电力生产的数学建模问题

电力生产的数学建模问题
电力生产的数学建模问题

电力生产问题的数学模型

摘要

本文针对发电机厂每天在不同时间段用电需求量不同的情况下,根据给定不同型号不同数量的发电机,合理分配各台发电机在不同时间段的开启数量和运行功率,使得一天内总发电成本最小的问题,采用单目标非线性规划方法,建立所求问题的最优化模型,借助Lingo软件对模型进行求解,得到每日最小发电总成本。

对于问题—:由已知条件可知发电总成本由固定成本、边际成本、启动成本组成,据此,我们确定了三个指标:即固定成本总和、边际成本总和、启动成本总和。总成本即为这三项成本总和。每天分为七个时段,发电机共有四种型号,方案结果应该包括每个时段每种型号平均功率及该时段该型号发电机的数量,通过分析未知数与所给数据之间的关系来列出相应的约束条件,写出成本函数表达式,然后通过LINGO求出个时段各种型号发电机的实际发出的功率及所需要运行的台数,从而求出最小总成本1427810元。

对于问题二:题目要求在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。其他条件与第一问相同,因此,只需增加一个约束条件,即发电机机组所能发出的最大功率之和乘以80%后大于用电需求,所以可以按照问题—建立的模型,将其约束条件中每个时间段用电量的需求量提高25%,最终得出此情况下每天的最小成本为:1829955元。

关键词:单机输出功率使用数量总成本

1.问题重述

1.1 问题背景

为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。

表1:每日用电需求(兆瓦)

时段

0-6 6-9 9-12 12-14 14-18 18-22 22-24 (0-24)

需求11000 33000 25000 36000 25000 30000 18000

为了便于观察每天的用量需求,将数据重新整理,转化为图1所示的图表。

图1 各时间段的用电需求量

从图表中可以清晰的观察到每天用电需求变化,在第一阶段用电量需求处于低谷时段,第四阶段处于峰值时段,且用电量需求变化最大。

每种发电机都有一个最大发电能力,当接入电网时,其输出功率不应低于某一最小输出功率。所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。

表2:发电机情况

项目型号可用

数量

最小输出

功率

(MW)

最大输出

功率

(MW)

固定成本

(元/小

时)

每兆瓦边际

成本(元/

小时)

启动

成本

型号1 10 800 1800 2200 2.7 5000 型号2 5 1000 1500 1800 2.2 1600 型号3 8 1200 2000 3800 1.8 2400 型号4 4 1800 3500 4800 3.8 1200 只有在每个时段开始时才允许启动或关闭发电机。与启动发电机不同,关闭发电机不需要付出任何代价。

1.2需要解决的问题

问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少?

问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少?

2.模型假设

假设1:发电机工作期间不发生任何故障。

假设2:关闭和启动发电机时均是瞬时完成,不记相应使用的时间。

假设3:发电机自身功率没有损耗。

假设4:调整发电机功率没有成本。

假设5:发电机生产的电量在传输过程中没有损耗。

3.符号说明

符号符号说明

时段,取1、2、3、4、5、6、7

发电机型号,取1、2、3、4

第i时段型号j发电机使用数量

第i时段单个型号j的功率

发电机在第i时段的工作时间

型号j发电机的数量上限

第i时段所需要功率

第i时段所输出的最大功率,即1,25倍需求功率

第i时段所输出的实际功率

型号j发电机的最小输出功率

型号j发电机的最大输出功率

型号j发电机的固定成本

型号j发电机工作时的每兆瓦边际成本

每台型号j的启动成本

4.问题分析

此题研究的是电力生产中在满足每日电力需求的条件下,使每日的总成本达到最小的数学建模问题。

针对问题一:从以下三方面来分析

(1)对已知条件的分析:从已知的条件来看,本题将一天分为了七个时间段,在每一个时间段都有对应的电力需求量。为了满足每日的电力需求,有四种型号的发电机可供使用,每种型号的发电机都已知其可用数量、最小输出功率、最大输出功率、固定成本、每兆瓦边际成本、启用成本。要使总成本达到最小,则问题的目标函数就是总成本函数。

(2)对目标函数的分析:总成本由三个指标组成,即每天四种型号发电机的固定总成本、每天四种型号发电机边际总成本、每天四种型号发电机启动总成本。分别对每个指标进行分析。每天四种型号发电机固定总成本为第i个时间段的时间、型号j发电机在第i个时间段的数量、型号j发电机每小时的固定成本这三者之积的总和。每天四种型号发电机边际总成本为第i个时间段的时间、型号j 发电机在第i个时间段超出此时间段最小总功率的功率、型号j发电机每兆瓦边际成本这三者之积的总和。每天四种型号发电机启动总成本为型号j发电机启动数量和型号j发电机的启动成本之积的总和。

(3)对约束条件的分析:对机型j发电机在第i个时间段总功率的约束有两个。一是若机型j发电机在第i个时间段不使用,则机型j发电机在第i个时间段的总功率为零;若机型j发电机在第i个时间段使用,则机型j发电机在第i个时间段的总功率要满足大于等于单个机型j发电机的最小输出功率且小于等于全部机型j发电机最大输出功率之和;二是四种机型的发电机在第i个时间段生产的总功率要满足大于等于第i个时间段的用电量需求。

针对问题二:题目要求在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升,即发电机组在第i个时间段所能发出的最大总功率的要大于等于该时段的用电需求的1.25倍。

5.模型建立与求解

5.1问题一模型的建立与求解

该模型是为了解决电力生产中,在满足每日电力需求的条件下,用四类不同型号的发电机在一天的七个时段进行电力生产,使总成本达到最小的问题。总成本由以下三项指标组成:

每天四种型号发电机固定总成本:

每天四种型号发电机边际总成本:

每天四种型号发电机启用总成本:由于第1时段与后6时段开机情况不同,故要分开计算。

为了使总成本达到最小,我们建立了如下的目标函数:

(1)第i 时段j 型发电机投入的数量必须满足数量范围

其中i =1,2,···,7 ,j =1,2,3,4

(2)第i 时段j 型发电机单机功率必须在所产生功率范围内

其中i =1,2,···,7 ,j =1,2,3,4

(3)第i 时段j 型发电机个数必须是整数

其中i =1,2,···,7 ,j =1,2,3,4

(4)发电机产生的功率必须等于实际总功率

其中i =1,2,···,7

,j =1,2,3,4 其中i =1,2,···,7

,j =1,2,3,4 5.1.4模型一的求解

我们用Lingo 软件求解这个模型,所得到的单机输出功率介于最小功率和最大功率之间,寻优后得到满足约束条件的最低总成本为1427810元。根据Lingo 软件计算得到的第i 时段型号为j 的几个发电机发出的总功率和第i 时段型号为j 的发电机的数量。各个时段各种型号几个发电机发出的总功率及对应的发电机数量如下表一所示:

表3 问题一最优化方案 型号1 型号2 型号3 型号4 单台输

出功率 数量 单台输出功率

数量 单台输出功率 数量 单台输出功率 数量 0-6 0 0 1440 5 2000 1 1800 1

6-9 1800 1 1500 5 2000 8 1925 4 9-12 1500 1 1500 5 2000 8 0 0 12-14 1800 1 1500 5 2000 8 2675 4

型 号 数

14-18 800 1 1280 5 2000 8 1800 1 18-22 1100 1 1500 5 2000 8 1800 3 22-24 900 1 1500 5 2000 3 1800 2

5.1问题二模型的建立与求解

根据问题一的模型,我们已经求出了在满足每日电力需求的条件下,用四类不同型号的发电机在一天的七个时段进行电力生产,使总成本达到最小,而问题二要求在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。故在第一问的目标函数和约束条件保持不变的情况下,应再增加一个约束条件,即第i 个时段发电机组所能输出地最大功率应大于第i 个时段的用电需求量的1.25倍。列出问题二的最优化模型如下:

其中i =1,2,···,7

,j =1,2,3,4 模型的求解

将目标函数和约束条件用矩阵的形式表示出来,然后用LINGO 软件求解,求解后得到满足约束条件的最小总成本为每天1829955元。各个时段各种型号的发电机发出的平均功率和对应的数量见下表:

表4各时段各型号发电机输出功率及数量 型号1 型号2 型号3 型号4 单台输

出功率

数量 单台输出功率 数量 单台输出功率 数量 单台输出功率 数量 0-6

1125 2 1500 5 2000 2 3500 0 6-9 1758 6 1800 5 2000 8 1800 4 9-12 800 6 1370 5 2000 8 1800 2

型 号 数

12-14 1800 6 1500 5 2000 8 2675 4 14-18 830 5 1800 5 2000 8 1800 2 18-22 1720 5 1500 5 2000 8 1800 3 22-24 1000 1 1500 5 2000 7 1800 0

6. 结果分析

将表一、表二中的数据导入EXCLE中,利用EXCLE绘制两个问题的结果中发

电机在每个时段的台数和功率的变化图。图1、图2为在任何时刻,正在工作的

发电机组正常运行情况下,某型发电机所需台数、发电总功率与时段的函数图。图3、图4为在任何时刻,正在工作的发电机组必须留出20%的发电能力余量时

的情况下,某型发电机所需台数、发电总功率与时段的函数图。

图1 各时段各型号发电机台数安排

图2

图3

图4

结论一:在模型一中,型号2和型号3的用量和工作时间段比较多,可以增加型

号2和型号3的数量。相较模型一,模型二中的小型号发电机的数量有所下降,而中型发电机的数量有所上升。无论是在模型一,还是在模型二中,型号2的数

量一直维持在比较稳定的状态。为了保留一定的发电能力,同时又使电机的启动

成本减小。因此可以适当增加型号2的数量。

结论二:在各个时段,型号3的输出功率一直处于最大输出功率状态。在不同时

段的用电需求越大,所需要的大功率型号的发电机的数量就越多,因为这样可以

降低总成本。

7. 模型的评价、改进及推广

7.1模型评价

优点: (1)根据题目的要求我们确立了三个指标,即固定总成本、边际总成本、启用总成本,以上三项总成本之和即为总成本,通过对

三项总成本的逐项分析,建立了最优的目标函数。

(2)简练直观,能以较少的语句较直观的方式对较大规模的数据进行描述,运行速度快,计算能力强.对于约束条件的建立,我们综合考虑了各种情况,达到了具体化.

(3)此模型中,整数约束和整数变量的个数少,非光滑约束的个数少.变量上下界的设定清晰,有利于程序的运行和计算。

(4)根据所建立的模型不仅能求解出最小总成本,还能求解出每一种机型在每日发电过程中所花费的成本,可以通过结果比较来对各种机型进行相应的调整和改进,对常用机型进行保养和准备更多的备用设备,有利于长远的规划.

缺点:实际生活中,用电需求是呈现正态分布的,并且在该问题中没有考虑爬坡速率约束,发电机启停约束,传输容量限制,不同燃料成本等诸多其他因素,故得到的结果与实际情况存在一定的误差.

7.2模型改进

(1)考虑到设备长时间运行发热等会影响设备正常稳定工作,数据中还应列出发电机功率随时间变化曲线。(2)本模型只给出了某一天供电需求,建议给出每日需求随季节和天气的变化规律,并求出更具普遍性结果。

7.3模型推广

(1)考虑到设备长时间运行发热等会影响设备正常稳定工作,数据中还应列出发电机功率随时间变化曲线和一直处于高功率运行的发电机的维修问题。

(2)本模型只给出了某一天供电需求,建议给出每日需求随季节和天气的变化规律,并求出更具普遍性结果。

(3)本模型只是单纯的解决了这一天发电的最小成本,没有考虑到第二天的发电机数量是在前一天最后一个时间段的基础上增加或减少某种机型的数量,往后以此循环,启动成本也将跟着以此循环,在此后成为稳定状态。

8.参考文献

[1] 赵静,但琦,数学建模与数学实验,高等教育出版社,2008.

[2] 朱得通.最优化模型与实验[M].上海:同济大学出版社,2003

[3] 谢金星.优化建模与LINDO/LINGO软件.北京:清华大学出版社,2003

[4] 刘来福,杨淳,黄海洋译.数学建模方法与分析.北京:械工业出版社,2007,43—89.

[5] 吴礼斌,李柏年.数学实验与建模.北京:国防工业出版社,2007.

附录:模型一所用程序

model:

sets:

time/1..7/:need_p,t;

type/1..4/:max_num,max_p,min_p,cost_f,cost_m,cost_s;

links(time,type):p_type,type_num;

endsets

data:

need_p=11000 33000 25000 36000 25000 30000 18000;

t=6 3 3 2 4 4 2; max_num=10 5 8 4;

min_p=800 1000 1200 1800;

max_p=1800 1500 2000 3500;

cost_f=2200 1800 3800 4800;

cost_m=2.7 2.2 1.8 3.8;

cost_s=5000 1600 2400 1200;

enddata

@for(links(i,j):type_num(i,j)>=0);

@for(links(i,j):type_num(i,j)<=max_num(j));

@for(links(i,j):p_type(i,j)>=min_p(j));

@for(links(i,j):p_type(i,j)<=max_p(j));

@for(links(i,j):@gin(type_num(i,j)));

@for(time(i):need_p(i)=@sum(type(j):p_type(i,j)*type_num(i,j)));

min=@sum(time(i):@sum(type(j):((cost_f(j)+(p_type(i,j)-min_p(j))*cost_m(j))*type_num(i,j)*t(i)))) +@sum(time(i):@if(i#ge#2,@sum(type(j):(cost_s(j)*@if(type_num(i,j)#ge#type_num(i-1,j),type_num (i,j)-type_num(i-1,j),0))),@sum(type(j):type_num(1,j)*cost_s(j))));

模型一结果

Local optimal solution found.

Objective value: 1427810.

Objective bound: 1427810.

Infeasibilities: 0.000000

Extended solver steps: 1

Total solver iterations: 70650

Variable Value

NEED_P( 1) 11000.00

NEED_P( 2) 33000.00

NEED_P( 3) 25000.00

NEED_P( 4) 36000.00

NEED_P( 5) 25000.00

NEED_P( 6) 30000.00

NEED_P( 7) 18000.00

T( 1) 6.000000

T( 2) 3.000000

T( 3) 3.000000

T( 4) 2.000000

T( 5) 4.000000

T( 6) 4.000000

T( 7) 2.000000

MAX_NUM( 1) 10.00000

MAX_NUM( 2) 5.000000

MAX_NUM( 3) 8.000000

MAX_NUM( 4) 4.000000

MAX_P( 1) 1800.000

MAX_P( 2) 1500.000

MAX_P( 3) 2000.000

MAX_P( 4) 3500.000

MIN_P( 1) 800.0000

MIN_P( 2) 1000.000

MIN_P( 3) 1200.000

MIN_P( 4) 1800.000

COST_F( 1) 2200.000

COST_F( 3) 3800.000

COST_F( 4) 4800.000

COST_M( 1) 2.700000

COST_M( 2) 2.200000

COST_M( 3) 1.800000

COST_M( 4) 3.800000

COST_S( 1) 5000.000

COST_S( 2) 1600.000

COST_S( 3) 2400.000

COST_S( 4) 1200.000 P_TYPE( 1, 1) 856.5174 P_TYPE( 1, 2) 1440.000 P_TYPE( 1, 3) 2000.000 P_TYPE( 1, 4) 1800.000 P_TYPE( 2, 1) 1800.000 P_TYPE( 2, 2) 1500.000 P_TYPE( 2, 3) 2000.000 P_TYPE( 2, 4) 1925.000 P_TYPE( 3, 1) 1500.000 P_TYPE( 3, 2) 1500.000 P_TYPE( 3, 3) 2000.000 P_TYPE( 3, 4) 1860.062 P_TYPE( 4, 1) 1800.000 P_TYPE( 4, 2) 1500.000 P_TYPE( 4, 3) 2000.000 P_TYPE( 4, 4) 2675.000 P_TYPE( 5, 1) 800.0000 P_TYPE( 5, 2) 1280.000 P_TYPE( 5, 3) 2000.000

P_TYPE( 6, 1) 1100.000 P_TYPE( 6, 2) 1500.000 P_TYPE( 6, 3) 2000.000 P_TYPE( 6, 4) 1800.000 P_TYPE( 7, 1) 900.0000 P_TYPE( 7, 2) 1500.000 P_TYPE( 7, 3) 2000.000 P_TYPE( 7, 4) 1800.000 TYPE_NUM( 1, 1) 0.000000 TYPE_NUM( 1, 2) 5.000000 TYPE_NUM( 1, 3) 1.000000 TYPE_NUM( 1, 4) 1.000000 TYPE_NUM( 2, 1) 1.000000 TYPE_NUM( 2, 2) 5.000000 TYPE_NUM( 2, 3) 8.000000 TYPE_NUM( 2, 4) 4.000000 TYPE_NUM( 3, 1) 1.000000 TYPE_NUM( 3, 2) 5.000000 TYPE_NUM( 3, 3) 8.000000 TYPE_NUM( 3, 4) 0.000000 TYPE_NUM( 4, 1) 1.000000 TYPE_NUM( 4, 2) 5.000000 TYPE_NUM( 4, 3) 8.000000 TYPE_NUM( 4, 4) 4.000000 TYPE_NUM( 5, 1) 1.000000 TYPE_NUM( 5, 2) 5.000000 TYPE_NUM( 5, 3) 8.000000 TYPE_NUM( 5, 4) 1.000000 TYPE_NUM( 6, 1) 1.000000

TYPE_NUM( 6, 3) 8.000000 TYPE_NUM( 6, 4) 3.000000 TYPE_NUM( 7, 1) 1.000000 TYPE_NUM( 7, 2) 5.000000 TYPE_NUM( 7, 3) 3.000000 TYPE_NUM( 7, 4) 2.000000

Row Slack or Surplus

1 0.000000

2 5.000000

3 1.000000

4 1.000000

5 1.000000

6 5.000000

7 8.000000

8 4.000000

9 1.000000

10 5.000000

11 8.000000

12 0.000000

13 1.000000

14 5.000000

15 8.000000

16 4.000000

17 1.000000

18 5.000000

19 8.000000

20 1.000000

21 1.000000

22 5.000000

24 3.000000

25 1.000000

26 5.000000

27 3.000000

28 2.000000

29 10.00000

30 0.000000

31 7.000000

32 3.000000

33 9.000000

34 0.000000

35 0.000000

36 0.000000

37 9.000000

38 0.000000

39 0.000000

40 4.000000

41 9.000000

42 0.000000

43 0.000000

44 0.000000

45 9.000000

46 0.000000

47 0.000000

48 3.000000

49 9.000000

50 0.000000

51 0.000000

52 1.000000

54 0.000000

55 5.000000

56 2.000000

57 56.51745

58 440.0000

59 800.0000

60 0.000000

61 1000.000

62 500.0000

63 800.0000

64 125.0000

65 700.0000

66 500.0000

67 800.0000

68 60.06158

69 1000.000

70 500.0000

71 800.0000

72 875.0000

73 0.000000

74 280.0000

75 800.0000

76 0.000000

77 300.0000

78 500.0000

79 800.0000

80 0.000000

81 100.0000

82 500.0000

84 0.000000

85 943.4826

86 60.00000

87 0.000000

88 1700.000

89 0.000000

90 0.000000

91 0.000000

92 1575.000

93 300.0000

94 0.000000

95 0.000000

96 1639.938

97 0.000000

98 0.000000

99 0.000000 100 825.0000 101 1000.000 102 220.0000 103 0.000000 104 1700.000 105 700.0000 106 0.000000 107 0.000000 108 1700.000 109 900.0000 110 0.000000 111 0.000000 112 1700.000

114 0.000000

115 0.000000

116 0.000000

117 0.000000

118 0.000000

119 0.000000

120 1427810.模型二所用程序

model:

sets:

time/1..7/:need_p,able_p,t,able_p1;

type/1..4/:max_num,max_p,min_p,cost_f,cost_m,cost_s;

links(time,type):p_type,type_num;

endsets

data:

need_p=12000 32000 25000 36000 25000 30000 18000;

t=6 3 3 2 4 4 2;

max_num=10 5 8 4;

min_p=800 1000 1200 1800;

max_p=1800 1500 2000 3500;

cost_f=2200 1800 3800 4800;

cost_m=2.7 2.2 1.8 3.8;

cost_s=5000 1600 2400 1200;

enddata

@for(time(i):able_p(i)=need_p(i)*1.25);

@for(links(i,j):type_num(i,j)>=0);

@for(links(i,j):type_num(i,j)<=max_num(j));

@for(links(i,j):p_type(i,j)>=min_p(j));

@for(links(i,j):p_type(i,j)<=max_p(j));

@for(links(i,j):@gin(type_num(i,j)));

@for(time(i):need_p(i)=@sum(type(j):p_type(i,j)*type_num(i,j)));

@for(time(i):able_p1(i)=@sum(type(j):type_num(i,j)*max_p(j)));

@for(time(i):able_p1(i)>=able_p(i));

min=@sum(time(i):@sum(type(j):((cost_f(j)+(p_type(i,j)-min_p(j))*cost_m(j))*type_num(i,j)*t(i)))) +@sum(time(i):@if(i#ge#2,@sum(type(j):(cost_s(j)*@if(type_num(i,j)#ge#type_num(i-1,j),type_num (i,j)-type_num(i-1,j),0))),@sum(type(j):type_num(1,j)*cost_s(j))));

模型二结果

Global optimal solution found.

Objective value: 1829955.

Objective bound: 1829955.

Infeasibilities: 0.000000

Extended solver steps: 1

Total solver iterations: 418987

Variable Value

NEED_P( 1) 13750.00

NEED_P( 2) 41250.00

NEED_P( 3) 31250.00

NEED_P( 4) 45000.00

NEED_P( 5) 31250.00

NEED_P( 6) 37500.00

NEED_P( 7) 22500.00

ABLE_P( 1) 13750.00

ABLE_P( 2) 41250.00

ABLE_P( 3) 31250.00

ABLE_P( 4) 45000.00

ABLE_P( 5) 31250.00

ABLE_P( 6) 37500.00

ABLE_P( 7) 22500.00

T( 1) 6.000000

T( 2) 3.000000

T( 3) 3.000000

T( 4) 2.000000

T( 5) 4.000000

T( 6) 4.000000

T( 7) 2.000000

ABLE_P1( 1) 15100.00

ABLE_P1( 2) 48300.00

ABLE_P1( 3) 41300.00

ABLE_P1( 4) 48300.00

ABLE_P1( 6) 43000.00 ABLE_P1( 7) 23300.00 MAX_NUM( 1) 10.00000 MAX_NUM( 2) 5.000000 MAX_NUM( 3) 8.000000 MAX_NUM( 4) 4.000000 MAX_P( 1) 1800.000 MAX_P( 2) 1500.000 MAX_P( 3) 2000.000 MAX_P( 4) 3500.000 MIN_P( 1) 800.0000 MIN_P( 2) 1000.000 MIN_P( 3) 1200.000 MIN_P( 4) 1800.000 COST_F( 1) 2200.000 COST_F( 2) 1800.000 COST_F( 3) 3800.000 COST_F( 4) 4800.000 COST_M( 1) 2.700000 COST_M( 2) 2.200000 COST_M( 3) 1.800000 COST_M( 4) 3.800000 COST_S( 1) 5000.000 COST_S( 2) 1600.000 COST_S( 3) 2400.000 COST_S( 4) 1200.000 P_TYPE( 1, 1) 1125.000 P_TYPE( 1, 2) 1500.000 P_TYPE( 1, 3) 2000.000 P_TYPE( 1, 4) 3500.000 P_TYPE( 2, 1) 1758.333 P_TYPE( 2, 2) 1500.000 P_TYPE( 2, 3) 2000.000 P_TYPE( 2, 4) 1800.000 P_TYPE( 3, 1) 800.0000 P_TYPE( 3, 2) 1370.000 P_TYPE( 3, 3) 2000.000 P_TYPE( 3, 4) 1800.000 P_TYPE( 4, 1) 1800.000 P_TYPE( 4, 2) 1500.000 P_TYPE( 4, 3) 2000.000 P_TYPE( 4, 4) 2675.000 P_TYPE( 5, 1) 830.0000

P_TYPE( 5, 3) 2000.000

P_TYPE( 5, 4) 1800.000

P_TYPE( 6, 1) 1720.000

P_TYPE( 6, 2) 1500.000

P_TYPE( 6, 3) 2000.000

P_TYPE( 6, 4) 1800.000

P_TYPE( 7, 1) 1000.000

P_TYPE( 7, 2) 1500.000

P_TYPE( 7, 3) 2000.000

P_TYPE( 7, 4) 1800.000

TYPE_NUM( 1, 1) 2.000000

TYPE_NUM( 1, 2) 5.000000

TYPE_NUM( 1, 3) 2.000000

TYPE_NUM( 1, 4) 0.000000

TYPE_NUM( 2, 1) 6.000000

TYPE_NUM( 2, 2) 5.000000

TYPE_NUM( 2, 3) 8.000000

TYPE_NUM( 2, 4) 4.000000

TYPE_NUM( 3, 1) 6.000000

TYPE_NUM( 3, 2) 5.000000

TYPE_NUM( 3, 3) 8.000000

TYPE_NUM( 3, 4) 2.000000

TYPE_NUM( 4, 1) 6.000000

TYPE_NUM( 4, 2) 5.000000

TYPE_NUM( 4, 3) 8.000000

TYPE_NUM( 4, 4) 4.000000

TYPE_NUM( 5, 1) 5.000000

TYPE_NUM( 5, 2) 5.000000

TYPE_NUM( 5, 3) 8.000000

TYPE_NUM( 5, 4) 2.000000

TYPE_NUM( 6, 1) 5.000000

TYPE_NUM( 6, 2) 5.000000

TYPE_NUM( 6, 3) 8.000000

TYPE_NUM( 6, 4) 3.000000

TYPE_NUM( 7, 1) 1.000000

TYPE_NUM( 7, 2) 5.000000

TYPE_NUM( 7, 3) 7.000000

TYPE_NUM( 7, 4) 0.000000

Row Slack or Surplus

1 0.000000

2 0.000000

3 0.000000

4 0.000000

数学建模期末考试A试的题目与答案

华南农业大学期末考试试卷(A 卷) 2012-2013学年第 二 学期 考试科目:数学建模 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一篮白菜从河岸一边带到河岸对面,由于船的限制,一次只能带 一样东西过河,绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起,怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白菜分别记为i = 1,2,3,4,当i 在此岸时记x i = 1,否则为0;此岸的状态下用s =(x 1,x 2,x 3,x 4)表示。该问题中决策为乘船方案,记为d = (u 1, u 2, u 3, u 4),当i 在船上时记u i = 1,否则记u i = 0。 (1) 写出该问题的所有允许状态集合;(3分) (2) 写出该问题的所有允许决策集合;(3分) (3) 写出该问题的状态转移率。(3分) (4) 利用图解法给出渡河方案. (3分) 解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分) (2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分) (3) s k+1 = s k + (-1) k d k (9分) (4)方法:人先带羊,然后回来,带狼过河,然后把羊带回来,放下羊,带白菜过去,然后再回来把羊带过去。 ?或: 人先带羊过河,然后自己回来,带白菜过去,放下白菜,带着羊回来,然后放下羊,把狼带过去,最后再回转来,带羊过去。 (12分) 1、 二、(满分12分) 在举重比赛中,运动员在高度和体重方面差别很大,请就下面两种假设,建立一个举重能力和体重之间关系的模型: (1) 假设肌肉的强度和其横截面的面积成比例。6分 (2) 假定体重中有一部分是与成年人的尺寸无关,请给出一个改进模型。6分 解:设体重w (千克)与举重成绩y (千克) (1) 由于肌肉强度(I)与其横截面积(S)成比例,所以 y ?I ?S 设h 为个人身高,又横截面积正比于身高的平方,则S ? h 2 再体重正比于身高的三次方,则w ? h 3 (6分) ( 12分) 14分) 某学校规定,运筹学专业的学生毕业时必须至少学

数学建模题目及答案

09级数模试题 1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。试作合理的假设并建立数学模型说明这个现象。 (15分) 解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。 因此对这个问题我们假设 : (1)地面为连续曲面 (2)长方形桌的四条腿长度相同 (3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。 那么,总可以让桌子的三条腿是同时接触到地面。 现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A、B、C、D 处,A、B,C、D 的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A、B,C、D 平行。当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。 容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。为消除这一不确定性,令 ()f θ为A、B 离地距离之和, ()g θ为C、D 离地距离之和,它们的值由θ唯一确定。由假设(1), ()f θ,()g θ均为θ的连续函数。又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(?θ)。 不妨设 (0)0f =,(0)0g >g (若(0)g 也为 0,则初始时刻已四条腿着地,不必再旋转),于是问题归 结为: 已知 ()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存 在某一0θ,使00()()0f g θθ=。 证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。作()()()h f g θθθ=?,显然,() h θ也是θ的连续函数,(0)(0)(0)0h f g =?<而()()()0h f g πππ=?>,由连续函数的取零值定 理,存在0θ,0 0θπ<<,使得0()0h θ=,即00()()f g θθ=。又由于00()()0f g θθ=,故必有 00()()0f g θθ==,证毕。 2.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生 们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。(15分) 解:按各宿舍人数占总人数的比列分配各宿舍的委员数。设:A 宿舍的委员数为x 人,B 宿舍的委员数为y 人,C 宿舍的委员数为z 人。计算出人数小数点后面的小数部分最大的整数进1,其余取整数部分。 则 x+y+z=10;

三峡大学数学建模第一题电力生产问题

电力生产问题 为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。 所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。 ( 只有在每个时段开始时才允许启动或关闭发电机。与启动发电机不同,关闭发电机不需要付出任何代价。 问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 电力生产问题的数学模型 摘要 本文解决的是电力生产问题,在发电机的发电量能满足每日的电力需求的条件下,为了使每日的总成本达到最低,我们建立了一个最优化模型。 对于问题一:由已知条件可知有固定成本、边际成本、启用成本,据此,我们确定了三个指标:即固定总成本、边际总成本、启动总成本。总成本即为这三项总成本之和。每天分为七个时段,发电机共有四种型号,方案结果应该包括每个时段每种型号平均功率及该时段该型号发电机的数量,一共有56个未知数,为减少未知数,并将非线性约束条件转化为线性约束条件,将整数规划转化为非整数规划,我们以每个时段每种型号的几个发电机发出的总功率为变量,并列出相应的约束条件,然后通过LINGO求出个时段各种型号发电机的总功率,再采用分支定界法求出最小总成本为

146.9210万元。再根据总功率利用Matlab软件计算出总功率所对应的该型号发电机的数量(见表一)。 对于问题二:题目要求在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。其他条件与问题一相同,因此,只需增加一个约束条件,即发电机机组所能发出的最大总功率乘以80%后大于用电需求。为锻炼编程技术,故在第二问改用Matlab软件编程来求解,将所要求的7个时段4种型号的发电机的平均功率一共28个未知数用X1,X2,,,,X28表示,将其对应的发电机数量用X29,X30,,,X56表示,并利用矩阵列出约束条件和目标函数,然后编程并运行求解,得到的发电机数量有的不为整数,然后采用分支定界法,得到调整后的结果,最小总成本为157.5426万元。 ! 关键词:线性规划、总功率、使用数量、总成本 1.问题重述 1.1问题背景 为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。 所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。 任何代价。 1.2需要解决的问题 问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 2.模型假设 假设1:调整发电机功率没有成本 :

数学建模野兔生长问题

野兔生长问题 摘要 根据题目,野兔生长属自然范畴,若在生存条件良好,且无外力干扰的情况下,其种群数量是呈对数型增长的,从著名的斐波纳契数列解决兔子生长问题也可以看出,兔子的生长,呈递增的状态。可由题目条件可知,野兔生长并不是处于理想的情况下的,中间有递减的情况,考虑到自然的各种原因,诸如,天敌的捕杀,自然灾害,疾病,生存地的减少等。 对于这种种群生态学问题,我们可以用Logistic(逻辑斯蒂方程)模型拟和多项式拟合来模。Logistic模型是种群生态学的核心理论之一。它可以用来描述种群生长规律,利用它可以表征种群的数量动态。用多项式拟合可以大致模拟预测未来的兔子数量。 之所以选择该模型来研究野兔生长问题,是因为,该模型考虑并概括了,种群发展所遇到的各种外界条件,也就是说,它模拟了真实情况。通过建立Logistic模型,我们小组得出T=10时,野兔数量为9.84194(十万)只。该结果比较符合客观规律。 利用Logistic模型可以表征种群的数量动态;如鱼类种群的增长,收获与时间关系的确定。描述某一研究对象的增长过程如生态旅游区环境容量的确定,森林资源的管理以及耐用消费品社会拥有量的预测、国民生产总值的预测等;也可作为其它复杂模型的理论基础如Lotka-Volterra两种群竞争模型;以上的大多数的工作都是拿逻辑斯蒂模型来用,但也由此可看出逻辑斯蒂方程不管在自然科学领域还是在社会科学中都具有非常广泛的用途。 关键字:Logistic模型生态学 MATLAB程序 问题重述 野兔生长问题。首先,野兔是生长在自然环境中的。自然很复杂,存在着许多影响种群发展的因素。我们知道,假如给野兔一个理想的环境,野兔数量是呈J型增长的。现实情况中,种群一般是呈S型增长的,从题中表格看出,野兔的数量并不是单一地增长,T=3,6.90568;T=4,6.00512;T=5,5.56495;T=6,5.32807。第四年到第七年,这三年野兔的数量不增反降,说明其间有影响野兔生长的因素存在。我们探讨了其中的因素: (1),兔子内部因素,竞争,雄雌比利失去平衡,老化严重等。 (1),自然灾害,比如说草原火灾,使野兔生长环境遭到破坏;再如气候反常,使野兔的产卵,交配受影响。 (2),天敌的捕食,狼,狐狸等天敌大量地捕食使野兔生存受到威胁。 (3),疾病的侵扰,野兔种群中,蔓延并流行疾病,必然使野兔存活率下降。。(4),人类的影响,城市扩建,使其栖息地面积减少;捕杀。

数学模型期末考试试题及答案

山东轻工业学院 08/09学年 II 学期《数学模型》期末考试A 试 卷 (本试卷共4页) 说明: 本次考试为开 卷考试,参加考试的同学可以携带任何资料,可以使用计算器,但上述物品严 禁相互借用。 一、简答题(本题满分16分,每小题8分) 1、在§2.2录像机计数器的用途中,仔细推算一下(1)式,写出与(2)式的差别,并解释这个差别; 2、试说明在§3.1中不允许缺货的存储模型中为什么没有考虑生产费用,在什么条件下可以不考虑它; 二、简答题(本题满分16分,每小题8分) ?1、对于§5.1传染病的SIR 模型,叙述当σ 1 > s 时)(t i 的变化情况 并加以证明。 2、在§6.1捕鱼业的持续收获的效益模型中,若单位捕捞强度的费用为捕捞强度E 的减函数, 即)0,0(,>>-=b a bE a c ,请问如何达到最大经济效益? 三、简答题(本题满分16分,每小题8分) 1、在§9.3 随机存储策略中,请用图解法说明为什么s 是方程)()(0S I c x I +=的最小正根。 2、请结合自身特点谈一下如何培养数学建模的能力? 四、(本题满分20分) 某中学有三个年级共1000名学生,一年级有219人,二年级有 316人,三年级有465人。现要选20名校级优秀学生,请用下列办 法分配各年级的优秀学生名额:(1)按比例加惯例的方法;(2)Q 值法。另外如果校级优秀学 生名额增加到21个,重新进行分配,并按照席位分配的理想化准则分析分配结果。 五、(本题满分16分) 大学生毕业生小李为选择就业岗位建立了层次分析模型,影响就 业的因素考虑了收入情况、发展空间、社会声誉三个方面,有三个 就业岗位可供选择。层次结构图如图,已知准则层对目标层的成对比较矩阵 选择就业岗位

数学建模期末试卷A及答案

2009《数学建模》期末试卷A 考试形式:开卷 考试时间:120分钟 姓名: 学号: 成绩: ___ 1.(10分)叙述数学建模的基本步骤,并简要说明每一步的基本要求。 2.(10分)试建立不允许缺货的生产销售存贮模型。 设生产速率为常数k ,销售速率为常数r ,k r <。 在每个生产周期T 内,开始一段时间(00T t ≤≤) 边生产边销售,后一段时间(T t T ≤≤0)只销售不 生产,存贮量)(t q 的变化如图所示。设每次生产开工 费为1c ,每件产品单位时间的存贮费为2c ,以总费用最小为准则确定最优周期T ,并讨论k r <<和k r ≈的情况。 3.(10分)设)(t x 表示时刻t 的人口,试解释阻滞增长(Logistic )模型 ?????=-=0)0()1(x x x x x r dt dx m 中涉及的所有变量、参数,并用尽可能简洁的语言表述清楚该模型的建模思想。 4.(25分)已知8个城市v 0,v 1,…,v 7之间有一个公路网(如图所示), 每条公路为图中的边,边上的权数表示通过该公路所需的时间. (1)设你处在城市v 0,那么从v 0到其他各城市,应选择什么路径使所需的时间最短? (2)求出该图的一棵最小生成树。 5.(15分)求解如下非线性规划: 20 s.t.2 122 2 121≤≤≤+-=x x x x x z Max 6.(20分)某种合金的主要成分使金属甲与金属乙.经试验与分析, 发现这两种金属成分所占的百分比之和x 与合金的膨胀系数y 之间有一定的相关关系.先测试了12次, 得数据如下表:

的模型。 7.(10分)有12个苹果,其中有一个与其它的11个不同,或者比它们轻,或者比它们重,试用没有砝码的天平称量三次,找出这个苹果,并说明它的轻重情况。 《数学建模》模拟试卷(三)参考解答 1. 数学模型是对于现实世界的某一特定对象,为了某个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到的一个数学结构。它或者能解释特定现象的现实状态,或者能预测对象的未来状态,或者能提供处理对象的最优决策或控制。 数学建模方法 一般来说数学建模方法大体上可分为机理分析和测试分析两种。 机理分析是根据客观事物特征的认识,找出反应内部机理的数量规律,建立的数学模型常有明确的物理意义。 测试分析是将研究对象看作一个"黑箱"(意即内部机理看不清楚),通过对测量数据的统计分析,找出与数据拟合得最好的模型。 数学建模的一般步骤 (1)模型准备:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息。 (2)模型假设:为了利用数学方法,通常要对问题做出必要的、合理的假设,使问题的主要特征凸现出来,忽略问题的次要方面。 (3)模型构成:根据所做的假设以及事物之间的联系,构造各种量之间的关系,把问题化为数学问题,注意要尽量采用简单的数学工具。 4)模型求解:利用已知的数学方法来求解上一步所得到的数学问题,此时往往还要作出进一步的简化或假设。 (5)模型分析:对所得到的解答进行分析,特别要注意当数据变化时所得结果是否稳定。 (6)模型检验:分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果不够理想,应该修改、补充假设,或重新建模,不断完善。 (7)模型应用:所建立的模型必须在实际应用中才能产生效益,在应用中不断改进和完善。 2. 单位时间总费用 k T r k r c T c T c 2)()(21-+= ,使)(T c 达到最小的最优周期 )(2T 21*r k r c k c -= 。当k r <<时,r c c 21*2T = ,相当于不考虑生产的情况;当k r ≈时,∞→*T ,因为产量被售量抵消,无法形成贮存量。 3. t ——时刻; )(t x ——t 时刻的人口数量; r ——人口的固有增长率; m x ——自然资源和环境条件所能容纳的最大人口数量;

数学建模生产计划有关问题解析

201数学建模生产计划 摘要 本文主要研究足球生产计划的规划问题。 对于问题一足球总成本包括生产成本与储存成本,又由于足球各月的生产成本、储存成本率及需求量已知,故各月足球的生产量对总成本起决定因素。在此建立总成本与足球生产量之间的关系,运用Matlab求出了总成本的最优解。 对于问题二储存成本率的大小影响了储存成本的高低,要使总成本最低,在储存成本率变化的情况下必须不断调整足球各月生产量,我们在Matlab中运用散点法,取了501个点,进而对图形进行线性拟合,得出储存成本率减小时各月足球生产量的变化情况。 对于问题三考虑到储存容量不能用储存成本率直接由函数表达,因此在Matlab 采用散点法结合表格分析法对501个点进行分析可得到储存成本率为0.39%时,储存容量达到最大。 关键词:最优解散点法线性拟合表格分析法 问题的重述 皮革公司在6个月的规划中根据市场调查预计足球需求量分别是10,000、15,000、30,000、35,000、25,000和10,000,在满足需求量的情况下使总成本最低,其包括生产成本及库存成本。根据预测,今后六个月的足球的生产单位成本分别是$12.50、$12.55、$12.70、$12.80、$12.85和$12.95,而每一个足球在每个月中的持有成本是该月生产成本的5%。目前公司的存货是5,000,每个月足球最大产量为30,000,而公司在扣掉需求后,月底的库存量最多只能储存10,000个足球。 问题一、建立数学模型,并求出按时满足需求量的条件下,使生产总成本和储存成本最小化的生产计划。 问题二、如若储存成本率降低,生产计划会怎样变化? 问题三、储存成本率是多少时?储存容量达到极限。 问题的分析 问题一要求在足球的需求量一定的情况下,使生产总成本和储存成本最小。又足球的生产成本和储存成本率已知,故只需要建立生产总成本和储存成本与各月足球的生产量之间的优化模型,运用Matlab即可求出足球生产总成本和储存成本的最优化组合。

数学建模一周试题。

----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- 试 题 说 明 1.本次数学建模周共有如下十五道题。每支队伍(2-3人/队)必须从以下题中任意选取一题,并完成一篇论文,具体要求参阅《论文格式规范》。 2.指导老师会根据题目的难度对论文最后的评分进行调整。 3.题目标注为“A ”的为有一定难度的题目,选择此题你们将更有可能得到高分。 (一)乒乓球赛问题 (A) A 、 B 两乒乓球队进行一场五局三胜制的乒乓球赛,两队各派3名选手上场,并各有3种选手的出场顺序(分别记为123,,ααα 和123,,βββ)。根据过去的比赛记录,可以预测出如果A 队以i α次 序出场而B 队以 j β次序出场,则打满5局A 队可胜ij a 局。由此得矩阵 () ij R a =如下: (1) 根据矩阵R 能看出哪一队的实力较强吗? (2) 如果两队都采取稳妥的方案,比赛会出现什么结果? (3) 如果你是A 队的教练,你会采取何种出场顺序? (4) 比赛为五战三胜制,但矩阵R 中的元素却是在打满五局的情况下得到的,这样的数据处理和预测方式 有何优缺点? (二)野兔生长问题 时野兔的数量。 (三)停车场的设计问题 在New England 的一个镇上,有一位于街角处面积100?200平方英尺的停车场,场主请你代为设计停车车位的安排方式,即设计在场地上划线的方案。 容易理解,如果将汽车按照与停车线构成直角的方向,一辆紧挨一辆地排列成行,则可以在停车场内塞进最大数量的汽车,但是对于那些缺乏经验的司机来说,按照这种方式停靠车辆是有困难的,它可能造成昂贵的保险费用支出。为了减少因停车造成意外损失的可能性,场主可能不得不雇佣一些技术熟练的司机专门停车;另一方面,如果从通道进入停车位有一个足够大的转弯半径,那么,看来大多数的司机都可以毫无困难地一次停车到位。当然通道越宽,场内所容纳的车辆数目也越少,这将使得场主减少收入。 (四)奖学金的评定 (A) 背景 A Better Class (ABC)学院的一些院级管理人员被学生成绩的评定问题所困扰。平均来说,ABC 的教员们一向打分较松(现在所给的平均分是A —),这使得无法对好的和中等的学生加以区分.然而,某项十分丰厚的奖学金仅限于资助占总数10%的最优秀学生,因此,需要对学生排定名次. 教务长的想法是在每一课程中将每个学生与其他学生加以比较,运用由此得到的信息构造一个排名顺序.例如,某个学生在一门课程中成绩为A,而在同一课程中所有学生都得A,那么就此课而言这个学生仅仅属于“中等”。反之,如果一个学生得到了课程中唯一的A ,那么,他显然处在“中等至上”水平。综合从几门不同课程所得到的信息,使得可以把所有学院的学生按照以10%划分等级顺序(最优秀的10%,其次的10%,等等)排序。 问题 (1)假设学生成绩是按照(A+,A, A —, B+ ,…)这样的方式给出的,教务长的想法能否实现?

数学建模期末考试2018A试的题目与答案

华南农业大学期末考试试卷(A卷) 2012-2013学年第二学期考试科目:数学建模 考试类型:(闭卷)考试考试时间:120 分钟 学号姓名年级专业 一、(满分12分)一人摆渡希望用一条船将一只狼.一只羊.一篮白菜从河岸一边带到河岸对面.由于船的限制.一次只能带一样东西过河.绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起.怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白菜分别记为i = 1.2.3.4.当i在此岸时记x i = 1.否则为0;此岸的状态下用s = (x1.x2.x3.x4)表示。该问题中决策为乘船方案.记为d = (u1, u2, u3, u4).当i 在船上时记u i = 1.否则记u i = 0。 (1) 写出该问题的所有允许状态集合;(3分) (2) 写出该问题的所有允许决策集合;(3分) (3) 写出该问题的状态转移率。(3分) (4) 利用图解法给出渡河方案. (3分) 解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分) (2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分) (3) s k+1 = s k + (-1) k d k (9分) (4)方法:人先带羊.然后回来.带狼过河.然后把羊带回来.放下羊.带白菜过去.然后再回来把羊带过去。 或: 人先带羊过河.然后自己回来.带白菜过去.放下白菜.带着羊回来.然后放下羊.把狼带过去.最后再回转来.带羊过去。(12分) . .

电力生产问题数学模型

电力生产问题数学模型

————————————————————————————————作者:————————————————————————————————日期:

电力生产问题数学模型 摘要 本文研究电力生产问题中的最优化电力资源配置,属于求解优化电力配置下的最小成本问题。由于电力生产有非线性、多变量等特点,所以我们基于在每一时间段非线性局部最优的前提下,建立整体的单目标多变量的非线性最优化模型 。 因此对于研究的课题,我们建立了一个有约束条件的目标函数的最优化模型来求解。在该模型的基础上我们建立起解决问题所需模型。 解决问题(1)时,我们运用LINGO 工具求解所建立的数学模型,得到每个时段的台数和成本如下表:(详细数据见) 时段1 时段2 时段3 时段4 时段5 时段6 时段7 总成本/元 型号1 0 2 0 2 0 1 0 0 1750 750 1750 1000 1300 750 … … … … … … … … 型号4 0 3 3 3 3 3 3 0 2166.6 1800 3500 1800 1800 解决问题(2)时,我们从节约能源和成本的前提出发,让在工作的每一台发电机保留出20%的发电能力,而不是让其发出多于需求电量的20%白白浪费,因此我们将“每个时段的电力需求”这个约束条件由问题(1)中的j ij j D P m ≤≤改为 8.0?≤≤j ij j D P m 。得到每个时段的台数和成本如下表:(详细数据见) 时段1 时段2 时段3 时段4 时段5 时段6 时段7 总成本/元 型号1 0 5 0 8 1 5 0 0 1400 1400 1400 1400 1400 0 … … … … … … … … 型号4 3 3 3 3 3 3 3 1866.6 2466.6 2466.6 2400 2000 1800 1800 关键词:非线性 整体最优化 LIGNO 软件 时 段 型 号 时 段 型 号

数学建模实验报告第十一章最短路问答

实验名称:第十一章最短路问题 一、实验内容与要求 掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。 二、实验软件 MATLAB7.0 三、实验内容 1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。 V1 1 V2 3 V3 1 V5 6 V6 V4 2 V7 4 V8

程序: function y=bijiaodaxiao(f1,f2,f3,f4) v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4; turn=3; f1=v12+v23+v35+v56+turn+v68; f2=v12+v23+v35+turn+v57+turn+v78; f3=v12+turn+v24+turn+v47+v78; f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1; if f2

f4 实验结果: v1到v8的最短时间路径为15,路径为1-2-4-7-8. 2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6

floy.m中的程序: function[D,R]=floyd(a) n=size(a,1); D=a for i=1:n for j=1:n R(i,j)=j; end end R for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

数学建模36套试题

第1题企业评价 选定20个评价者对某一企业的市场营销效果进行评价,将评价等级分为五等,如表一所示,评价等级的数字表示人数,如“资产负债率”一栏表示有6个人认为很好,9个人认为较好等等,采用适当的方法对该企业属于哪一等级作出评价。 表一企业市场营销效果评价情况 第2题强烈的碰撞 美国国家航空和航天局(NASA)从过去某个时间以来一直在考虑一颗大的小行星撞击地球会产生的后果。 作为这种努力的组成部分,要求你们队来考虑这种撞击的后果,加入小行星撞击到了南极洲的话。人们关心的是撞到南极洲比撞到地球的其它地方可能会有很不同的后果。 假设小行星的直径大约为1000米,还假设它正好在南极与南极洲大陆相撞。 要求你们对这样一颗小行星的撞击提供评估。特别是,NASA希望有一个关于这种撞击下可能的人类人员伤亡的数量和所在地区的估计,对南半球海洋的食物生产的破坏的估计,以及由于南极洲极地冰岩的大量融化造成的可能的沿海岸地区的洪水的估计。

第3题灌溉问题 下图是一个农田图,边表示田埂,周围是灌溉渠,问至少要挖开多少个田埂才能使每一块地都能灌上水?给出挖开田埂的一个方案。 第4题路线设计 现在有8个城市,已知两个城市之间的路费如下表,现在有一个人从A城市出发旅行,应该选择怎样的路线才能刚好每个城市都到达一次又回到A城市,其总路费最少? A B C D E F G H A B C D E F G 56 35 21 51 60 43 39 21 57 78 70 64 49 36 68 --- 70 60 51 61 65 26 13 45 62 53 26 50 第5题水质评价 按照《中华人民共和国地下水质量标准》,地下水水质共分六个等级(如表一)。现经过抽样得到三个地区的水质状况(如表二),对照标准,试评价他们各属哪一级。 Ⅰ类Ⅱ类Ⅲ类Ⅳ类Ⅴ类

2020.8月福师离线 《数学建模》期末试卷A及答案

▆■■■■■■■■■■■■ 《数学建模》期末考试A卷 姓名: 专业: 学号: 学习中心: 一、判断题(每题3分,共15分) 1、模型具有可转移性。----------------------- (√) 2、一个原型,为了不同的目的可以有多种不同的模型-----(√) 3、一个理想的数学模型需满足模型的适用性和模型的可靠性。 ---------------------------------------- (√) 4、力学中把质量、长度、时间的量纲作为基本量纲。----(√) 5、数学模型是原型的复制品。 ----------------- (×) 二、不定项选择题(每题3分,共15分) 1、下列说法正确的有AC 。 A、评价模型优劣的唯一标准是实践检验。 B、模型误差是可以避免的。 C、生态模型属于按模型的应用领域分的模型。 D、白箱模型意味着人们对原型的内在机理了解不清楚。 2、建模能力包括ABCD 。 A、理解实际问题的能力 B、抽象分析问题的能力 C、运用工具知识的能力 D、试验调试的能力 3、按照模型的应用领域分的模型有AE 。 A、传染病模型 B、代数模型 C、几何模型 D、微分模型 E、生态模型 4、对黑箱系统一般采用的建模方法是 C 。 A、机理分析法 B、几何法 C、系统辩识法 D、代数法 5、一个理想的数学模型需满足AB 。 A、模型的适用性 B、模型的可靠性 C、模型的复杂性 D、模型的美观性三、用框图说明数学建模的过程。(10分) 答:概括的说,数学模型就是一个迭代的过程,其一般建模 步骤用框架图表示如下: 四、建模题(每题15分,共60分) 1、四条腿长度相等的椅子放在起伏不平的地面上,4条腿能否同 时着地? 解:4条腿能同时着地 (一)模型假设 对椅子和地面都要作一些必要的假设: 对于此题,如果不用任何假设很难证明,结果很可能是否定 的。 因此对这个问题我们假设: (1)地面为连续曲面 (2)长方形桌的四条腿长度相同 (3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。 那么,总可以让桌子的三条腿是同时接触到地面。 (二)模型建立 现在,我们来证明:如果上述假设条件成立,那么答案是肯 定的。以长方桌的中心为坐标原点作直角坐标系如图所示,方桌 的四条腿分别在A、B、C、D处,A、B、C、D的初始位置在与x 轴平行,再假设有一条在x轴上的线ab,则ab也与A、B,C、D 平行。当方桌绕中心0旋转时,对角线ab与x轴的夹角记为θ。 容易看出,当四条腿尚未全部着地时,腿到地面的距离是不 确定的。为消除这一不确定性,令f(θ) 为A、B离地距离之和, g(θ)为C、D离地距离之和,它们的值由θ唯一确定。由假设(1), f(θ), g(θ)均为0的连续函数叹由假设(3),三条腿总能同时着地, 故f(θ) g(θ)=0必成立()。 f(θ), g(θ)均为0的连续函数。又由假设(3),三条腿总能同时 着地,故f(θ) g(θ)=0必成立()。 不妨设f(θ)=0, g(θ)>0 (若g(0)也为0,则初始时刻已四条腿 着地,不必再旋转),于是问题归结为:已知f(0), g(θ)均为θ的连 续函数,f(0)=0, g(0)> 0且对任意θ有f(θ) g(θ)=0,求证存在某一 0。,使f(θ) g(θ)=0。 (三)模型求解 证明:当日=π时,AB与CD互换位置,故f(π)>0, g(π)= 0 o 作h(θ)= f(θ)-g(θ),显然,h(θ)也是θ的连续函数,h(θ)= f(θ)- g(θ)<0而h(π)= f(π)- 8(r)> 0,由连续函数的取零值定理,存在θ, 0<θ<π,使得h(θ)=0,即h(θ)= g(θ)。又由于f(θ) g(θ)=0,故 必有f(θ)= g(θ)=0,证毕。

数学模型期末考试试题及答案

试卷学期《数学模型》期末考试A山东轻工业学院08/09学年II 页)本试卷共4< 题说明总号考次开试分考卷试,参加考试的同学可以携带任何资料,可以 使用计算器,但上述物品严禁相互借用。16分,每小题8分)一、简答题<本题满分得分)式,写出与§2.2录像机计数器的用途中,仔细推算一下<11、在阅卷人<2)式的差别,并解释这个差别;中不允许缺货的存储模型中为什么没有考虑生产 费用,在什么条件下可2、试说明在§3.1 以不考虑它;8分)二、简答题<本题满分16分,每小题得分1阅卷人?s)(ti的变化情时、对于1§5.1传染病的SIR 模型,叙述当0?况并加以证明。 E 2、在§6.1捕鱼业的持续收获的效益模型中,若单位捕捞强度的费用为捕捞强度的减函数,)0?0,b?c?a?bE,(a即,请问如何达到最大经济效益?本题满分16分,每小题8分)三、 简答题<得分s程是法图解说明为什么方策、1在§9.3 随机存储略中,请用)S?(x)?cI(I的最小正根。阅卷人0、请结合自身特点谈一下如何培养数学建模 的能力?2 分)四、<本题满分20得分219人,二年级有某中学有三个年级共1000名学生,一年级有人。现要选20名校级优秀学生,请用下列办316人,三年级有465 阅卷人Q ;<2))按比例加惯例的方法法分配各年级的优秀学生名额:<1值法。另外如果校级优秀学个,重新进行分配,并按照席位分配的理想生名额增加 到21化准则分析分配结果。得分分)16五、<本题满分阅

卷人大学生毕业生小李为选择就业岗位建立了层次分析模型,影响就业的因素考虑了收入情况、发展空间、社会声誉三个方面,有三个层次结构图如图,已知准则层。 选可业就岗位供择对目标层的成对比较矩阵1 / 4 选择就业岗位 71/1/43511????????23111/2/AB??41,比较矩阵分别为成,方案层对准则层的对 ????1????22171/51/1????117463????????3112/B?3B?1/41。,JhYEQB29bj ????32????1/21/6111/71/3????请根据层次分析方法为小李确定最佳的工作岗位。 16分)六、<本题满分得分某保险公司欲开发一种人寿保险,投保人需要每年缴纳一定数的阅卷人<额保险费,如果投保人某年未按时缴纳保费则视为保险合同终止保险公司需要对投保人的健康、疾病、死亡和退保的情况作出评估,从而制退保)。 定合适的投保金额和理赔金额。各种状态间相互转移的情况和概率如图。试建立马氏链模型分析在投保人投保时分别为健康或疾病状态下,平均需要经过多少年投保人就会出现退保或死亡的情况,以及出现每种情况的概率各是多少?5Y944Acbad 退保死亡II 学期《数学模型》期末考试A试卷解答山东轻工业 学院08/09学年0.05 0.03 分)分,每小题8一、简答题<本题满分160.15 0.07 m(m?1)???2mr?vt2?)得4分1、答:由<1,。。。。。。。。。。。。。。。。。。。。20.1 健康疾病2???knk2?)t?2r?n?(knm?代入得。。。。。。。。。。。。。。。。。。。。,6分将 vv0.6 ???2r?r2??r,则得<2因为)。所以。。。。。。。。。。。。。。。。。。。。8分 crc,每天的平均费用是,则平均每天的生产费用为2、答:假设每件产品的生产费用为 33ccrT112??crC(T)?4分,。。。。。。。。。。。。。。。。。。。。 1132T1)TdC()TdC(11)T(TC?下面求最小,发现使,所以111dTdT12c1??TT,与生产费用无关,所以不考虑。。。。。。。。。。。。。。。。。。。。。81cr2分 二、简答题<本题满分16分,每小题8分) 1di??s?),(1s??i,1、答:由<14若)0?dtdi1s)(t??s,?0i时,4增 加; 。。。。。。。。。。。。。。。。。。。。分当0?dtdi1?i(ts),?0i时,达到最大值当;

数学建模之电力的生产问题

数学建模之电力的生产问 题 Prepared on 22 November 2020

电力生产最小成本 摘要 本文是需解决发电机厂每天在不同时间段用电需求量不同的情况下,根据给定不同型号不同数量的发电机,合理分配各台发电机在不同时间段的开启和关闭以及运行时的输出功率,既使得一天内总发电成本最小,又使发电机组在一天中各个时段的总输出功率达到用电需求的问题,为解决这个问题,采用了单目标非线性规划方法,建立了所求问题的最优化模型,借助Lingo软件对模型进行求解,得到每日最小发电总成本,以此制定发电机组的启停计划。 问题一:为了使发电厂一天总的发电成本最低,同时还要考虑到不同时间段开机数量不同对启动成本的相互影响,将七个时间段的成本统一考虑,其中,启动成本与发电机开启数量有关,要让成本少,应在满足相应约束条件下尽量减少开机数量,尽量让上一阶段的发电机下一阶段依然工作,边际成本与开启发电机台数、输出功率、最小功率、时长有关,固定成本与开启发电机台数、时长有关,选取相应的约束条件对目标函数进行约束,从而给出优化模型,运用非线性规划的方法,利用Lingo编程求解,得到发电厂每天最小发电总成本为:1427179 元。具体的发电机使用方案见附录一中表一、表二。 问题二:根据题目的要求,在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升,在建模时将每台发电机的实际输出功率降至80%,所以可以按照问题一建立的模型,将其约束条件中每个时间段的实际输出功率改为功率的80%但同时要满足用电量,同样利用Lingo编程求解,得到发电厂每天最小发电总成本为:1444670元。具体的发电机使用方案见附录一中表三、表四。 在得到上述两个问题的结果后,对结果的正确性性进行检验,并且对所得结果进行分析,给出自己的评价,并且对所建模型的合理性进行判断,以及对模型做了适当的推广。 关键词:单目标非线性规划发电机的合理搭配电力生产最优解

数学建模期末考试2018A试的题目与答案

实用标准文案 华南农业大学期末考试试卷(A卷)2012-2013学年第二学期考试科目:数学建模 考试类型:(闭卷)考试考试时间:120 分钟 学号姓名年级专业 一、(满分12分)一人摆渡希望用一条船将一只狼,一只羊,一篮白菜从河岸一边带到河岸对面,由于船的限制,一次只能带一样东西过河,绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起,怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白菜分别记为i = 1,2,3,4,当i在此岸时记x i = 1,否则为0;此岸的状态下用s =(x1,x2,x3,x4)表示。该问题中决策为乘船方案,记为d = (u1, u2, u3, u4),当i在船上时记u i = 1,否则记u i = 0。 (1) 写出该问题的所有允许状态集合;(3分) (2) 写出该问题的所有允许决策集合;(3分) (3) 写出该问题的状态转移率。(3分) (4) 利用图解法给出渡河方案. (3分) 解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分) (2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分)

(3) s k+1 = s k + (-1) k d k (9分) (4)方法:人先带羊,然后回来,带狼过河,然后把羊带回来,放下羊,带白菜过去,然后再回来把羊带过去。 或: 人先带羊过河,然后自己回来,带白菜过去,放下白菜,带着羊回来,然后放下羊,把狼带过去,最后再回转来,带羊过去。(12分) 1、二、(满分12分)在举重比赛中,运动员在高度和体重方面差别很大,请就 下面两种假设,建立一个举重能力和体重之间关系的模型: (1)假设肌肉的强度和其横截面的面积成比例。6分 (2)假定体重中有一部分是与成年人的尺寸无关,请给出一个改进模型。6分 解:设体重w(千克)与举重成绩y (千克) (1)由于肌肉强度(I)与其横截面积(S)成比例,所以y∝I∝S 设h为个人身高,又横截面积正比于身高的平方,则S ∝ h2 再体重正比于身高的三次方,则w ∝ h3 (6分)(2)a, 则一个最粗略的模型为 ( 12分) 三、(满分14分) 某学校规定,运筹学专业的学生毕业时必须至少学习过两门数学课、三门运筹学课和两门计算机课。这些课程的编号、名称、学分、所属类别和先修课要求如下表所示。那么,毕业时学生最少可以学习这些课程中哪些课程?

数学建模电力安排问题

电力生产问题 摘要 本文解决的是电力生产中发电机的安排问题,在满足每日各时间段电力需求的条件下,安排各型号发电机来供电,以期获得最小的成本。为解决此问题,我们建立了两个最优化模型。 针对问题一:建立了非线性单目标最优化模型。从已知条件、目标函数、约束条件三方面进行综合分析可知,每天的总成本由总固定成本、总边际成本、总启动成本组成,确定总成本为目标函数,各时段各型号发电机工作数量及其总超出功率为主要变量,并列出相应约束条件。最后通过Lingo软件[2]求出最小成本为1540770元,并得出各时段各型号发电机的数量及其功率如下表(具体见表三): 针对问题二:建立了线性单目标最优化模型。引入非负变量,即为各时段新增开的各型号的发电机台数,通过此变量线性表示出启动成本。以总成本为目标函数,在模型一的基础上,只需改变一个约束条件,即发电机组在任意时间段内所能发出的最大总功率的80%要大于等于该时段的用电需求。最后通过lingo软件求出最小成本为1885420元,并得出各时段各型号发电机的数量及其功率。 关键词:非线性最优化模型线性最优化模型最小生产成本

1 问题重述 1.1 问题背景 在电力生产过程中,为满足每日的电力需求并且使生产成本达到最小,因不同发电性能的发电机成本不同,故可以选用不同型号的发电机组合使用。 1.2 题目信息 题中给出了一天中七个时段的用电需求(见表一)及四种发电机的发电性能和相应成本(见表二)。其中,所有发电机都有一个最大发电能力,当接入电网时,其输出功率不应低于其最小输出功率,且所有发电机均存在一个启动成本,以及工作于其最小功率状态时固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。 问题(1):在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2):如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 2 模型假设 假设1:不计发电机启动时所需时间; 假设2:各发电机均在24时关闭,即不考虑循环过程; 假设3:各发电机的输出功率在时段初调整好后,保持不变; 假设4:题目所列出的成本以外的成本消耗不计。

相关文档
最新文档