石灰石石膏湿法脱硫的工艺

石灰石石膏湿法脱硫的工艺

【石灰石石膏湿法脱硫的工艺】

导语:石灰石石膏湿法脱硫是一种常见的烟气脱硫技术,通过将石灰

石与石膏反应,可以高效地去除燃煤发电厂和工业锅炉烟气中的二氧

化硫。本文将深入探讨石灰石石膏湿法脱硫的工艺原理、优势以及相

关问题。

一、工艺原理

1. 石灰石石膏湿法脱硫原理:

石灰石与石膏发生反应生成硬石膏,将烟气中的二氧化硫转化为硫酸钙,并形成可回收利用的石膏产物。主要反应方程式如下所示:CaCO3 + SO2 + 2H2O → CaSO4·2H2O + CO2

2. 脱硫反应的特点:

该反应是一个快速的液相反应,在一定反应温度、气体流速和石膏浆

液浓度下进行。反应速率受碱性、反应温度、质量浓度等因素的影响。

二、工艺步骤

1. 石灰石石膏湿法脱硫的基本步骤:

(1)石灰石破碎、磨细:将原料石灰石经过破碎和磨细处理,提高其

活性和反应速率。

(2)制备石膏浆液:将石灰石与水混合,形成石灰石浆液。为了提高脱硫效果,还可加入一定量的添加剂。

(3)脱硫反应:将石灰石浆液喷入脱硫塔,通过与烟气的接触和反应,使二氧化硫转化为硫酸钙。

(4)石膏产物处理:将脱硫过程中生成的硬石膏经过脱水、干燥等处理后,得到成品石膏。

2. 工艺改进:

为了提高脱硫效率和经济性,石灰石石膏湿法脱硫工艺进行了多方面

的改进。例如引入喷雾器、增加反应塔数目、采用高效填料等,以增

加烟气与石灰石浆液的接触面积,加强反应效果。

三、工艺优势

1. 脱硫效率高:

石灰石石膏湿法脱硫工艺能够高效地将烟气中的二氧化硫转化为重质

石膏产物,脱硫效率可达到90%以上。

2. 石膏产物可回收利用:

脱硫过程中生成的硬石膏可以用于建材、石膏板等行业,实现资源的

循环利用。

3. 工艺成熟可靠:

石灰石石膏湿法脱硫工艺经过多年的实践应用,技术成熟可靠,广泛

应用于燃煤发电厂和工业锅炉等领域。

四、问题与挑战

1. 石膏处理与排放:

脱硫过程中生成的硬石膏需要进行后续的脱水、干燥等处理,同时还

需要解决石膏产物的长期存储和排放问题。

2. 能耗与成本:

石灰石石膏湿法脱硫工艺存在一定的能耗和成本投入,如何提高能源

利用效率和降低运行成本是亟待解决的问题。

3. 适用煤种限制:

不同煤种的硫含量和煤质特性对石灰石石膏湿法脱硫的适用性有一定

的影响,需要根据具体情况选择合适的工艺方案。

结语:

石灰石石膏湿法脱硫是一种成熟可靠的脱硫技术,其工艺原理清晰,

脱硫效率高,并能实现石膏产物的回收利用。然而,该工艺仍面临着

石膏处理与排放、能耗与成本等问题,需要进一步的技术改进和优化。相信随着科技的进步和工艺的不断完善,石灰石石膏湿法脱硫将在环

境保护和能源利用方面发挥重要作用。

参考资料:

1. 朱敏, 林远胜, 崔柏山, 等. 石灰石湿法烟气脱硫技术研究现状[J]. 广

东电力, 2012(10): 34-37.

2. 王克新, 沈友权, 高志刚, 等. 石膏消石灰湿法脱硫工艺的乳化剂选型与脱硫试验[J]. 广东化工, 2018(10): 135-138.

3. 龚建平, 陈志云, 许晨阳. 湿法石灰石脱硫污水的处理工艺优化研究[J]. 广东设备工程, 2020(7): 82-85.石灰石石膏湿法脱硫技术在烟气脱硫领域具有重要的应用价值,但石灰石的硫含量和煤质特性将对其适用性产生一定影响。在实际应用中,需要根据具体情况选择合适的工艺方案。

1. 石灰石硫含量对脱硫效果的影响:

石灰石中的硫含量会直接影响脱硫效果。硫含量较高的石灰石通常能够提供更多的可用钙离子用于与烟气中的二氧化硫发生反应,从而提高脱硫效率。在目标脱硫效率相同的前提下,石灰石硫含量较高的工艺方案更为合适。

2. 煤质特性对脱硫效果的影响:

煤质特性对石灰石石膏湿法脱硫的适用性也有较大影响。高灰分煤在燃烧过程中会产生更多的二氧化硫,因此需要选择适当的石灰石投加量。煤中的硫形态也会影响脱硫效果,有机硫酸盐形态的硫较难与石灰石反应,对于这种情况,可能需要采取其他方法进行脱硫。

石灰石石膏湿法脱硫技术具备成熟可靠的脱硫效果,并能实现石膏产

物的回收利用。然而,该工艺仍存在石膏处理与排放、能耗与成本等

问题,需要进一步的技术改进和优化。

为了解决石膏处理与排放问题,可以探索石膏的资源化利用途径,例

如利用石膏制备石膏板材等。这样不仅可以减少石膏排放对环境的影响,还能实现对石膏资源的有效利用。

为了降低能耗与成本,可以研究改进石灰石石膏湿法脱硫工艺的操作

参数和设备设计。通过优化操作参数,如提高吸收塔的石灰石负荷和

减少劳动消耗,可以降低能耗和操作成本。

在研发过程中,还可以考虑引入新型脱硫剂或添加剂,以提高脱硫效

果和降低成本。研究开发高效的乳化剂,可以增加石灰石与烟气中的

二氧化硫接触的时间和面积,提高脱硫效率。

石灰石石膏湿法脱硫技术在环境保护和能源利用方面具有重要的作用。随着科技的进步和工艺的不断改进,相信该技术将进一步发展壮大,

为解决大气污染和实现清洁能源发挥重要作用。

参考资料:

1. 朱敏, 林远胜, 崔柏山, 等. 石灰石湿法烟气脱硫技术研究现状[J]. 广

东电力, 2012(10): 34-37.

2. 王克新, 沈友权, 高志刚, 等. 石膏消石灰湿法脱硫工艺的乳化剂选型与脱硫试验[J]. 广东化工, 2018(10): 135-138.

3. 龚建平, 陈志云, 许晨阳. 湿法石灰石脱硫污水的处理工艺优化研究[J]. 广东设备工程, 2020(7): 82-85.

石灰石-石膏湿法低浓度二氧化硫烟气脱硫工艺

本文主要讲述了工业石灰石-石膏湿法低浓度二氧化硫烟气脱硫工艺,认真分析了该工艺的工艺路线(基本原理)、工艺系统、以及影响该工艺的具体因素和脱硫石膏的运用与发展。 ①工艺路线(基本原理):CaCO3+SO2+1/2H2O=CaSO3·1/2H2O+CO2 CaSO3·1/2H2O+SO2+1/2H2O=Ca(HSO3)2 2CaSO3·1/2H2O+O2+3H2O=2CaSO4·2H2O Ca(HSO3)2+1/2O2+H2O=CaSO4·2H2O+SO2 ②工艺流程方框图如下: ③工艺系统:主要分析了吸收剂制备系统、烟气及SO2吸收系统、石膏处理系统、FGD装置用水系统、脱硫废水处理系统、压缩空气系统等系统。 ④影响因素:主要分析了吸收塔洗涤浆液的PH、吸收塔内的液气比、烟速和烟气温度、钙硫比、石灰石浆液颗粒细度、石膏过饱和度、浆液停留时间等影响因素。 ⑤脱硫石膏的运用与发展:主要介绍了石膏在各方面在一些用途,以及石膏用于制硫酸的思路。 1.1前言

二氧化硫是主要大气污染物之一,严重影响环境,威胁人们的生活健康。削减二氧化硫的排放量,保护大气环境质量,是目前及未来相当长时间内我国环境保护的重要课题之一。目前,国内外处理低浓度二氧化硫烟气的方法有许多,如氨法、钙法、钠法、铝法、氧化法、吸附法、催化法及电子束法等。但由于受到技术可靠性、经济合理性、及行业生产特点等限制,当前比较成熟且广泛运用的方法主要有三种,即氨法、钙法和钠法。氨法是烟气脱硫方法中较传统的工艺,该法采用液氨或氨水作为吸收剂,吸收效率高、脱硫彻底。钙法是采用石灰水或石灰乳洗涤含二氧化硫的烟气,技术成熟,生产成本低,但吸收速率慢、吸收能力小、装置运行周期短。钠法是使用碳酸钠或氢氧化钠等碱性物质吸收含二氧化硫的烟气,具有吸收能力大、吸收速率快、脱硫效率高、设备简单、操作方便等优势,但最大的问题是原料钠碱较贵,生产成本高。上述工艺普遍存在以下几个共同的问题:①脱硫设备的工程投资较大。②脱硫过程中的副产物难利用。③高额的环保运行费用使生产企业不堪重负。 针对传统脱硫方法存在的缺陷,本文阐述了主要钙法在处理低浓度二氧化硫烟气领域的新工艺、新技术,这些新工艺的一个基本出发点是既解决了烟气排放问题,又综合回收了资源,达到以废治废的目的,获得了良好的社会效益和经济效益。 1.2二氧化硫(Sulfurdioxide)简述 1.2.1二氧化硫物化性质 二氧化硫在常温下是无色气体,具有强烈的刺激性气味,化学式:SO ,分 2 子量:64.06。 二氧化硫的主要物理性质如下: 冷凝温度,℃-10.02 结晶温度,℃-75.48 标准状况下的气体密度,g/L2.9265 标准状况下摩尔体积,L/mol21.891 气体的平均比热容(0-100℃),J/(g·K)0.6615 液面上的蒸气压(20℃),kPa330.26 蒸发潜热(20℃),J/g362.54 在20℃的温度下,1体积的水可溶解40体积的二氧化硫气体并放出34.4kJ/mol的热量。随着温度的升高,二氧化硫气体在水中的溶解度降低。在硫酸溶液中,随着硫酸浓度的提高,二氧化硫的溶解度降低。 压二氧化硫气体容易液化。为了使二氧化硫气体充分液化,可将干燥的SO 2

石灰石石膏湿法脱硫的工艺

石灰石石膏湿法脱硫的工艺 【石灰石石膏湿法脱硫的工艺】 导语:石灰石石膏湿法脱硫是一种常见的烟气脱硫技术,通过将石灰 石与石膏反应,可以高效地去除燃煤发电厂和工业锅炉烟气中的二氧 化硫。本文将深入探讨石灰石石膏湿法脱硫的工艺原理、优势以及相 关问题。 一、工艺原理 1. 石灰石石膏湿法脱硫原理: 石灰石与石膏发生反应生成硬石膏,将烟气中的二氧化硫转化为硫酸钙,并形成可回收利用的石膏产物。主要反应方程式如下所示:CaCO3 + SO2 + 2H2O → CaSO4·2H2O + CO2 2. 脱硫反应的特点: 该反应是一个快速的液相反应,在一定反应温度、气体流速和石膏浆 液浓度下进行。反应速率受碱性、反应温度、质量浓度等因素的影响。 二、工艺步骤 1. 石灰石石膏湿法脱硫的基本步骤: (1)石灰石破碎、磨细:将原料石灰石经过破碎和磨细处理,提高其

活性和反应速率。 (2)制备石膏浆液:将石灰石与水混合,形成石灰石浆液。为了提高脱硫效果,还可加入一定量的添加剂。 (3)脱硫反应:将石灰石浆液喷入脱硫塔,通过与烟气的接触和反应,使二氧化硫转化为硫酸钙。 (4)石膏产物处理:将脱硫过程中生成的硬石膏经过脱水、干燥等处理后,得到成品石膏。 2. 工艺改进: 为了提高脱硫效率和经济性,石灰石石膏湿法脱硫工艺进行了多方面 的改进。例如引入喷雾器、增加反应塔数目、采用高效填料等,以增 加烟气与石灰石浆液的接触面积,加强反应效果。 三、工艺优势 1. 脱硫效率高: 石灰石石膏湿法脱硫工艺能够高效地将烟气中的二氧化硫转化为重质 石膏产物,脱硫效率可达到90%以上。 2. 石膏产物可回收利用: 脱硫过程中生成的硬石膏可以用于建材、石膏板等行业,实现资源的 循环利用。 3. 工艺成熟可靠:

石灰石石膏法

石灰/石灰石-石膏法脱硫 石灰/石灰石一石膏法烟气脱硫技术最早是由英国皇家化学工业公司提出的,该方法脱硫的基本原理是用石灰或石灰石浆液吸收烟气中的SO2,先生成亚硫酸钙,然后将亚硫酸钙氧化为硫酸钙。副产品石膏可抛弃也可以回收利用。 (1)反应原理 用石灰石或石灰浆液吸收烟气中的二氧化硫分为吸收和氧化两个工序,先吸收生成亚硫酸钙,然后再氧化为硫酸钙,因而分为吸收和氧化两个过程。 1)吸收过程在吸收塔内进行,主要反应如下。 石灰浆液作吸收剂:Ca(OH)2+SO2一CaSO3.1/2H2O 石灰石浆液吸收剂:Ca(OH)2+1/2SO2一CaSO3.1/2H2O+CO2 CaSO3.1/2H2O+SO2+1/2H2O一Ca(HSO3)2 由于烟道气中含有氧,还会发生如下副反应。 2CaSO3.1/2Hz0+O2+3 H2O一2CaSO4.2H20 ②氧化过程在氧化塔内进行,主要反应如下。 2 CaSO3·1/2H20+O2+3H2O一2CaSO4·2H20 Ca(HSO3)2+1/2O2+H2O一CaSO4·H2O+SO2

传统的石灰/石灰石一石膏法的工艺流程如图所示。将配好的石灰浆液用泵送人吸收塔顶部,经过冷却塔冷却并除去90%以上的烟尘的含Sq烟气从塔底进人吸收塔,在吸收塔内部烟气与来自循环槽的浆液逆向流动,经洗涤净化后的烟气经过再加热装置通过烟囱排空。石灰浆液在吸收so:后,成为含有亚硫酸钙和亚硫酸氢钙的棍合液,将此混合液在母液槽中用硫酸调整pH值至4左右,送人氧化塔,并向塔内送人490kPa的压缩空气进行氧化,生成的石膏经稠厚器使其沉积,上层清液返回循环槽,石膏浆经离心机分离得成品石膏。 现代石灰/石灰石一石膏法工艺流程主要有原料运输系统、石灰石浆液制备系统、烟气脱硫系统、石膏制备系统和污水处理系统。 ①原料运输系统烟气脱硫所需的石灰石粉(粒度为250目,筛余量为5%),采用自卸封罐车运输,并卸人石灰石料仓。每个料仓可有多个进料口,能同时进行多台运料车卸料作业。在每个仓底设有粉碎装置,仓顶安装布袋除尘器。 ②浆液制备系统石灰石粉料从料仓下部出来,经给料机及输送机送人石灰石浆液槽。 石灰石浆液槽为混凝土结构,内衬树脂防腐,容积为l00m3”左右。浆液浓度约为30%,用调节给水量来控制浆液浓度。 ③烟气脱硫系统烟气脱硫系统主要由吸收塔、烟气再加热装置、旁路系统、有机剂 添加装置及烟囱组成。 吸收塔是脱硫装置的核心设备,现普遍采用的集冷却、再除尘、吸收和氧化为一体的新型吸收塔。常见的有喷淋空塔、

石灰石-石膏湿法脱硫工艺的基本原理

石灰石-石膏湿法脱硫工艺的基本原理 一、石灰石-石膏湿法脱硫工艺的基本原理 石灰石——石膏湿法烟气脱硫工艺的原理是采用石灰石粉制成浆液作为脱硫吸收剂,与经降温后进入吸收塔的烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙,以及加入的氧化空气进行化学反应,最后生成二水石膏。脱硫后的净烟气依次经过除雾器除去水滴、再经过烟气换热器加热升温后,经烟囱排入大气。由于在吸收塔内吸收剂经浆液再循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低(一般不超过1.1),脱硫效率不低于95%,适用于任何煤种的烟气脱硫。 石灰石——石膏湿法烟气脱硫工艺的化学原理: 烟气中的SO2溶解于水中生成亚硫酸并离解成氢离子和HSO 离子; 烟气中的氧(由氧化风机送入的空气)溶解在水中,将 HSO 氧化成SO ; ? 吸收剂中的碳酸钙在一定条件下于水中生成Ca2+; 在吸收塔内,溶解的二氧化硫、碳酸钙及氧发生化学反应生成石膏 (CaSO4?2H2O)。由于吸收剂循环量大和氧化空气的送入,吸收塔下部浆池中的HSO或亚硫酸盐几乎全部被氧化为硫酸根或硫酸盐,最后在CaSO4达到一定过饱和度后结晶形成石膏—CaSO4?2H2O,石膏可根据需要进行综合利用或抛弃处理。

二、工艺流程及系统 湿法脱硫工艺系统整套装置一般布置在锅炉引风机之后,主要的设备是吸收塔、烟气换热器、升压风机和浆液循环泵 我公司采用高效脱除SO2的川崎湿法石灰石,石膏工艺。该套烟气脱硫系统(FGD)处理烟气量为定洲发电厂,1和,2机组(2×600MW)100,的烟气量,定洲电厂的FGD系统由以下子系统组成: (1)吸收塔系统 (2)烟气系统(包括烟气再热系统和增压风机) (3)石膏脱水系统(包括真空皮带脱水系统和石膏储仓系统) (4)石灰石制备系统(包括石灰石接收和储存系统、石灰石磨制系统、石灰石供浆系统) (5)公用系统 (6)排放系统 (7)废水处理系统 1、吸收塔系统 吸收塔采用川崎公司先进的逆流喷雾塔,烟气由侧面进气口进入吸收塔,并在上升区与雾状浆液逆流接触,处理后的烟气在吸收塔顶部翻转向下,从与吸收塔烟气入口同一水平位置的烟气出口排至烟气再热系统。 吸收塔塔体材料为内衬玻璃鳞片的碳钢板。吸收塔烟气入口为内衬耐热玻璃鳞片的碳钢板。吸收塔内上流区烟气流速为4.2m/s,下流区烟气流速为10m/s。在上流区配有3组喷淋层,安装的三重螺旋喷嘴使气液效率接触,并达到高的SO2吸收性能。每个吸收塔配置3台循环泵。另有1台叶轮作为仓库备用。脱硫后的烟气流向装在吸收塔出口处的除雾器。在这个过程中,烟气与吸收塔喷嘴喷出的再循环浆液进行有效的接触。

石灰石-石膏法湿法烟气脱硫工艺介绍、技术特点、常见问题及解决办法

石灰石-石膏法湿法烟气脱硫工艺介绍 1、研究背景 我国是以煤炭为主要能源的国家,煤炭占一次能源消费总量的7 0%左右。煤炭造成的大气污染有二氧化碳、二氧化硫、氮氧物和粉尘等。控制二氧化硫排放已成为社会和经济可持续发展的迫切要求。目前,全世界烟气脱硫工艺共有200多种,经过几十年不断的探索和实践,在火电厂上应用的脱硫工艺仅在10种左右,主要包括有:石灰石-石膏湿法烟气脱硫工艺;旋转喷雾半干法烟气脱硫工艺;炉内喷钙加尾部烟道增湿活化脱硫工艺;循环流化床锅炉脱硫工艺;海水脱硫烟气工艺;电子束烟气脱硫工艺以及荷电干式喷射法烟气脱硫等工艺。 2、工艺流程 石灰石-石膏湿法烟气脱硫工艺是目前应用最广泛的一种脱硫技术,其基本工艺流程如下: 锅炉烟气经电除尘器除尘后,通过增压风机、GGH(可选)降温后进入吸收塔。在吸收塔内烟气向上流动且被向下流动的循环浆液以逆流方式洗涤。循环浆液则通过喷浆层内设置的喷嘴喷射到吸收塔中,以便脱除SO2、SO3、HCL和HF,与此同时在“强制氧化工艺”的处理下反应的副产物被导入的空气氧化为石膏(CaSO4?2H2O),并消耗作为吸收剂的石灰石。循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可使气体和液体得以充分接触。每个泵通常与其各自的喷淋层相连接,即通常采用单元制。

在吸收塔中,石灰石与二氧化硫反应生成石膏,这部分石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。脱水系统主要包括石膏水力旋流器(作为一级脱水设备)、浆液分配器和真空皮带脱水机。 经过净化处理的烟气流经两级除雾器除雾,在此处将清洁烟气中所携带的浆液雾滴去除。同时按特定程序不时地用工艺水对除雾器进行冲洗。进行除雾器冲洗有两个目的,一是防止除雾器堵塞,二是冲洗水同时作为补充水,稳定吸收塔液位。 在吸收塔出口,烟气一般被冷却到46—55℃左右,且为水蒸气所饱和。通过GGH将烟气加热到80℃以上,以提高烟气的抬升高度和扩散能力。 最后,洁净的烟气通过烟道进入烟囱排向大气。 3、化学原理 石灰石-石膏湿法烟气脱硫工艺的化学原理如下:①烟气中的二氧化硫溶解水,生成亚硫酸并离解成氢离子和HSO-3离子;②烟气中的氧和氧化风机送入的空气中的氧将溶液中HSO-3氧化成SO2-4;③吸收剂中的碳酸钙在一定条件下于溶液中离解出Ca2+;④在吸收塔内,溶液中的SO2-4、Ca2+及水反应生成石膏(CaSO4·2H2O)。化学反应式分别如下: ① SO2+H2O→H2SO3→H++HSO-3 ② H++HSO-3+1/2O2→2H++SO2-4 ③ CaCO3+2H++H2O→Ca2++2H2O+CO2↑ ④ Ca2++SO2-4+2H2O→CaSO4·2H2O

石灰石-石膏湿法烟气脱硫工艺的化学原理

石灰石-石膏湿法烟气脱硫工艺的化学原理 一、概述:脱硫过程就是吸收,吸附,催化氧化和催化还原,石灰石浆液洗涤含SO 2 烟气,产生化学反应分离出脱硫副产物,化学吸收速率较快与扩散速率有关,又与化学反应速度有关,在吸收过程中被吸收组分的气液平衡关系,既服从于相平衡(液气比L/G,烟气和石灰石浆液的比),又服从于化学平衡(钙硫比Ca/S,二氧化硫与炭酸钙的化学反应)。 1、气相:烟气压力,烟气浊度,烟气中的二氧化硫含量,烟尘含量,烟气中的氧含量,烟气温度,烟气总量 2、液相:石灰石粉粒度,炭酸钙含量,黏土含量,与水的排比密度, 3、气液界面处:参加反应的主要是SO 2和HSO 3 -,它们与溶解了的CaCO 3 的反应 是瞬间进行的。 二、脱硫系统整个化学反应的过程简述: 1、 SO 2 在气流中的扩散, 2、扩散通过气膜 3、 SO 2 被水吸收,由气态转入溶液态,生成水化合物 4、 SO 2 水化合物和离子在液膜中扩散 5、石灰石的颗粒表面溶解,由固相转入液相 6、中和(SO 2 水化合物与溶解的石灰石粉发生反应) 7、氧化反应 8、结晶分离,沉淀析出石膏, 三、烟气的成份:火力发电厂煤燃烧产生的污染物主要是飞灰、氮氧化物和二氧 化硫,使用静电除尘器可控制99%的飞灰污染。 四、二氧化硫的物理、化学性质: ①. 二氧化硫SO 2 的物理、化学性质:无色有刺激性气味的有毒气体。密度比空气大,易液化(沸点-10℃),易溶于水,在常温、常压下,1体积水大约能 溶解40体积的二氧化硫,成弱酸性。SO 2 为酸性氧化物,具有酸性氧化物的通性、

还原性、氧化性、漂白性。还原性更为突出,在潮湿的环境中对金属材料有腐蚀性,液体SO 2 无色透明,是良好的制冷剂和溶剂,还可作防腐剂和消毒剂及还原剂。 ②. 三氧化硫SO 3的物理、化学性质:由二氧化硫SO 2 催化氧化而得,无色易挥 发晶体,熔点16.8℃,沸点44.8℃。SO 3为酸性氧化物,SO 3 极易溶于水,溶于 水生成硫酸H 2SO 4 ,同时放出大量的热, ③. 硫酸H 2SO 4 的物理、化学性质:二元强酸,纯硫酸为无色油状液体,凝固点 为10.4℃,沸点338℃,密度为1.84g/cm3,浓硫酸溶于水会放出大量的热,具有强氧化性(是强氧化剂)和吸水性,具有很强的腐蚀性和破坏性, 五、石灰石湿-石膏法脱硫化学反应的主要动力过程: 1、气相SO 2被液相吸收的反应:SO 2 经扩散作用从气相溶入液相中与水生成亚硫 酸H 2SO 3 亚硫酸迅速离解成亚硫酸氢根离子HSO 3 -和氢离子H+,当PH值较高时, HSO 3二级电离才会生成较高浓度的SO 3 2-,要使SO 2 吸收不断进行下去,必须中和 电离产生的H+,即降低吸收剂的酸度,碱性吸收剂的作用就是中和氢离子H+当吸收液中的吸收剂反应完后,如果不添加新的吸收剂或添加量不足,吸收液的酸 度迅速提高,PH值迅速下降,当SO 2溶解达到饱和后,SO 2 的吸收就告停止,脱 硫效率迅速下降 2、吸收剂溶解和中和反应:固体CaCO 3的溶解和进入液相中的CaCO 3 的分解, 固体石灰石的溶解速度,反应活性以及液相中的H+浓度(PH值)影响中和反应速度和Ca2+的氧化反应,以及其它一些化合物也会影响中和反应速度。Ca2+的形 成是一个关键步骤,因为SO 2正是通过Ca2+与SO 3 2-或与SO 4 2-化合而得以从溶液中 除去, 3、氧化反应:亚硫酸的氧化,SO 32-和HSO 3 -都是较强的还原剂,在痕量过渡金属 离子(如锰离子Mn2+)的催化作用下,液相中的溶解氧将它们氧化成SO 4 2-。反应的氧气来源于烟气中的过剩空气和喷入浆液池的氧化空气,烟气中洗脱的飞灰和石灰石的杂质提供了起催化作用的金属离子。 4、结晶析出:当中和反应产生的Ca2+、SO 32-以及氧化反应产生的SO 4 2-,达到一 定浓度时这三种离子组成的难溶性化合物就将从溶液中沉淀析出。沉淀产物: ①. 或者是半水亚硫酸钙CaSO 3·1/2H 2 O、亚硫酸钙和硫酸钙相结合的半水固溶 体、二水硫酸钙CaSO 4·2H 2 O。这是由于氧化不足而造成的,系统易产生硬垢。

石灰石—石膏法脱硫工艺

石灰石-石膏法湿法烟气脱硫工艺 我国是以煤炭为主要能源的国家,煤炭占一次能源消费总量的70%左右。煤炭造成的大气污染有二氧化碳、二氧化硫、氮氧物和粉尘等。控制二氧化硫排放已成为社会和经济可持续发展的迫切要求。目前,全世界烟气脱硫工艺共有200多种,经过几十年不断的探索和实践,在火电厂上应用的脱硫工艺仅在10种左右,主要包括有:石灰石-石膏湿法烟气脱硫工艺;旋转喷雾半干法烟气脱硫工艺;炉内喷钙加尾部烟道增湿活化脱硫工艺;循环流化床锅炉脱硫工艺;海水脱硫烟气工艺;电子束烟气脱硫工艺以及荷电干式喷射法烟气脱硫等工艺。 石灰石-石膏湿法烟气脱硫工艺是目前应用最广泛的一种脱硫技术,其基本工艺流程如下:锅炉烟气经电除尘器除尘后,通过增压风机、GGH(可选)降温后进入吸收塔。在吸收塔内烟气向上流动且被向下流动的循环浆液以逆流方式洗涤。循环浆液则通过喷浆层内设置的喷嘴喷射到吸收塔中,以便脱除SO2、SO3、HCL和HF,与此同时在“强制氧化工艺”的处理下反应的副产物被导入的空气氧化为石膏(CaSO4?2H2O),并消耗作为吸收剂的石灰石。循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可使气体和液体得以充分接触。每个泵通常与其各自的喷淋层相连接,即通常采用单元制。 在吸收塔中,石灰石与二氧化硫反应生成石膏,这部分石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。脱水系统主要包括石膏水力旋流器(作为一级脱水设备)、浆液分配器和真空皮带脱水机。 经过净化处理的烟气流经两级除雾器除雾,在此处将清洁烟气中所携带的浆液雾滴去除。同时按特定程序不时地用工艺水对除雾器进行冲洗。进行除雾器冲洗有两个目的,一是防止除雾器堵塞,二是冲洗水同时作为补充水,稳定吸收塔液位。 在吸收塔出口,烟气一般被冷却到46—55℃左右,且为水蒸气所饱和。通过GGH将烟气加热到80℃以上,以提高烟气的抬升高度和扩散能力。 最后,洁净的烟气通过烟道进入烟囱排向大气。 石灰石-石膏湿法烟气脱硫工艺的化学原理如下:①烟气中的二氧化硫溶解水,生成亚硫酸并离解成氢离子和HSO-3离子;②烟气中的氧和氧化风机送入的空气中的氧将溶液中H SO-3氧化成SO2-4;③吸收剂中的碳酸钙在一定条件下于溶液中离解出Ca2+;④在吸收塔内,溶液中的SO2-4、Ca2+及水反应生成石膏(CaSO4·2H2O)。化学反应式分别如下: ① SO2+H2O→H2SO3→H++HSO-3 ② H++HSO-3+1/2O2→2H++SO2-4 ③ CaCO3+2H++H2O→Ca2++2H2O+CO2↑ ④ Ca2++SO2-4+2H2O→CaSO4·2H2O 由于吸收剂循环量大和氧化空气的送入,吸收塔下部浆池中的HSO-3或亚硫酸盐几乎全部被氧化为硫酸根或硫酸盐,最后在CaSO4达到一定过饱和度后,结晶形成石膏-CaSO4·2 H2O。石膏可根据需要进行综合利用或作抛弃处理。 石灰石(石灰)—石膏湿法脱硫工艺系统主要有:烟气系统、吸收氧化系统、浆液制备系统、石膏脱水系统、排放系统组成。 1)烟气系统 烟气系统包括烟道、烟气挡板、密封风机和气—气加热器(GGH)等关键设备。吸收塔入口烟道及出口至挡板的烟道,烟气温度较低,烟气含湿量较大,容易对烟道产生腐蚀,需进行防腐处理。 烟气挡板是脱硫装置进入和退出运行的重要设备,分为FGD主烟道烟气挡板和旁路烟气挡板。前者安装在FGD系统的进出口,它是由双层烟气挡板组成,当关闭主烟道时,双层烟

石灰石石膏湿法烟气脱硫工艺简介和基本过程

石灰石石膏湿法烟气脱硫工艺简介和基本过程 石灰石(石灰)---石膏湿法脱硫工艺是湿法脱硫的一种,是目前世界上应用范围最广、工艺技术最成熟的标准脱硫工艺技术。是当前国际上通行的大机组火电厂烟气脱硫的基本工艺。它采用价廉易得的石灰石作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌成吸收浆液,在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被脱除,最终反应产物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴,经换热器加热升温后排入烟囱。 脱硫石膏浆经脱水装置脱水后回收。由于吸收浆液循环利用,脱硫吸收剂的利用率很高。最初这一技术是为发电容量在100MW 以上、要求脱硫效率较高的矿物燃料发电设备配套的,但近几年来,这一脱硫工艺也在工业锅炉和垃圾电站上得到了应用根据美国EPRI统计,目前已经开发的脱硫工艺大约有近百种,但真正实现工业应用的仅10多种。已经投运或正在计划建设的脱硫系统中,湿法烟气脱硫技术占80%左右。在湿法烟气脱硫技术中,石灰石/石灰—石膏湿法烟气脱流技术是最主要的技术,其优点是: 1、技术成熟,脱硫效率高,可达95%以上; 2、原料来源广泛、易取得、价格优惠; 3、大型化技术成熟,容量可大可小,应用范围广; 4、系统运行稳定,变负荷运行特性优良; 5、副产品可充分利用,是良好的建筑材料;

6、只有少量的废物排放,并且可实现无废物排放; 7、技术进步快。石灰石/石灰—石膏湿法烟气脱硫工艺,一般布置在锅炉除尘器后尾部烟道,主要有:工艺水系统、石灰石制浆系统、脱硫塔系统、石膏脱水系统、废水处理系统、事故浆液系统、DCS控制系统、电气系统等分系统。 基本工艺过程 在石灰石一石膏湿法烟气脱硫工艺中,俘获二氧化硫(SO2)的基本工艺过程:烟气进入吸收塔后,与吸收剂浆液接触、进行物理、化学反应,最后产生固化二氧化硫的石膏副产品。基本工艺过程为: (1)气态SO2与吸收浆液混合、溶解 (2)SO2进行反应生成亚硫根 (3)亚硫根氧化生成硫酸根 (4)硫酸根与吸收剂反应生成硫酸盐 (5)硫酸盐从吸收剂中分离 用石灰石作吸收剂时,SO2在吸收塔中转化,其反应简式式如下: CaCO3+SO2→CaSO3+CO2 CaCO3+2SO2+H2O ←→Ca(HSO3)2+CO2 在此,含CaCO3的浆液被称为洗涤悬浮液,它从吸收塔的上部喷入到烟气中。在吸收塔中SO2被吸收,生成Ca(HSO3)2,并落入吸收塔浆池中。当pH值基本上在5和6之间时, SO2去除率

石灰石石膏湿法脱硫工艺

石灰石-石膏法湿法烟气脱硫工艺 ⑴主要技术性能参数 a.处理烟气量:1600 m3/h ~200×104 m3/h b.烟气入口浓度: <100 g/m3 c.烟气温度: 140 ℃~2000 ℃等特点。 d.烟气含硫量: 0.1~20 %以上 e.脱硫效率: >85% f.除尘效率: >99.6% g.林格曼黑度: <一级 h.液气比: 1.2Kg/Nm3(CaO) 8Kg/Nm3(CaCO3) i.钙硫比: <1.2摩尔/摩尔 j.补水量: <循环水量的3% k.脱水率: >99%(引风机不带水) l.脱硫塔体阻损: <1200Pa ⑵工作原理 石灰(石灰石)-石膏法湿式脱硫除尘工艺见工艺流程图。从锅炉排出的含尘烟气经烟道进入烟气换热器,与从吸收塔排出的低温烟气换热降温后进入吸收塔,经过均流孔板上行,与多层雾化喷淋下来的洗涤液进行充分混合,传质换热,烟气降温的同时,二氧化硫被吸收液洗涤吸收。含有细液滴水气的烟气经过水幕式喷淋洗涤液时,烟气中的细小液

滴被较大液滴吸收分离,再经过上部多层脱水除雾装置进一步除雾后经管道排出吸收塔外,进入烟气换热器,与进口高温烟气换热升温后经引风机进入烟囱高空排放。洗涤液吸收烟气中的二氧化硫后落入吸收塔下部的氧化池,二氧化硫与石灰反应生成亚硫酸钙,被均布在池底的氧化装置送入的空气进一步氧化成稳定的硫酸钙。氧化池中部分混合溶液被抽吸送入一级水力旋流器,经旋流浓缩后送入真空带式压滤机,进一步滤出水分,制成工业石膏(CaSO4·2H2O)。氧化池中低PH值的混合液部分被送入洗涤吸收塔底池,与新投入的脱硫液充分混合,经水泵输送到喷淋层,吸收烟气中的二氧化硫,进行下一个循环。 一级水力旋流器的上清液和真空带式压滤机的下清液均进入循环池,部分被送入二级水力旋流器,部分被送入脱硫液制备搅拌罐。二级水力旋流器少部分上清液外排。 脱硫剂(石灰或石灰石粉剂)由汽车送入脱硫剂贮仓中,使用时由计量装置通过螺旋混料机送入脱硫剂熟化装置中,按比例制成一定浓度的石灰乳液,自流进入脱硫剂贮液箱中。 ⑶工艺特点及适用范围 a.石灰(石灰石)-石膏法脱硫工艺为湿式脱硫工艺。工艺流程简单、技术先进又可靠,是目前国内外烟气脱硫应

石灰石石膏湿法脱硫工艺

石灰石石膏湿法脱硫工艺 一、工艺简介 石灰石石膏湿法脱硫工艺是目前应用最广泛的脱硫技术之一,其原理 是利用石灰石和石膏反应生成硬度较高的钙硫石,从而达到减少二氧 化硫排放的目的。该工艺具有投资成本低、运行成本低、处理效率高 等优点,在电力、钢铁、化工等行业得到广泛应用。 二、原材料准备 1. 石灰石:选用纯度高、颗粒均匀的优质石灰石。 2. 石膏:选用纯度高、含水量适中的优质天然石膏。 3. 水:选用清洁无杂质的自来水或经过处理后的水源。 三、工艺流程 1. 粉碎:将采购回来的石灰石和石膏进行粉碎,使其颗粒大小均匀, 便于后续反应。 2. 配料:按一定比例将粉碎好的石灰石和石膏混合在一起,制成配料。 3. 反应:将配料加入搅拌槽中,加入适量的水,进行搅拌反应。反应 过程中,石灰石和石膏发生化学反应,生成硬度较高的钙硫石。 4. 沉淀:将反应后的钙硫石沉淀到底部,分离出上清液。 5. 过滤:将上清液通过过滤器过滤,去除其中的杂质和悬浮物。 6. 浓缩:将过滤后的液体进行浓缩处理,使其达到一定浓度。

7. 干燥:将浓缩后的液体进行干燥处理,制成成品。 四、关键工艺参数控制 1. 配料比例:配料比例是影响反应效果和产品质量的关键因素之一。 通常采用1:1~1:1.5的比例进行配料。 2. 反应温度:反应温度对反应速率和产物质量有很大影响。通常采用55℃左右的温度进行反应。 3. 反应时间:反应时间也是影响产物质量和工艺效率的重要因素之一。通常采用2~4小时左右的时间进行反应。 4. 搅拌速度:搅拌速度对于保证反应均匀和产物质量也有很大影响。 通常采用20~30转/分的速度进行搅拌。 五、工艺优化及改进 1. 采用先进的粉碎设备,提高石灰石和石膏的粉碎效率,提高配料的 均匀性。 2. 采用自动化控制系统,实现对关键工艺参数的实时监测和调节,提 高生产效率和产品质量。 3. 优化反应槽结构,提高反应效率和产物质量。 4. 加强废水处理,减少对环境的污染。 六、安全措施 1. 在操作过程中要注意防护眼睛、皮肤等部位,避免接触到化学品。 2. 工艺设备要定期检查维护,确保运行安全可靠。

脱硫工艺流程

脱硫工艺流程 1、石灰石/石膏湿法脱硫工艺过程简介 石灰石/石膏湿法脱硫工艺是以石灰石溶解后制成的碱性溶液作为吸收剂对烟气中含有的酸性气体污染物(主要是二氧化硫)进行吸收处理的一种工艺。湿法脱硫工艺的主要过程可分为以下几个部分: (1)混合和加入新鲜的吸收液;(2)吸收烟气中的二氧化硫并反应生成亚硫酸钙;(3)氧化亚硫酸钙生成石膏;(4)从吸收液中分离石膏。 2 、吸收塔系统在湿法脱硫工艺中的重要地位 吸收塔系统是石灰石/石膏湿法脱硫工艺的核心部分,在湿法脱硫工艺的四个部分中,(1)~(3)三个部分是在吸收塔系统中实现的,即在吸收塔系统中完成了对烟气中二氧化硫进行吸收、氧化和结晶的整个反应过程。 2.1吸收塔系统的构成 吸收塔系统主要由如下几个子系统构成:吸收塔本体系统、石灰石浆液供应系统、氧化空气供应系统、石膏浆液排出系统。此外,石膏一级脱水系统及排空系统等也与吸收塔系统的运行密切相关。 2.2 吸收塔系统的工作原理 2.2.1 吸收塔本体吸收系统:在吸收塔的喷淋区,石灰石、副产物和水等混合物形成的吸收液经循环浆液泵打至喷淋层,在喷嘴处雾化成细小的液滴,自上而下地落下,而含有二氧化硫的烟气则逆流而上,气液接触过程中,发生如下反应: CaCO3+2 SO2+H2O <=> Ca(HSO3)2+CO2 除SO2外,烟气中三氧化硫、氯化氢和氟化氢等酸性组分也以很高的效率从烟气中去除。浆液中的水将烟气冷却至绝热饱和温度,消耗的水量由工艺水补偿。为优化吸收塔的水利用,这部分补充水被用来清洗吸收塔顶部的除雾器。 2.2.2氧化空气供应系统 在吸收塔的浆池区,通过鼓入空气,使亚硫酸氢钙在吸收塔氧化生成石膏,反应如下: Ca(HSO3)2+O2+ CaCO3+3 H2O 2CaSO4.2H2O+CO2

石灰石法脱硫工艺流程

石灰石法脱硫工艺流程 1. 概述 石灰石法脱硫是目前广泛应用于工业领域的一种脱硫方法。该工艺利用石灰石和二氧化硫(SO2)进行反应,生成石膏和二氧化碳(CO2),从而达到去除废气中二氧化硫的目的。本文将详细介绍石灰石法脱硫的步骤和流程。 2. 工艺流程 石灰石法脱硫主要包括以下几个步骤:原料准备、干法或湿法喷射吸收、产物处理以及废水处理。下面将逐一介绍每个步骤的具体操作。 2.1 原料准备 首先需要准备好所需的原料,包括石灰石、水和二氧化硫。其中,高纯度的石灰石是必需的,其含量应达到90%以上。水用于稀释和溶解反应中生成的产物,而二氧 化硫则是待处理废气中主要含有的污染物。 2.2 干法或湿法喷射吸收 石灰石法脱硫可以采用干法或湿法喷射吸收的方式进行。下面将分别介绍两种方式的操作步骤。 2.2.1 干法喷射吸收 干法喷射吸收是指将粉末状的石灰石直接喷入废气中,通过干法反应去除二氧化硫。具体步骤如下: - 将石灰石粉末通过输送设备送入喷射器。 - 调节喷射器的进料速度和角度,使其与废气充分接触。 - 废气中的二氧化硫与石灰石发生反应生成 硫酸钙(CaSO4)和二氧化碳。 - 通过除尘设备将固体产物(CaSO4)从废气中分离。 2.2.2 湿法喷射吸收 湿法喷射吸收是指将制成浆状的石灰石溶液喷入废气中,通过湿法反应去除二氧化硫。具体步骤如下: - 将石灰石加水搅拌制成浆状溶液。 - 将溶液送入喷射器,通过喷嘴将其喷入废气中。 - 废气中的二氧化硫与石灰石溶液发生反应生成硫酸 钙和水。 - 通过除尘设备将固体产物(CaSO4)从废气中分离。 2.3 产物处理 产物处理是指对干法或湿法喷射吸收后得到的固体产物进行处理。主要包括固液分离、干燥和脱水等步骤。具体操作如下: - 将含有硫酸钙的溶液通过过滤或离心

石灰石石膏湿法脱硫工艺脱硫效率影响因素

石灰石石膏湿法脱硫工艺脱硫效率影响因素石灰石石膏湿法脱硫工艺是目前应用较广泛的脱硫方法之一、它通过 利用石灰石制备的石膏与废气中的二氧化硫进行反应,形成硫酸钙并固定 在石膏床上,从而达到脱硫的效果。在石灰石石膏湿法脱硫工艺中,影响 脱硫效率的因素有以下几个方面: 1.石灰石质量:石灰石的成分和性质对脱硫效果有直接影响。石灰石 中主要的成分是钙碳酸盐,其含量越高,脱硫效率就越高。同时,石灰石 的细度对脱硫效果也有一定的影响,细度越大,比表面积越大,与废气中 的二氧化硫接触的面积也就越大,脱硫效果也会提高。 2.石膏反应和固结特性:石膏对二氧化硫的吸收和固结是实现脱硫的 关键。石膏床的形态和结构特性会影响废气中二氧化硫的吸收速率和脱硫 效率。石膏床的充实度、温度、湿度等因素都会对石膏反应和固结有一定 影响,从而影响脱硫效率。 3.废气中的气体成分和浓度:废气中除了二氧化硫外,还可能含有其 他酸性气体或氧化性气体。这些气体的存在会对石灰石石膏湿法脱硫工艺 的效果产生影响。例如,废气中存在大量的氮氧化物时,会生成硝酸,从 而影响脱硫的效果。 4.溶液浓度和温度:溶液的浓度和温度对脱硫效率也有重要影响。溶 液浓度的增加可以增大石膏床与二氧化硫的接触面积,从而提高脱硫效率。此外,温度的升高也可以促进溶液中二氧化硫的溶解和反应速率,增加脱 硫效果。 5.反应时间:脱硫反应的时间越长,二氧化硫与石膏的反应就越充分,脱硫效率也会提高。因此,反应时间的控制对脱硫的效果非常重要。

需要注意的是,石灰石石膏湿法脱硫工艺并非完全可以达到100%的脱硫效果,还会有一部分二氧化硫未能被脱除。因此,在实际应用中,还需要根据污染物排放标准和工艺要求进行合理的设计和操作,以达到所需的脱硫效果。

石灰石—石膏法脱硫工艺

石灰石—石膏法脱硫工艺-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

石灰石-石膏法湿法烟气脱硫工艺 我国是以煤炭为主要能源的国家,煤炭占一次能源消费总量的70%左右。煤炭造成的大气污染有二氧化碳、二氧化硫、氮氧物和粉尘等。控制二氧化硫排放已成为社会和经济可持续发展的迫切要求。目前,全世界烟气脱硫工艺共有200多种,经过几十年不断的探索和实践,在火电厂上应用的脱硫工艺仅在10种左右,主要包括有:石灰石-石膏湿法烟气脱硫工艺;旋转喷雾半干法烟气脱硫工艺;炉内喷钙加尾部烟道增湿活化脱硫工艺;循环流化床锅炉脱硫工艺;海水脱硫烟气工艺;电子束烟气脱硫工艺以及荷电干式喷射法烟气脱硫等工艺。 石灰石-石膏湿法烟气脱硫工艺是目前应用最广泛的一种脱硫技术,其基本工艺流程如下: 锅炉烟气经电除尘器除尘后,通过增压风机、GGH(可选)降温后进入吸收塔。在吸收塔内烟气向上流动且被向下流动的循环浆液以逆流方式洗涤。循环浆液则通过喷浆层内设置的喷嘴喷射到吸收塔中,以便脱除SO2、SO3、HCL和HF,与此同时在“强制氧化工艺”的处理下反应的副产物被导入的空气氧化为石膏(CaSO4•2H2O),并消耗作为吸收剂的石灰石。循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可使气体和液体得以充分接触。每个泵通常与其各自的喷淋层相连接,即通常采用单元制。 在吸收塔中,石灰石与二氧化硫反应生成石膏,这部分石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。脱水系统主要包括石膏水力旋流器(作为一级脱水设备)、浆液分配器和真空皮带脱水机。 经过净化处理的烟气流经两级除雾器除雾,在此处将清洁烟气中所携带的浆液雾滴去除。同时按特定程序不时地用工艺水对除雾器进行冲洗。进行除雾器冲洗有两个目的,一是防止除雾器堵塞,二是冲洗水同时作为补充水,稳定吸收塔液位。 在吸收塔出口,烟气一般被冷却到46—55℃左右,且为水蒸气所饱和。通过GGH将烟气加热到80℃以上,以提高烟气的抬升高度和扩散能力。 最后,洁净的烟气通过烟道进入烟囱排向大气。 石灰石-石膏湿法烟气脱硫工艺的化学原理如下:①烟气中的二氧化硫溶解水,生成亚硫酸并离解成氢离子和HSO-3离子;②烟气中的氧和氧化风机送入的空气中的氧将溶液中HSO-3氧化成SO2-4;③吸收剂中的碳酸钙在一定条件

石灰石(石灰)-石膏脱硫工艺

烟气净化系统 一、烟气脱硫工艺的选择 当前烟气脱流工艺有上白种,但是真正具有实用价值的工艺不过十几种。根据脱硫反应物和脱硫产物存在的状态大致可以将脱硫工艺分为十氏、半十氏和湿氏三种。 湿氏工艺已经有五十多年的发展历史,经过不断的改进和完善之后,目前技术比较成熟,而且脱硫的效果良好,机组容量大,运行的费用较低和副产品容易回收等等优势。目前主要用石灰石、生石灰或碳酸钙作为洗涤剂,在反应塔中对烟气进行洗涤最终实现去除烟气中的二氧化硫的效果。湿式工艺主要有石灰石- 石膏法、双碱法、氧化镁法石灰石-石膏法是将空气鼓入到吸收塔,从而使业硫酸钙氧化成石膏,由于空气的鼓入会使料液更加的均匀,后期的脱硫效果较好,堵塞和结垢的几率大为降低。而且具有运行费用低,生成的副产品石膏财可以再利用。其不足之处就是系统的管理较为复杂,初期的投资较大。湿式工艺中使用较多的一种工艺是钠碱双碱法,即采用碳酸钠或者氢氧化钠溶液作为第一吸收液,然后用石灰石或者石灰溶液作为第二碱液,再生后溶液继续循环使用,最后二氧化硫会以硫酸钙或者业硫酸钙的形式沉淀下来,从而达到去硫的效果。双碱法是在吸收塔之外生成硫酸钙或业硫酸钙,因此没有结垢和堵塞的不足。另外一种湿式工艺是氧化镁法湿式脱硫。由于我国的氧化镁资源储备丰富,而且可以再生,由于MgO MnO2 ZnO对二氧化硫具有很好的吸收功能,氧化镁吸收法中具有代表性的工艺有基里洛法(容易再生MgOx MnOy和凯米克法(用MgO的水溶液[Mg(OH) 2]吸收二氧化硫)。将氧化镁法应用到锅炉烟气除硫具有成本低,吸收后的高浓度二氧化硫气体财适宜制造硫酸或者固态硫磺,可以实现资源再利用。 上个世纪80年代初,半十式烟气脱硫技术开始应用于供暖锅炉烟气脱硫中,其中最主要的工艺为喷雾十燥法,该除尘脱硫法主要是利用喷雾十燥的原理,当吸收剂在吸收塔内与烟气中的二氧化硫发生化学反应之后,会生成业硫酸钙固体 灰渣,与此同时,烟气热量会传递到吸收剂并使之十燥。喷雾十燥法的吸收剂通常会选择生石灰,然后经制浆后雾化进入吸收塔。这一工艺由于后期吸收剂中的微粒不能够完全得到十燥,烟气中会含有一定量的吸收剂,物料接触烟气就会降低烟气温度,烟气的湿度就会随之增大而导致除尘器中容易出现结垢,破坏绝缘。 通常喷雾干燥法会选择布袋除尘器,能够有效解决除尘器入口处粉尘浓度大,锅炉燃烧状态不稳定的不足。而另一种常用的半干法脱硫为炉内喷钙脱硫法,该方

石灰石-石膏湿法烟气脱硫工艺原理及特点

石灰石-石膏湿法烟气脱硫工艺原理及特点 一、工艺原理 该工艺采用石灰石或石灰做脱硫吸收剂,石灰石破碎与水混合,磨细成粉壮,制成吸收浆液(当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆)。在吸收塔内,烟气中的SO2与浆液中的CaCO3(碳酸钙)以及鼓入的氧化空气进行化学反应生成二水石膏,二氧 化硫被脱除。吸收塔排出的石膏浆液经脱水装置脱水后回收。脱硫后的烟气经除雾器去水、换热器加热升温后进入烟囱排向大气。 烟气从吸收塔下侧进入,与吸收浆液逆流接触,在塔内CaCO3与SO2、H2O进行反应,生成CaSO3·1/2H2O 和CO2↑;对落入吸收塔浆浆池的CaSO3·1/2H2O和O2、H2O再进行氧气反应,得到脱流副产品二水石膏。 化学反应方程式: 2CaCO3+H2O+2SO2====2Ca·S1O/32H2O+2CO2 2CaSO·3 1/2H2O+O2+3H2O====2CaS·O24 H2O 二、FGD烟气系统的原理 从锅炉引风机后烟道引出的烟气,通过增压风机升压,烟气换热器(GGH)降温后,进入吸收塔,在吸收塔内与雾状石灰石浆液逆流接触,将烟气脱硫净化,经除雾期除去水雾后,又 经GGH升温至大于75 摄氏度,再进入净烟道经烟囱排放。 脱硫系统在引风机出口与烟囱之间的烟道上设置旁路挡板门,当FGD装置运行时,烟道旁路 挡板门关闭,FGD装置进出口挡板门打开,烟气通过增压风机的吸力作用引入FGD系统。在FGD装置故障和停运时,旁路挡板门打开,FGD装置进出口挡板门关闭,烟气由旁路挡板经烟道直接进入烟囱,排向大气,从而保证锅炉机组的安全稳定运行。 FGD装置的原烟气挡板、净烟气挡板及旁路挡板一般采用双百叶挡板并设置密封空气系统。旁路挡板具有快开功能,快开时间要小于10s,挡板的调整时间在正常情况下为75s,在事 故情况下约为3~10s。 一、旁路挡板门的控制原理 概述 一、烟气脱硫挡板风门的结构简述 1.烟气脱硫挡板风门——风门框架和截面的主体部分和叶片均按设计用不同材质、规格的钢板制造。 2.烟气脱硫挡板风门——与系统的联接法兰用螺栓固定在相应的系统烟道中。

相关主题
相关文档
最新文档