重要。目前的技术仍然存在着选择气体和管道输送的一些局限性,未来需要不断改进和创新。 2. 气油相互作用的复杂性:气体与原油在地层中相互作用的过程涉及多种物理 和化学现象,如气泡形成、油水界面张力等。深入研究和理解这些相互作用的规律,可以更好地优化气举采油法的效果。 3. 利用二氧化碳进行气举采油:随着低碳经济和环境保护的要求日益提高,利 用二氧化碳进行气举采油成为一个热门领域。二氧化碳不仅可以提高采油效率,还可以实现二氧化碳的地质封存,减少温室气体排放。 综上所述,气举采油法作为一种常用的油田开发技术,通过注入气体形成气泡,提高了原油的可流动性和采收率。它具有提高采油效率、降低开采成本、适用广泛以及环保可持续的优点。未来的发展趋势包括优化气体选择和输送、深入研究气油相互作用的规律以及利用二氧化碳进行气举采油。这将进一步推动气举采油法的创新,提高油田开发的效益,同时也符合可持续发展的要求。

采油工程综合复习资料

采油工程综合复习资料 一.名词解释 1.油井流入动态:指油井产量与井底流压的关系。表示油藏向该井 供油的能力。 2.吸水指数:单位压差下的日注水量。 3.蜡的初始结晶温度:由于温度降低油气井开始结蜡时所对应的井 底温度。 4.气举采油法:利用从地面注入高压气体将井内原油举升到地面的一 种人工采油方法。 5.等值扭矩:就是用一个不变化的固定扭矩代替变化的实际扭矩,两 种扭矩下电动机的发热条件相同,此固定扭矩即为实际变化的扭矩的等值扭矩。 6.气液滑脱现象:在气液两相流动中,由于气液密度差,产生气体 流速超过液体流速的现象。 7.扭矩因素:对扭矩的各种影响因素。 8.配注误差:配注误差等于实际注水量与设计配注量之差同设计配 注量比值的百分数. 9.填砂裂缝的导流能力:流体通过裂缝的流动能力。 10.气举启动压力:在气举采油过程中,压缩机所对应的最大功率。 11.采油指数:单位生产压差下的产量。 12.注水指示曲线:表示注入压力与注入量的关系曲线。 13.冲程损失:抽油杆因弹性变性而引起的变化量。

14.余隙比:泵内为充满的体积与整个泵体积之比。 15.流动效率:油井的理想生产压差与实际生产压差之比。 16.酸的有效作用距离:酸液由活性酸变为残酸之前所流经裂缝的距 离。 17.面容比:表面积与体积的比值。 二:填空题 1.自喷井井筒气液两相管流过程中可能出现的流型有(纯油流),(泡流),(段塞流),(环流),(雾流)。 2.气举采油法根据其供液方式的不同分为(自喷)和(人工举升)两种类型。3.表皮系数S与流动效率FE的关系判断:S>0时,FE(<)1;S=0时,FE(=)1;S<0时,FE(>)0 4.抽油机型号CYJ3-1.2-7HB中,“3”代表(悬点载荷30KN),“1.2”代表(最大冲程长度1.2米),“7”代表(减速箱额定扭矩7KN.M)和“B”代表(曲柄平衡)。 5.常规有杆抽油泵的组成包括(工作筒)(活塞)(阀)三部分。 6.我国研究地层分层吸水能力的方法主要有两大类,一类是(早期注水),另一类是(注水井调剖)。 7.影响酸岩福相反应速度的因素有(面容比)(流速)(酸液类型)(盐酸质量分数)(温度)。 8.为了获得更好的压裂效果对支撑剂的性能要求包括(粒度均匀密度小)(强度大)(破碎率小)(圆度和球度高)(杂质含量少)。 9.测量动液面深度的仪器为(回声仪),测量抽油机井地面示功图的仪器为(示功仪) 10.目前常用的防砂方法主要有(冲砂)和(捞砂)两大类。 11.根据压裂过程中作用不同,压裂液可分为(前置液)(携砂液)(顶替液)。12.抽油机悬点所承受的动载荷包括(惯性载荷)(振动载荷)和摩擦载荷。13.压裂液滤失于地层主要受三种机理的控制:(压裂液粘度)(油藏中岩石和流体的压缩性)(压裂液的造壁性)。 14.自喷井生产过程中,原油由地层流至地面分离器一般要经过四个基本流动过程是(油层中的渗流)(井筒中的流动)(嘴流)(地面上的管流)。15.目前常用的采油方式包括(自喷采油)(气举采油)(电潜泵采油)(水利活塞泵采油)(水利射流泵采油)。 16.常规注入水水质处理措施包括(沉淀)(过滤)(杀菌)(脱氧)(暴晒)。17.根据化学剂对油层和水层的堵塞作用而实施的化学堵水课分为(非选择性堵水)和(选择性堵水)。 18.压裂形成的裂缝有两类:(水平裂缝)和(垂直裂缝)。 19.影响酸岩复相反应速度的因素包括:(面容比)(流速)(酸液类型)(浓度)。

采油工艺原理(完)

采油工艺原理 名词解释: 1采油方法:指将流到井底的原油采到地面上所采用的方法。 2自喷采油:利用油层本身的能量使油喷到地面的方法称自喷采油法。 3气举采油:为了使停喷井继续出油,人为地把气体压入井底,使原油喷出地面,这种采油方法为气举采油。 4机械采油:需要进行人工补充能量才能将原油采出地面的方法称机械采油法。5油井流入动态:是指油井产量与井底流压的关系,它反映了油藏向该井供油的能力。 6 IPR曲线:油井流入动态的简称,它是 表示产量与流压关系的曲线,也称指示曲线。 7采油指数:它是一个反映油层性质、流体参数、完井条件及泄油面积等与产量之间的关系的综合指标。其数值等于单位压差下的油井产量。 8流动效率:理想情况的生产压降与实际情况的生产压降之比,反映了实际油井的完善性。 9产液指数:它是一个反映油层性质、流体参数、完井条件及泄油面积等与产液量之间的关系。 10产水指数:它是一个反映油层性质、流体参数、完井条件及泄油面积等与产水量之间的关系的综合指标,即反映油层向该井的供液能力。其数值等于单位生产压差下的产水量。 11井底流压:单相垂直管流的能量来自液体的压力 12流动型态:流动过程中,气液两相在管内的分布状态。 13滑脱现象:在气液两相垂直管流中,由于气、液的密度差导致气体超越液体流动的现象。 14滑脱损失由于滑脱现象而产生的附加压力损失。 15气相存容比:计算管段中气相体积与管段容积之比。 16液相存容比:计算管段中液相体积与管段容积之比。 17临界流动:流体通过油嘴时流速达到压力波在该介质中的传授速度时的流动状态。 18临界压力比:流体通过油嘴时,随着嘴后与嘴前压力比的减小流量不断增大,当流量达到最大值时所对应的压力。19节点系统分析:通过节点把从油藏到地面分离器所构成的整个油井生产系统按其计算压力损失的公式或相关式分成段,从而实现对整个生产系统进行分析的方法。 20节点:由不同压力损失公式或相关式所定义的部分设置。 21求解点:使问题获得解决的节点。 22功能节点:压力连续(存在压差)的节点。 23生产压差:油层静压与井底流压之差,称之为生产压差。 24采油指数:油井年采油量与地质储量的比值,是衡量油井开采速度的重要指标。 25分层开采:在多油层的条件下,为了在开发好高渗层的同时,充分发挥中低渗层的生产能力,调整层间矛盾,通过对各小层分别进行控制生产。 26单管分采:在井内只下一套油管柱,用单管多级封隔器将各个油层分隔开采,在油管与各油层对应的部位装一配产器,并在配产器内装一油嘴对各层进行控制采油。 27多管分采:在井内下入多套管柱,用封隔器将各个油层分隔开来,通过每一套管柱和井口嘴单独实现一个油层(或一个层段)的控制采油。 28气举启动压力:气举时,当环空中液面下降至管鞋处时,地面压风机所达最大压力称之为气举启动压力。 29气举工作压力:气举时,当启动地面压风机的压力趋于稳定时,该压力称做气举工作压力。 30平衡点:气举井正常生产时油套环形空间的液面位置。在此位置油套管内压力相等。 31冲次抽油机每分钟完成上下冲程的次数。 32初变形期:抽油机从上冲程和开始到液柱载荷加载完毕这一过程。 33泵效:抽油井的实际产量与泵的理论产量之比。 34充满系数:抽油泵上冲程进泵液体体积与活塞让出的体积之比。 35余隙比:抽油泵的余隙容积与上冲程活塞让出容积比。 36气锁:在抽汲时,由于气体在泵内压缩和膨胀,吸入和排出凡尔无法打开,出现抽不出油的 37防冲距:在下死点时,固定凡尔到游动凡尔之间的距离。为防止游动凡尔与固定凡尔碰撞,人为地将抽油杆上提一段距离。 38动液面:抽油井正常生产时环空中的液面。 39静液面:关井后,环空中的液面开始恢复,当液面恢复到静止不动时,称之为静液面。 40沉没度:泵吸入口至动液面的深度。41下泵深度:泵吸入口距井口(补心处)的距离。 42折算液面:把在一定套间压下测得的液面折算成套压为零时的液面。 43等强度原则:指多级杆组合时所遵循的一个原则,即各级杆上部断面处的折算应力相等。 44折算应力:最大应力与应力幅值乘积的平方根,表示为√σmaxσs。 45抽油杆使用系数:在应用修正古德曼图选择抽油杆时,所考虑到流体腐蚀性等因素而附加的系数。 46应力范围比:抽油杆应力范围与许用应力范围的百分比。 47曲柄平衡:平衡重加在曲柄上的一种平衡方式。 48游梁平衡:在游梁尾部加平衡重的一种平衡方式。 49复合平衡:在游梁尾部和曲柄上都加有平衡的一种混合平衡方式。 50气动平衡:通过游梁带动的活塞压缩气包中的气体,把下冲程中做的功储存为气体的压缩能的一种平衡方式。 51机械平衡:在下部程中,以增加平衡重块的位能来储存能量,在上冲程中平衡重降低位能,来帮助电动机做功的平衡方式。 52油井负荷扭矩:悬点载荷在曲柄轴上所产生的扭矩。 53曲柄平衡扭矩:曲柄平衡块在曲柄轴 上造成的扭矩。 54扭矩因数油井负荷扭矩与悬点载荷之 比。 55净扭矩:负荷扭矩与曲柄平衡扭矩之 差。 56有效平衡值:抽油机结构不平衡及平 衡重在悬点产生的平衡力,它表示了被 平衡掉的悬点载荷值。 57等值扭矩:用一个不变化的固定扭矩 代替变化的实际扭矩,使电动机的发热 条件相同,则此固定扭矩即为实际变化 的扭矩的等值扭矩。其本质是实际扭矩 的均方根值。 58水力功率:是指在一定时间内将一定 量的液体提升一定距离所需要的功率。 59光杆功率:通过光杆,来提升液体和 克服井下损耗所需要的功率。 60小层注水指示曲线:在分层注水情况 下,小层注入压力与注水量之间的关系 曲线。 61注水井指示曲线:表示在稳定流动条 件下,注入压力与注水量之间的关系曲 线。 62吸水指数:是在单位压差下的注水 量。 63比吸水指数:地层吸水指数除以地层 有效厚度,又称每米吸水指数。 64视吸水指数单位井口压力下的日注水 量。 65相对吸水量:指在同一注入压力下某 小层吸水量占全井吸水量的百分数。 66吸水剖面:在一定注入压力下,沿井 筒各射开层段的吸水量。 67正注:从油管注入的一种注水方式。 68合注:从油管和油、套环形空间同时注 水的一种注水方式。 69配注误差:实际注水量对于设计注水 量的相对百分误差。 70层段合格率:合格层段数占注水层段 数的百分数。 71欠注:当实际注入量小于设计注入量即 配注误差为“正”时,称之为欠注。 72超注:当实际注入量大于设计注入量即 配注误差为“负”时,称之为超注。 73破裂压力:进行水力压裂时,当地层 开始破裂时的井底压力。 74力延伸压:进行水力压裂时,地层破 裂后,维持裂缝向前延伸时的井底压力。 75有效垂向应力:垂向应力与地层(流 体)压力之差。 76破裂压力梯度地层破裂压力除以地层 深度。 77前置液:水力压裂初期用于造缝和降 温的压裂液。 78携砂液:水力压裂形成裂缝后,用于 将砂携入裂缝的压裂液。 79顶替液:水力压裂施工过程中或结束 时,将井筒中的携砂液顶替到预定位置 的压裂液,可分中间顶替液和后期顶替 液。 80压裂液造壁性:添加有防滤失剂的压 裂液在裂缝壁面上形成滤饼,有效地降 低滤失速度的性质。 81滤失系数:表征压裂液滤失程度的 系数。 82初滤失量:指具有造壁性的压裂液, 在形成滤饼的滤失量称作初滤失量。 83静滤失:压裂液在静止条件下的滤失。 84动滤失:压裂液在流动条件下的滤失。 85综合滤失系数:表征压裂液在各种滤 失机理综合控制下液滤失程度的系数。 86裂缝导流能力:填砂裂缝的渗透率与 裂缝宽度的乘积。 87闭合压力:水力压裂停泵后作用在裂 缝壁面上使裂缝处于似闭未闭时的压 力。 88干扰沉降:指颗粒群在沉降过程中, 相互存在着干扰,在这种条件下的沉降 称之为干扰沉降。 89增产倍数:措施后与措施前的才有指 数之比,反映了增产程度。 90滤失百分数:单位体积混砂压裂液所 滤失的体积与滤失后剩余体积的百分 比。 91平衡流速:在垂直缝沉降条件下,颗 粒的沉降与悬浮处于平衡时,在砂堤上 面的混砂液流速称为平衡流速,她是液 体携带颗粒的最小流速。 92酸-岩化学反应速度:单位时间内 酸浓度的降低值,或单位时间内岩石单 位反应面积的溶蚀量。 93扩散边界层:酸岩复相反应时,在岩 面附近由生成物堆积形成的微薄液层。 94H+的传质速度:氢离子透过边界 达到岩面的速度,称为氢离子的传质速 度。 95面容比:岩石反应表面积与酸液体积 之比。 96残酸:随着酸岩反应的进行,酸液浓度 逐渐降低,把这种基本上失去溶蚀能力 的酸液称为残酸。 97酸液的有效作用距离:酸液由活性 酸变为残酸之前所流经裂缝的距离。 98酸压有效裂缝长度:在依靠水力压裂 的作用所形成的动态裂缝中,只有在靠 近井壁的那一段裂缝长度内,由于裂缝 壁面的非均质性被溶蚀成为凹凸不平的 沟槽,当施工结束后,裂缝仍具有相当 导流能力。把此段裂缝的长度,称为裂 缝的有效长度。 99前置液酸压:在压裂酸化中,常用高 粘液体当作前置液,先把地层压开裂缝, 然后再注入酸液。这种方法称为前置液 酸压。 100多组分酸:一种或几种有机酸与盐酸 的混合物。 101缓蚀剂:指那些加到酸液中能大大减 少金属腐蚀的化学物质。 102稳定剂:为了减少氢氧化铁沉淀,避 免发生堵塞地层的现象,而加的某些化 学物质,叫做稳定剂。 103一种表面活性剂:在酸液加入活性 剂后,由于它们被岩石表面吸附,使岩 石具有油湿性。岩石表面被油膜覆盖后, 阻止了H+向岩面传递,降低酸岩反应速 度。用于此目的的活性剂称为缓速剂。 104悬浮剂:在酸液中加入活性剂后,由 于活性剂可以被杂质颗粒表面所吸 附,从而使杂质保持分散状态而不易 聚集。用于此目的的活性剂被称为悬浮 剂。 105土酸:由10%-15%浓度的盐酸和 3%-8%浓度的氢氟酸与添加剂所组成 的混合酸液,称之为土酸。 106逆土酸:土酸中,当盐酸浓度小于氢 氟酸浓度时,称之为逆土酸。 107砾石充填:防砂方法之一。先将割缝 补管或绕丝筛管下入井内面对防砂层 (井底),然后将经过选择粒径的砾石用 高质量的液体送至补管或筛管外面,使 之形成一定厚度的砾石层。当根据地层 砂的粒度选择砾石粒径得当的话,在砾 石层外形成一个由粗粒到细粒的滤砂 器,这种防砂方法称之为砾石充填。 108G-S比:砾石与地层砂粒径之比,简 称G-S比。 109人工井壁:从地面将支护剂和末固化 的胶结剂按一定比例拌和均匀,用液体 携至井下挤入油层出砂部位,然后使胶 结剂固化将支护剂胶固,于是在套管外 形成具有一定强度和渗透性的“人工井 壁”,可起到阻止油层砂子流入井内而不 影响油井生产的一种防砂方法。 110人工胶结:人工胶结砂层的方法是从 地面向油层挤入液体胶结剂及增孔剂, 然后使胶结剂固化,将井壁附近的疏松 砂层胶固,以提高砂层的胶结强度,同 时又不会使渗透率有较大的降低。 111冲砂:向井内打入液体,利用高速液 流将砂堵冲散,并利用循环上返的液流 将冲散的砂子带到地面,这类清砂方法 称之为冲砂。 112正冲:冲砂液沿冲砂管(即油管)向 下流动,在流出管口时以较高的流速冲 散砂堵,被冲散的砂和冲砂液一起沿冲 砂管与套管的环形空间返至地面,这种 冲帮方法叫正冲砂。 113反冲:冲砂液由套管和冲砂管的环形 空间进入,被冲起的砂随同砂液从冲砂 管返到地面,这种冲砂方法叫反冲砂。 114正反联合冲砂:用正冲的方式将砂 堵冲开,并使砂子处于悬浮状态。然后, 迅速改为反冲洗,将冲散的砂子从冲管 内返出地面,这样的冲砂方法称为正反 冲砂。为了充分发挥正反冲砂的优点, 常用联合冲砂管柱进行冲砂,即实行正 反联合冲砂。 115油井结蜡现象:溶有一定量石蜡的 原油,在开采过程中,随着温度、压力 的降低和气体的析出,溶解的石蜡便以 结晶析出,随着温度的进一步降低,石 蜡不断孤出,其结晶便长大聚集和沉积 在管壁上,这种现象叫结蜡现象。 116初始结晶温度:当温度降到某一数 值时,原油中溶解的蜡便开始析出,把 这个蜡开始析出的温度称为初始结晶温 度。 117选择性堵水:所采用的堵剂只与水起 作用,而不与油起作用,从而只堵水而 不堵油的一种化学堵水方法。 118非选择性堵水:所采用的堵剂对水 层和油层均可造成堵塞,而无选择性的 一种化学堵水方法。 简述题: 1采油指数的物理意义是什么?影响 采油指数的因素有哪些? (1)对于线性渗流,采油指数定义为单位 生产压差的日采油量;对于非线性渗流, 采油指数定义为油产量随流压下降的变化 率;(2)反映了油层性质、流体参数、泄 油面积及完井条件与产量之间的综合关 系;即反映了油层生产能力的大小。 2方程的基本假设有哪些? (1)圆形封闭油藏,油井位于中心;(2) 均质地层,含水饱和度恒定;(3)忽略重 力影响:忽略岩石和水的压缩性;(5)油、 气组成及平衡不变;(6)油气两相的、压 力相同;(7)拟稳态下流动,在给定的某 一瞬间,各点和脱气原油流量相同。 3试分析当水层压力高于油层压力 时,油井含水率随井底流压的变化? (1)当流压低于水层压力而大于油层压力 时,含水率为100%;(2)当流压低于油 层压力时,含水率低于100%;(3)当 流压低于油层压力时,随着流压的降低, 含水率下降。 4自喷井可能出现的流动形态自下而 上依次是什么?各流动形态有何特 点? (1)纯油流:单相液流;(2)泡流:气相 分散,液相连续,滑脱严重;(3)段塞流: 气相分散,液相连续,气举油效率高;(4) 环流:气相与液相均连续;(5)雾流:气 相连续,液相分散,摩阻消耗为主。 5按深度增量迭代求压力分布的步骤 有哪些? (1)已知任一点(井口或井底)压力P0 和温度T0作为起点,任选一个合适的压力 降ΔP(一般选0.5~1.0MPa)作为计算的 压力间隔。由此可计算出计算管段的平均 压力P;(2)估计一个与ΔP相对应的深 度增量Δh,根据起点温度和地温梯度计 算出计算管段的平均温度T;(3)计算在P、 T下,所需的全部流体性质参数;(4)计 算该管段的压力梯度dP/dh;(5)计算对 应于ΔP的该段管长(深度差)(Δh) i =ΔP/(dp/dh);(6)判别│(Δh)I -Δh│<ε,若满足条件,进行下一步计算; 若不满足条件,则以(Δh)i作为Δh的 估计值,重复(2)-(5);(7)计算该段 下端对应的深度L i和压力P i L i =∑(Δh) I ; P i =P0 +iΔP (i=1,2,3,….n);(8)以 L i处的压力为起点,重复(2)-(7)步, 计算下一段的深度L i+1和压力P i+1,直到各 段的累加深度等于或大于管长时为止。 6为子保持自喷井稳定生产,为什么 要使油嘴后的回压小于油嘴前油压 的一半? (1)研究表明,当压力比P2 1.5*1.0-4μm2 --m;(3)在注水开发的 油田里,油水井对应压裂并以注水为主 效果较好;(4)选井要注意井况,包括套 管强度,距边水、气顶的距离,有无较好 的遮挡层等。 51闭合压力高用砂子作支撑剂时,会 带来什么不利影响? (1)当砂子比缝壁面地层岩石还要硬,砂 子有可能嵌入到地层里;(2)当壁砂子 硬度大,闭合压力又大于砂子的强度,则 砂子被压碎;(3)这两种情况都会导致裂 缝闭合或渗透率很低,砂子起不到支撑裂 缝的作用。 52根据电模拟结果,压裂设计应遵 循的基本指导思想是什么? (1)对于低渗地层,闭合压力并不是很大 的情况下,容易得到较高的导流能力比值, 要提高增产倍数,应以加大裂缝长度为主。 (2)在较高渗透率的地层,而闭合压力以 较高,不易获得较高的导流能力,这时, 要得到好的压裂效果,主要是靠提高裂缝 的导流能力。(3)当裂缝长度受井网等因

相关文档
最新文档