正余弦定理知识点

正余弦定理知识点
正余弦定理知识点

正余弦定理知识点

部门: xxx

时间: xxx

整理范文,仅供参考,可下载自行编辑

平面向量知识点

考试内容:数学探索?版权所有https://www.360docs.net/doc/419850745.html,向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离、平移.数学探索?版权所有https://www.360docs.net/doc/419850745.html,考试要求:数学探索?版权所有https://www.360docs.net/doc/419850745.html,<1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.数学探索?版权所有https://www.360docs.net/doc/419850745.html,<2)掌握向量的加法和减法.数学探索?版权所有https://www.360docs.net/doc/419850745.html,<3)掌握实数与向量的积,理解两个向量共线的充要条件.数学探索?版权所有https://www.360docs.net/doc/419850745.html,<4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.数学探索?版权所有https://www.360docs.net/doc/419850745.html,<5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.数学探索?版权所有https://www.360docs.net/doc/419850745.html,<6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用掌握平移公式.

1.本章知识网络结构

2.向量的概念

(1>向量的基本要素:大小和方向向量的表示:几何表示法

;字母表示:a;

坐标表示法 a=xi+yj=<x,y)

(3>向量的长度:即向量的大小,记作|a|

(4>特殊的向量:零向量a=O|a|=

单位向量aO为单位向量|aO|=

(5>相等的向量:大小相等,方向相同x1,y1>=<x2,y2)

(6> 相反向量:a=-b b=-a a+b=0

(7>平行向量(共线向量>:方向相同或相反的向量,称为平行向量.记作a∥b.平行向量也称为共线向量

3.向量的运算

,

1.

2.时,同

向。

向。.

是一个数

1. 2.

4.重要定理、公式 (1>平面向量基本定理

e1,e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1, λ2,使a =λ1e1+λ

(2>两个向量平行的充要条件 a∥b

a =λb(b≠0>

x1y2-x2y1=

(3>两个向量垂直的充要条件 a⊥b

a·b=O

x1x2+y1y2=

(4>线段的定比分点公式 设点P 分有向线段

所成的比为λ,即

=λ

,则

(线段的定比分点的向量公式

(线段定比分点的坐标公式

当λ=1时,得中点公式:

=<+)或

(5>平移公式

设点P(x,y>按向量a=<h,k)平移后得到点P′

则=+a或

曲线y=f

y-k=f

(6>正、余弦定理

正弦定理:

余弦定理:a2=b2+c2-2bccosA,

b2=c2+a2-2cacosB,

c2=a2+b2-

<7)三角形面积计算公式:

设△ABC的三边为a,b,c,其高分别为ha,hb,hc,半周长为P,外接圆、内切圆的半径为R,r.

①S△=1/2aha=1/2bhb=1/2chc②S△=Pr ③S△=abc/4R

④S△=1/2sinC·ab=1/2ac·sinB=1/2cb·sinA

⑤S△= [海伦公式]

⑥S△=1/2

如图:

图1中的I为S△ABC的内心,S△=Pr

图2中的I为S△ABC的一个旁心,S△=1/2

附:三角形的五个“心”;

重心:三角形三条中线交点.

外心:三角形三边垂直平分线相交于一点.

内心:三角形三内角的平分线相交于一点.

垂心:三角形三边上的高相交于一点.

旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点.

⑸已知⊙O是△ABC的内切圆,若BC=a,AC=b,AB=c [注:s为△ABC的半周长,即]

则:①AE==1/2

②BN==1/2

③FC==1/2

综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边<如图4).

特例:已知在Rt△ABC,c为斜边,则内切圆半径r=<如图3).

⑹在△ABC中,有下列等式成立.

证明:因为所以,所以,

结论!

⑺在△ABC中,D是BC上任意一点,则.

证明:在△ABCD中,由余弦定理,有①

在△ABC中,由余弦定理有②,②代入①,化简可得,<斯德瓦定理)

①若AD是BC上的中线,;

②若AD是∠A的平分线,,其中为半周长;

③若AD是BC上的高,,其中为半周长.

⑻△ABC的判定:

△ABC为直角△∠A + ∠B =

<△ABC为钝角△∠A + ∠B<

>△ABC为锐角△∠A + ∠B>

附:证明:,得在钝角△ABC中,

⑼平行四边形对角线定理:对角线的平方和等于四边的平方和.

空间向量

1.空间向量的概念:

具有大小和方向的量叫做向量

注:⑴空间的一个平移就是一个向量

⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量

⑶空间的两个向量可用同一平面内的两条有向线段来表示2.空间向量的运算

定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下

运算律:⑴加法交换律:

⑵加法结合律:

⑶数乘分配律:

3共线向量

表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.平行于记作.

当我们说向量、共线<或//)时,表示、的有向线段所

在的直线可能是同一直线,也可能是平行直线.

4.共线向量定理及其推论:

共线向量定理:空间任意两个向量、<≠),//的充要

条件是存在实数λ,使=λ.

推论:如果为经过已知点A且平行于已知非零向量的直线,

那么对于任意一点O,点P在直线上的充要条件是存在实数t满足等式 p1EanqFDPw

其中向量叫做直线的方向向量.

5.向量与平面平行:

已知平面和向量,作,如果直线平行于或在

内,那么我们说向量平行于平面,记作:.

通常我们把平行于同一平面的向量,叫做共面向量

说明:空间任意的两向量都是共面的

6.共面向量定理:

如果两个向量不共线,与向量共面的充要条件是存在

实数使

推论:空间一点位于平面内的充分必要条件是存在有序

实数对,使或对空间任一点,有

①式叫做平面的向量表达式

7空间向量基本定理:

如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使

推论:设是不共面的四点,则对空间任一点,都存在

唯一的三个

有序实数,使

8空间向量的夹角及其表示:

已知两非零向量,在空间任取一点,作,则

叫做向量与的夹角,记作;且规定,显

然有;若,则称与互相垂直,记作:

.DXDiTa9E3d

9.向量的模:

设,则有向线段的长度叫做向量的长度或模,记作:

.

10.向量的数量积:.

已知向量和轴,是上与同方向的单位向量,作点

在上的射影,作点在上的射影,则叫做向量在轴上

或在上的正射影. RTCrpUDGiT

可以证明的长度.

11.空间向量数量积的性质:

<1).<2).<3).

12.空间向量数量积运算律:

<1).<2)<交换律)<3)

<分配律).

空间向量的坐标运算

一.知识回顾:

<1)空间向量的坐标:空间直角坐标系的x轴是横轴<对应为横坐标),y轴是纵轴<对应为纵轴),z轴是竖轴<对应为竖坐标).5PCzVD7HxA

①令=(a1,a2,a3>,,则

(用到常用的向量模与向量之间的转化:

>

②空间两点的距离公式:.

<2)法向量:若向量所在直线垂直于平面,则称这个向量垂直于

平面,记作,如果那么向量叫做平面的法向量.

<3)用向量的常用方法:

①利用法向量求点到面的距离定理:如图,设n是平面的法向

量,AB是平面的一条射线,其中,则点B到平面的距离为

.jLBHrnAILg

②利用法向量求二面角的平面角定理:设分别是二面角

中平面的法向量,则所成的角就是所求二面角的平面角或其

补角大小<方向相同,则为补角,反方,则为其夹角).xHAQX74J0X

③证直线和平面平行定理:已知直线平面,,且

CDE三点不共线,则a∥的充要条件是存在有序实数对使

.<常设求解若存在即证毕,若不

存在,则直线AB与平面相交).LDAYtRyKfE

申明:

所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

正弦与余弦定理和公式高中数学知识点梳理

正弦与余弦定理和公式高中数学知识点 梳理 首先,我们要了解下正弦定理的应用领域 在解三角形中,有以下的应用领域: (1)已知三角形的两角与一边,解三角形 (2)已知三角形的两边和其中一边所对的角,解三角形 (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦 正弦定理 在△ABC中,角A、B、C所对的边分别为a、b、c,则有a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径) 其次,余弦的应用领域 余弦定理 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 正弦定理的变形公式 (1) a=2RsinA, b=2RsinB, c=2RsinC; (2) sinA : sinB : sinC = a : b : c; 在一个三角形

中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及大边对大角,大角对大边定理和三角形内角和定理去考虑解决问题 (3)相关结论:a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sin A+sinB+sinC) c/sinC=c/sinD=BD=2R(R为外接圆半径) (4)设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA (5)a=bsinA/sinB sinB=bsinA/a 正弦、余弦典型例题 1.在△ABC中,C=90,a=1,c=4,则sinA 的值为 2.已知为锐角,且,则的度数是( ) 3.在△ABC中,若,A,B为锐角,则C的度数是() 4.若A为锐角,且,则A=() 5.在△ABC中,AB=AC=2,ADBC,垂足为D,且AD= ,E 是AC中点, EFBC,垂足为F,求sinEBF的值。

正余弦定理练习题(答案)

1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) D .26 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 C .2 6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( ) 或 3 或3 2 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) B .2 C. 3 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π 3,则A =________. 10.在△ABC 中,已知a =43 3,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________. 13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C =________,c =________. 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 15.在△ABC 中,已知a =32,cos C =1 3,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°, 航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c . 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.

高一数学正余弦定理知识点梳理和分层训练修订稿

高一数学正余弦定理知 识点梳理和分层训练 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-

高一数学正、余弦定理知识点梳理和分层训练 班级 姓名 座号 1.正弦定理: 2sin sin sin a b c R A B C ===或变形:::sin :sin :sin a b c A B C =. 2.余弦定理: 222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-? = ?? ?+-= ?? . 3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角. 2、已知两边和他们的夹角,求第三边和其他两角. 4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 5.解题中利用ABC ?中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin cos ,cos sin 2222 A B C A B C ++==. 表一:

表二:已知三角形两边及其中一边的对角求解三角形的有可能有两种情况,具 基础达标: 1. 在△ABC 中,a=18,b=24,∠A=45°,此三角形解的情况为 A. 一个解 B. 二个解 C. 无解 D. 无法确定 2.在△ABC 中,若2,a b c ===+A 的度数是 A. 30° B. 45° C. 60° D. 75° 3.ΔABC 中,若a 2 =b 2 +c 2 +bc ,则∠A= A. 60 B. 45 C. 120 D. 30 4.边长为5、7、8的三角形的最大角与最小角之和为 A. 90° B. 120° C. 135° D. 150° 5.在△ABC 中,已知3=a ,2=b ,B=45.求A 、C 及c.

正余弦定理题型总结(全)

平面向量题型归纳(全) 题型一:共线定理应用 例一:平面向量→ →b a ,共线的充要条件是( )A.→ →b a ,方向相 同 B. → →b a ,两向量中至少有一个为零向量 C.存在 ,R ∈λ→→=a b λ D 存在不全为零的实数0,,2121=+→ →b a λλλλ 变式一:对于非零向量→→b a ,,“→→→=+0b a ”是“→ →b a //”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 变式二:设→ →b a ,是两个非零向量( ) A.若→→→→=+b a b a _则→→⊥b a B. 若→→⊥b a ,则→ →→→=+b a b a _ C. 若→ →→→ =+b a b a _,则存在实数λ,使得 →→ =a b λ D 若存在实数λ,使得→ →=a b λ,则 → →→→ =+b a b a _ 例二:设两个非零向量→ → 21e e 与,不共线, (1)如果三点共线;求证:D C A e e e e e e ,,,28,23,212121--=+=-= (2)如果三点共线,且D C A e k e CD e e BC e e AB ,,,2,32,212121-=-=+=求实数k 的值。 变式一:设→ → 21e e 与两个不共线向量,,2,3,2212121e e CD e e CB e k e AB -=+=+=若三点A,B,D 共线,求实数k 的值。 变式二:已知向量→ →b a ,,且,27,25,2b a CD b a BC b a AB +=+-=+=则一定共线的三点是( ) A.A,B,D B.A,B,C C.B,C,D D.A,C,D 题型二:线段定比分点的向量形式在向量线性表示中的应用 例一:设P 是三角形ABC 所在平面内的一点,,2+=则( ) A. += B. += C. += D. ++= 变式一:已知O 是三角形ABC 所在平面内一点,D 为BC 边的中点,且++=2,那么( )A. A =

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳 Pleasure Group Office【T985AB-B866SYT-

●高考明方向 掌握正弦定理、余弦定理, 并能解决一些简单的三角形度量问题. ★备考知考情 1.利用正、余弦定理求三角形中的边、角问题是高考 考查的热点. 2.常与三角恒等变换、平面向量相结合出现在解答题 中,综合考查三角形中的边角关系、三角形形状的 判断等问题. 3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62 知识点一 正弦定理 (其中R 为△ABC 外接圆的半径) 变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222= ==a b c A B C R R R 变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充) 关于边的齐次式或关于角的正弦的齐次式 均可利用正弦定理进行边角互化。 知识点二 余弦定理

222 222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2?+-=??=+-?+-??=+-?=??=+-???+-?=?? b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充) (1)关于边的二次式或关于角的余弦 均可考虑利用余弦定理进行边角互化。 (2)勾股定理是余弦定理的特例 (3)在?ABC 中,222090?? <+?<

新课标高考数学题型全归纳正余弦定理常见解题类型典型例题

正余弦定理常见解题类型 1. 解三角形 正弦定理常用于解决以下两类解斜三角形的问题:①已知两角和任一边,求其他两边和一角;②已知两边和其中一边的对角,求另一边的对角及其他的边和角. 余弦定理常用于解决以下两类解斜三角形的问题:①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角. 例1 已知在ABC △中,4526A a c ∠===,,,解此三角形. 解:由余弦定理得22(6)26cos 454b b +-=, 从而有31b =±. 又222(6)222cos b b C =+-?, 得1cos 2 C =±,60C ∠=或120C ∠=. 75B ∴∠=或15B ∠=. 因此,31b =+,60C ∠=,75B ∠= 或31b =-,120C ∠=,15B ∠=. 注:此题运用正弦定理来做过程会更简便,同学们不妨试着做一做. 2. 判断三角形的形状 利用正余弦定理判断三角形的形状主要是将已知条件中的边、角关系转化为角的关系或

边的关系,一般的,利用正弦定理的公式2sin 2sin 2sin a R A b R B c R C ===,,,可将边转化为角的三角函数关系,然后利用三角函数恒等式进行化简,其中往往用到三角形内角和定理: A B C ++=π;利用余弦定理公式222222 cos cos 22b c a a c b A B bc ac +-+-==,, 222 cos 2a b c C ab ++=,可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题. 例2 在ABC △中,若2222sin sin 2cos cos b C c B bc B C +=,判定三角形的形状. 解:由正弦定理2sin sin sin a b c R A B C ===,为ABC △外接圆的半径, 可将原式化为22228sin sin 8sin sin cos cos R B C R B C B C =, sin sin 0B C ≠∵, sin sin cos cos B C B C ∴=,即cos()0B C +=. 90B C ∴+=,即90A =,故ABC △为直角三角形. 3. 求三角形中边或角的范围 例3 在ABC △中,若3C B ∠=∠,求c b 的取值范围. 解: A B C ∠+∠+∠=π,4A B ∴∠=π-∠. 04B π∴<∠<.可得210sin 2 B <<. 又2sin sin 334sin sin sin c C B B b B B ===-∵, 2134sin 3B ∴<-<.故13c b <<. 点评:此题的解答容易忽视隐含条件B ∠的范围,从而导致结果错误.因此,解此类问题应注意挖掘一切隐含条件. 4. 三角形中的恒等式证明 根据所证等式的结构,可以利用正、余弦定理化角为边或角的关系证得等式. 例4 在ABC △中,若2()a b b c =+,求证:2A B =. 证明:2222cos 2222a c b bc c b c a B ac ac a b +-++====∵, 222222 22222cos 22cos 1214222a a b b bc b c b B B b b b b -+--∴=-=?-===.

正余弦定理知识点+经典题(有答案)

正余弦定理 1.定理内容: (1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 2sin sin sin a b c R A B C === (2)余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。即: 2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+- (3)面积定理:111 sin sin sin 222 ABC S ab C bc A ac B ?= == 2.利用正余弦定理解三角形: (1)已知一边和两角: (2)已知两边和其中一边的对角: (3)已知两边和它们所夹的角: (4)已知三边: 正弦定理 1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A. 6 B. 2 C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.32 3 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12C .2 D.1 4 6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形

正余弦定理题型归类

高二数学《正余弦定理》知识与题型总结 1、 正弦定理:_________=_________=_________=2R (R 为____________) 变形:________a =;________b =;________c = sinA :sinB:sinC ______________ = 2、 余弦定理:2 ______________a =;2 ______________b =;2 ______________c = 变形:cos ________________A =;cosB ________________=;cosC ________________= 3、 三角形面积公式: (1)12S a h =g (2)1 sin _________________________2S ab C === (3)1 ()2 S r a b c =++(r 为内切圆半径) 4、常用公式及结论: (1)倍角公式:sin 2__________α=; cos 2_______________________________________α=== tan 2____________α= 降幂公式:2 sin ____________α=;2 cos ____________α= (2)在ABC ?中,sin()sinC A B +=;cos()cosC A B +=-;tan()tanC A B +=-; (3)在ABC ?中,最小角的范围为0, 3π?? ?? ? ;最大角的范围为,3ππ???? ?? ; (4)在ABC ?中,A B C sinA sinB sinC >>?>>; (5)sin sin sin sin sin sin sin sin sin sin sin sin a b c a b c b a c A B C A B C B A C a b c A B C +++===== +++++= ++。 类型一:正余弦定理的综合应用 1.在△ABC 中,4a b =,= 30A ?=,则角B 等于( ). A .30° B .30°或150° C .60° D .60°或120° 2.在△ABC 中,三内角A ,B ,C 成等差数列,b =6,则△ABC 的外接圆半径为( ) 3.在ABC ?中,角,,A B C 的对边分别为,,a b c ,向量,(cos ,sin )n A A =v , 若m n ⊥u v v ,且cos cos sin a B b A c C +=,则角A ,B 的大小为( ). 4.在ABC ?中,角C B A ,,所对应的边分别为c b a ,,,B B A C 2sin 3)sin(sin =-+. ) 5.ABC ?各角的对应边分别为c b a ,,,满足 ,则角A 的范围是( ) A 6.在△ABC 中,内角A,B,C ,C B sin 3sin 2=, =( ) A 7.在△ABC 中,内角A , B , C 的对边分别为a ,b ,c.,且b a >,则∠B =( ) A 8.在△ABC 中,根据下列条件解三角形,则其中有两个解的是 A .0 75,45,10===C A b B .0 80,5,7===A b a C .0 60 ,48,60===C b a D . 45,16,14===A b a 9.已知ABC ?中,a b 、分别是角A B 、所对的边,且()0,2,a x x b A =>==60°,若三角形有两解,则 x 的取值范围是( ) A 、02x << C

正弦定理和余弦定理学习知识点情况总结(学案)

正弦定理和余弦定理 一、正、余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 正弦定理可以用来解决两类解三角形的问题: 1.已知两角和任意一边,求另两边和另一角; 2.已知两边和其中一边的对角,求其他的边和角. 第一类问题有唯一解,当三角形的两角和任一边确定时,三角形就被唯一确定. 第二类问题的三角形不能唯一确定,可能出现一解、两解或无解的情况. 下面以已知a ,b 和A ,解三角形为例加以说明. 法一;由正弦定理、正弦函数的有界性及三角形的性质可得: (1)若sin B = b sin A a >1,则满足条件的三角形的个数为0,即无解;

(2)若sin B = b sin A a =1,则满足条件的三角形的个数为1; (3)若sin B = b sin A a <1,则满足条件的三角形的个数为1或2. 显然由01, 无解;②sin B =1,一解;③sin B <1,两解. 法二: A 为锐角 A 为钝角或直角 图形 关系式 ①a =b sin A ②a ≥b b sin A b a ≤b 解的个数 一解 两解 无解 一解 无解 三、三角形的面积公式 已知条件 选用公式 三角形的一边及此边上的高 公式1:S △ABC =12a ·h a =12b ·h b =1 2 c ·h c

正余弦定理知识点

正余弦定理知识点 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

平面向量知识点 考试内容:数学探索?版权所有https://www.360docs.net/doc/419850745.html,向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离、平移.数学探索?版权所有https://www.360docs.net/doc/419850745.html,考试要求:数学探索?版权所有https://www.360docs.net/doc/419850745.html,<1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.数学探索?版权所有https://www.360docs.net/doc/419850745.html,<2)掌握向量的加法和减法.数学探索?版权所有https://www.360docs.net/doc/419850745.html,<3)掌握实数与向量的积,理解两个向量共线的充要条件.数学探索?版权所有https://www.360docs.net/doc/419850745.html,<4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.数学探索?版权所有https://www.360docs.net/doc/419850745.html,<5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.数学探索?版权所有https://www.360docs.net/doc/419850745.html,<6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用掌握平移公式. 1.本章知识网络结构

2.向量的概念 (1>向量的基本要素:大小和方向向量的表示:几何表示法 ;字母表示:a; 坐标表示法 a=xi+yj=<x,y) (3>向量的长度:即向量的大小,记作|a| (4>特殊的向量:零向量a=O|a|= 单位向量aO为单位向量|aO|= (5>相等的向量:大小相等,方向相同x1,y1>=<x2,y2) (6> 相反向量:a=-b b=-a a+b=0 (7>平行向量(共线向量>:方向相同或相反的向量,称为平行向量.记作a∥b.平行向量也称为共线向量 3.向量的运算 ,

最全正余弦定理题型归纳

正弦定理和余弦定理 、题型归纳 < 一>利用正余弦定理解三角形 【例1】在^ ABC中,已知 a = J3, b=J2,B=45 ° ,求 A C 和c. 【例2】设的内角A B、C的对边长分别为a、b、c,且3+3-3=4b c . (I )求sinA的值; ( n )求的值. n 【练习 1】(2011 ?北京)在^ ABC中,若b= 5,Z B=_4, tan A= 2, 则 sin A= ;a= cos B 【练习2】在厶ABC中, a、b、c分别是角A B、c的对边'且cosE b 2a+ c" (1)求角B的大小; ⑵若b=品,a + c= 4,求^ ABC勺面积.

<二 >利用正余弦定理判断三角形的形状 【例 3】1、在^ABC 中,若(a 2+ b 2)sin( A — B)= (a 2— b 2)sin C,试判断△ ABC 的形状. 2、在^ ABC 中,在 ABC 中,a,b,c 分别是角 A B 、C 所对的边,bcosA =a COSB,则ABC 三角形的形状为 cosA 3、<△ ABC 中,在 ABC 中, a ,b ,c 分别是角 A B C 所对的边,若CosA 则ABC 三角形的形状为 2 A b c 【练习】1、在^ABC 中, cos - £( a,b,c 分别为角A,B,C 的对边), 则^ ABC 的形状为() A 、正三角形 B 、直角三角形 C 、等腰三角形或直角三角形 D 等腰直角三角形 的形状为 2、已知关于x 的方程 于两根之积的一半,则 A 、直角三角形 B 边三角形 3、在^ ABC 中,(a 2 2 . 2 C x xcosA cos B 2sin ~ 0的两根之和等 ) C 、等腰三角形 D 、等 ABC —定是 ( 、钝角三角 b 2)s in (A B) (a 2 b 2)sin( A B),则△ ABC

(完整word版)正弦定理与余弦定理练习题

正弦定理与余弦定理 1.已知△ABC 中,a=4,ο 30,34==A b ,则B 等于( ) A .30° B.30° 或150° C.60° D.60°或120° 2.已知锐角△ABC 的面积为33,BC=4,CA=3,则角C 的大小为( ) A .75° B.60° C.45° D.30° 3.已知ABC ?中,c b a ,,分别是角C B A ,,所对的边,若0cos cos )2(=++C b B c a ,则角B 的大小为( ) A . 6 π B . 3 π C . 32π D .6 5π 4.在?ABC 中,a 、b 、c 分别是角A 、B 、C 的对边.若 sin sin C A =2,ac a b 322=-,则B ∠=( ) A. 030 B. 060 C. 0120 D. 0150 5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知a=5,c=10,A=30°,则B 等于( ) A .105° B.60° C.15° D.105° 或 15° 6.已知ABC ?中,75 6,8,cos 96 BC AC C ===,则ABC ?的形状是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .钝角三角形 7.在ABC ?中,内角,,A B C 的对边分别为,,a b c ,且2B C =,2cos 2cos b C c B a -=,则角A 的大小为( ) A . 2π B .3π C .4π D .6 π 8.在△ABC 中,若sin 2 A +sin 2 B <sin 2 C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 9.在ABC ?中,sin :sin :sin 3:2:4A B C =,那么cos C =( ) A. 14 B.23 C.23- D.14 - 10.在ABC ?中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等腰或直角三角形 11.在△ABC 中,cos 2 =,则△ABC 为( )三角形. A .正 B .直角 C .等腰直角 D .等腰 12.在△ABC 中,A=60°,a=4,b=4 ,则B 等于( ) A .B=45°或135° B .B=135° C .B=45° D .以上答案都不对 13.在ABC ?,内角,,A B C 所对的边长分别为,,.a b c 1 sin cos sin cos ,2 a B C c B A b += 且a b >,则B ∠=( )

正余弦定理重要知识点(经典),推荐文档

正余弦定理重要知识点 本张武林秘籍,乃武林之精髓所在,得此天书者,细细研习,来日方长,必 成大器。下星期一需要全部背住,不然你不知道我要出哪一招。 6①如果一个三角形两边的平方和等于第三边,那么第三边所对的角为直角; ② 如果小于第三边的平方,那么第三边所对的角为钝角; ③ 如果大于第三边的平方,那么第三边所对角为锐角。 (课本第6页右下角) 、C 的对边,贝①若①a 2 b 2 c 2,则C 90o ; ③若a 2 b 2 c 2,则0 C 90 ; C 为锐角 7、在三角形中一些重要的知识点; 1. A B C ,代 B,C (0,) 2. 任意两边之和大于第三边,任意两边之差小于第三边。 3. 大角对大边,小角对小边,等角对等边。 4. 在三角形中,如果某一边不是最大的边,那么这条边所对的角一定是锐角 5. 在三角形中,如果某一边是最大的边,那么它所对的角可能是锐角,直角,钝 的外接圆的半径,则有 a b c 2R ( R 是三角形外接圆半 径) sin sin sin C 2、正弦定理的变形公式: ① a 2Rsin , b 2Rsin ,c 2RsinC ; ② sin —, sin b si nC c 2R 2R ' 2R ' ③ a: b: c sin :sin :sin C 3、余弦定理:在 C 中, 有 a 2 b 2 c 2 2bc cos ,b 2 2 a c 2 2ac cos ,c 2 a 2 b 2 2abcosC 1、正弦定理:在 C 中, a 、 b 、 c 分别为角 、C 的对边,R 为 C 4、余弦定理的推论:cos ,2 2 2 b c a ,cos 2bc 2 2 , 2 a c b 2ac ,cosC 2 , 2 2 a b c 2ab 1 5、三角形面积公式:S C bcsin 2 S ABC -两边之积 2 1 亠 S ABC 底咼 2 absin C 2 1 . acs in 2 两边夹角的正弦值 例如a 、b 、c 是 C 的角 ②若 a 2 b 2 c 2 ,则.90 C 180,C 为钝角

最全正余弦定理题型归纳

正弦定理和余弦定理 一、题型归纳 <一>利用正余弦定理解三角形 【例1】在△ABC 中,已知a =3 ,b = 2 ,B=45°,求A 、C 和c . 【例2】设ABC ?的内角A 、B 、C 的对边长分别为a 、b 、c ,且32b +32c -32a =42b c . (Ⅰ) 求sinA 的值; (Ⅱ)求 2sin()sin() 441cos 2A B C A ππ +++-的值. 【练习1】 (2011·北京)在△ABC 中,若b =5,∠B =π 4,tan A =2, 则sin A =________;a =________. 【练习2】在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且 cos B cos C

=-b 2a +c . (1)求角B 的大小; (2)若b =13,a +c =4,求△ABC 的面积. <二>利用正余弦定理判断三角形的形状 【例3】1、在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. 2、在△ABC 中,在ABC ?中,a,b,c 分别是角A 、B 、C 所对的边,bcosA =a cosB ,则ABC ?三角形的形状为__________________ 3、在△ABC 中,在ABC ?中,a,b,c 分别是角A 、B 、C 所对的边,若cosA cosB =b a , 则ABC ?三角形的形状为___________________ 【练习】1、在△ABC 中,2 cos 22A b c c +=(,,a b c 分别为角,,A B C 的对边),则△ABC 的形状为( ) A 、正三角形 B 、直角三角形 C 、等腰三角形或直角三角形 D 、等腰直角三角形

(完整版)正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ??? 1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中, C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b = 【解析】0000000 sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=

正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法 ——王彦文青铜峡一中 1.掌握正弦定理、余弦定理,并能解决一 些简单的三角形度量问题. 2.能够运用正弦定理、余弦定理等知识和 方法解决一些与测量和几何计算有关的实际问 题. 主要考查有关定理的应用、三角恒等变换 的能力、运算能力及转化的数学思想.解三角 形常常作为解题工具用于立体几何中的计算或 证明,或与三角函数联系在一起求距离、高度 以及角度等问题,且多以应用题的形式出现. 1.正弦定理 (1)正弦定理:在一个三角形中,各边和它 所对角的正弦的比相等,即.其 中R是三角形外接圆的半径. (2)正弦定理的其他形式: ①a=2R sin A,b=,c =; ②sin A=a 2R ,sin B=, sin C=; ③a∶b∶c=______________________. 2.余弦定理 (1)余弦定理:三角形中任何一边的平方等 于其他两边的平方的和减去这两边与它们的夹 角的余弦的积的两倍.即 a2=,b2=, c2= . 若令C=90°,则c2=,即为勾 股定理. (2)余弦定理的变形:cos A =,cos B=, cos C= . 若C为锐角,则cos C>0,即a2+b2______c2; 若C为钝角,则cos C<0,即a2+b2______c2.故 由a2+b2与c2值的大小比较,可以判断C为锐 角、钝角或直角. (3)正、余弦定理的一个重要作用是实现边 角____________,余弦定理亦可以写成sin2A =sin2B+sin2C-2sin B sin C cos A,类似地, sin2B=____________;sin2C= __________________.注意式中隐含条件A+B +C=π. 3.解斜三角形的类型 (1)已知三角形的任意两个角与一边,用 ____________定理.只有一解. (2)已知三角形的任意两边与其中一边的 对角,用____________定理,可能有 ___________________.如在△ABC中,已知a,

正弦与余弦定理练习题及答案

正弦定理练习题 1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.32 3 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12 C .2 D.1 4 6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )

A.32 B.34 C.32或 3 D.34或32 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1, c =3,C =π 3,则A =________. 10.在△ABC 中,已知a =43 3,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________. 13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则 a + b +c sin A +sin B +sin C =________,c =________. 14.在△ABC 中,已知a =32,cos C =1 3,S △ABC =43,则b =________. 15.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c . 16.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.

正余弦定理知识点与题型归纳

解三角形 一.正弦定理: A a sin = B b sin =C c sin =2R ,其中R 是三角形外接圆半径. 正弦定理的如下变形常在解题中用到 1.(1) a=2RsinA (2) b=2RsinB (3) c=2RsinC 2.(1) sinA=a/2R (2) sinB=b/2R (3) sinC=c/2R 3.a :b :c=sinA :sinB:sinC 二.余弦定理: 1. a^2 = b^2 + c^2 - 2·b ·c ·cosA 2. b^2 = a^2 + c^2 - 2·a ·c ·cosB 3. c^2 = a^2 + b^2 - 2·a ·b ·cosC 余弦定理的如下变形常在解题中用到 1. cosC = (a^2 + b^2 - c^2) / (2·a ·b) 2. cosB = (a^2 + c^2 - b^2) / (2·a ·c) 3. cosA = (c^2 + b^2 - a^2) / (2·b ·c ) 三.余弦定理和正弦定理的面积公式 S △ABC =21absinC=21bcsinA=21 acsinB (常用类型:已知三角形两边及其夹角)

判断三角形的形状 有两种途径: (1)将已知的条件统一化成边的关系,用代数求和法求解 (2)将已知的条件统一化成角的关系,用三角函数法求解 三.解三角形的实际应用 测量中相关的名称术语 仰角:视线在水平线以上时,在视线所在的垂直平面,视线与水平线所成的角叫做仰角。俯角:视线在水平线以下时,在视线所在的垂直平面,视线与水平线所成的角叫俯角 方向角:从指定方向线到目标方向的水平角

相关文档
最新文档