九年级圆与相似三角形专题复习教学内容

九年级圆与相似三角形专题复习教学内容
九年级圆与相似三角形专题复习教学内容

九年级圆中三角形相似复习专题

1、 黄金分割点:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果

AC

BC

AB AC =

,即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。其中AB AC 2

1

5-=

≈0.618AB 。 2、 黄金分割的几何作图:已知:线段AB.求作:点C 使C 是线段AB 的黄金分割点.作法:

(1)过点B 作BD ⊥AB ,使BD=0.5AB ; (2)连结AD ,在DA 上截取DE=DB ;

(3)在AB 上截取AC=AE ,则点C 就是所求作的线段AB 的黄金分割点。 (4)矩形中,如果宽与长的比是黄金比,这个矩形叫做黄金矩形 3、相似三角形

1)定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。 几种特殊三角形的相似关系:两个全等三角形一定相似。

两个等腰直角三角形一定相似。 两个等边三角形一定相似。

两个直角三角形和两个等腰三角形不一定相似。

补充:对于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等); 4、 性质:两个相似三角形中,对应角相等、对应边成比例。

5、 相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。 如△ABC 与△DEF 相似,记作△ABC ∽△DEF 。相似比为k 。

6、判定:①定义法:对应角相等,对应边成比例的两个三角形相似。

②三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。

三角形相似的判定定理:

判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似。(此定理用的最多)

判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似。

判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似;简述为:三边对应成比例,两三角形相似。 7、 直角三角形相似判定定理:

(1) 斜边与一条直角边对应成比例的两直角三角形相似。

(2) 直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角

形也相似。

题型:圆与三角形相似问题。

1、如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,交AC 于点Q ,若QP =QO

,则QA

QC 的值为( )

A. 132-

B. 32

C. 23+

D. 23+

2、如图,已知点A 、B 、C 、D 顺次在⊙O 上,?

?AB BD =,BM ⊥AC 于M ,求证:AM=DC+CM 。

3、如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点为P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长。

4、如图,在Rt ABC △中,斜边1230BC C =∠=,°,D 为BC 的中点,ABD △的外接圆O ⊙与AC 交于F 点,过A 作O ⊙的切线AE 交DF 的延长线于E 点; (1)求证:AE DE ⊥; (2)计算:AC AF ·的值。

5、如图,在直角梯形ABCD 中,AB CD ∥,90B ∠=o ,AB =AD ,∠BAD 的平分线交BC 于E ,连接DE . (1)说明点D 在△ABE 的外接圆上;

(2)若∠AED =∠CED ,试判断直线CD 与△ABE 外接圆的位置关系,并说明理由。 Q O D

C

B

A

A E F O

D

B C

6、如图,已知圆内接△ABC中,AB>AC,D为弧BAC的中点,DE⊥AB于E;求证:BD2-AD2=AB×AC。

7、如图,已知四边形ABCD外接⊙O的半径为5,对角线AC与BD的交点为E,且AB2=AE×AC,BD =8,求△ABD的面积?

8、如图,已知AD是△ABC外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB,FC.

(1)求证:FB=FC;(2)求证:FB2=FA·FD;

(3)若AB是△ABC的外接圆的直径,∠EAC=120°,BC=6cm,求AD的长。

9、如图,已知P是⊙O直径AB延长线上的一点,直线PCD交⊙O于C、D两点,弦DF⊥AB于点H,CF交AB于点E;

(1)求证:PA·PB=PO·PE;

(2)若DE⊥CF,∠P=15°,⊙O的半径为2,求弦CF的长。

10、如图,AB,AC,AD是圆中的三条弦,点E在AD上,且AB=AC=AE.请你说明以下各式成立的理

由:(1)∠CAD=2∠DBE;(2)AD2-AB2=BD·DC。

11、如图所示,ABCD 为☉O 的内接四边形,E 是BD 上的一点,且有∠BAE=∠DAC ; (1)求证:△ABC ∽△AED ; (2)求证:AB?DC + AD?BC = AC?BD 。

题型:动点问题。 1、如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=24cm ,AB=8cm ,BC=26cm ,动点P 从A 开始沿AD 边向D 以1cm/s 的速度运动;动点Q 从点C 开始沿CB 边向B 以3cm/s 的速度运动.P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts ;

(1)当t 为何值时,四边形PQCD 为平行四边形? (2)当t 为何值时,四边形PQCD 为等腰梯形? (3)当t 为何值时,四边形PQCD 为直角梯形?

2、如图,△ABC 中,点O 为AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的外角平分线CF 于点F ,交∠ACB 内角平分线CE 于E . (1)试说明EO=FO ;

(2)当点O 运动到何处时,四边形AECF 是矩形并证明你的结论;

(3)若AC 边上存在点O ,使四边形AECF 是正方形,猜想△ABC 的形状并证明你的结论。

3、如图,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G ; (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度; (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围); (3)如果△PGH 是等腰三角形,试求出线段PH 的长。

E O

D C B A H M N G P O A

B x

y

4、如图,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=xCE=y; (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;

(2)如果∠BAC 的度数为a ,∠DAE 的度数为b ,当a ,b 满足怎样的关系式时,(1)中y 与x 之间的函数

解析式还成立?试说明理由。

5、直线3

64

y x =-

+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A 、B 两点的坐标;

(2)设点Q 的运动时间为t 秒,三角形OPQ 的面积为S ,求出S 与t 之间的函数关系式;

(3)当48

5

S =

时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标。

6、ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F .

(1)当6=AE 时,求AF 的长;

(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长;

(3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长。

7、如图所示,有一块半圆形的木板,现要把它截成三角形板块.三角形的两个顶点分别为A 、B ,另一个顶点C 在半圆上,问怎样截取才能使截出的三角形的面积最大?要求说明理由。

A

E D C B

A B C D E O l

A ′ 8、如图所示,在矩形ABCD 中,A

B =3,点O 在对角线A

C 上,直线l 过点O ,且与AC 垂直交A

D 点

E (1)若直线l 过点B ,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点

F ,且AO =

4

1

AC ,设AD 的长为x ,五边形BCDEF 的面积为S ; ①求S 关于x 的函数关系式,并指出x 的取值范围; ②探索:是否存在这样的x ,以A 为圆心,以

x 4

3

长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由。

9、如图所示,半经为1的半圆O 上有两个动点A 、B ,若AB=1,判断∠AOB 的大小是否会随点A 、B 的变化而变化,若变化,求出变化范围,若不变化,求出它的值。四边形ABCD 的面积的最大值。

10、已知△ABC 为直角三角形,AC=5,BC=12,∠ACB 为直角,P 是AB 边上的动点(与点A 、B 不重合),Q 是BC 边上动点(与点B 、C 不重合)

(1)如图10,当PQ ∥AC ,且Q 为BC 的中点,求线段CP 的长。

(2)当PQ 与AC 不平行时,△ CPQ 可能为直角三角形吗?若有可能,求出线段CQ 的长的取值范围;若不可能,请说明理由。

A B C

2018-2019人教版九年级数学下册-27.2.3 相似三角形的应用举例带教学反思

27.2.3 相似三角形的应用举例 1.运用三角形相似的知识计算不能直接测量物体的长度和高度;(重点) 2.灵活运用三角形相似的知识解决实际问题.(难点 ) 一、情境导入 胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一” .在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量金字塔的高度的吗? 二、合作探究 探究点:相似三角形的应用 【类型一】 利用影子的长度测量物体的高度 如图,某一时刻一根2m 长的竹竿EF 的影长GE 为1.2m ,此时,小红测得一棵被 风吹斜的柏树与地面成30°角,树顶端B 在地面上的影子点D 与B 到垂直地面的落点C 的距离是3.6m ,求树AB 的长. 解析:先利用△BDC ∽△FGE 得到BC 3.6=21.2,可计算出BC =6m ,然后在Rt △ABC 中利用 含30度的直角三角形三边的关系即可得到AB 的长. 解:如图,CD =3.6m ,∵△BDC ∽△FGE ,∴BC CD =EF GE ,即BC 3.6=21.2,∴ BC =6m.在Rt △ABC 中,∵∠A =30°,∴AB =2BC =12m ,即树长AB 是12m. 方法总结:解答此类问题时,首先要把实际问题转化为数学问题.利用相似三角形对应边成比例建立相等关系求解. 变式训练:见《学练优》本课时练习“课堂达标训练” 第1题 【类型二】 利用镜子的反射测量物体的高度 小红用下面的方法来测量学校教学大楼AB 的高度.如图,在水平地面点E 处放 一面平面镜,镜子与教学大楼的距离AE =20m.当她与镜子的距离CE =2.5m 时,她刚好能从镜子中看到教学大楼的顶端B .已知她的眼睛距地面高度DC =1.6m ,请你帮助小红测量出大楼AB 的高度(注:入射角=反射角).

相似三角形与圆综合题

相似三角形与圆综合 第一部分:例题分析 例1、已知:如图,BC为半圆O的直径,AD⊥BC,垂足为D,过点B作弦BF交AD于点E,交半圆O于点F,弦A C与BF交于点H,且AE=BE.求证:(1)错误!=错误!;(2)AH·BC=2AB·BE. 例2、如图,PA为圆的切线,A为切点,PBC为割线,∠APC的平分线交AB于点D,交AC于点E,求证:(1)AD=A E;(2)AB·AE=AC·DB. 例3、AB是⊙O的直径,点C在⊙O上,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,连结OC,过点C作CD⊥OC交PQ于点D. (1)求证:△CDQ是等腰三角形; (2)如果△CDQ≌△COB,求BP∶PO的值. 例4、△ABC内接于圆O,∠BAC的平分线交⊙O于D点,交⊙O的切线BE于F,连结BD,CD. 求证:(1)BD平分∠CBE;(2)AB·BF=AF·DC. 例3、⊙O内两弦AB,CD的延长线相交于圆外一点E,由E引AD的平行线与直线BC交于F,作切线FG,G为切点,求证:EF=FG. 第二部分:当堂练习 1.如图,AB是⊙O直径,ED⊥AB于D,交⊙O于G,EA交⊙O于C,CB交ED于F,求证:DG2=DE?DF 2.如图,弦EF⊥直径MN于H,弦MC延长线交EF的反向延长线于A,求证:MA?MC=MB?MD

D C B A O M N E H 3.如图,AB 、AC 分别是⊙O的直径和弦,点D为劣弧AC 上一点,弦E D分别交⊙O于点E ,交A B于点H,交AC 于点F ,过点C的切线交ED 的延长线于点P. (1)若PC =P F,求证:AB ⊥ED ; (2)点D 在劣弧AC 的什么位置时,才能使AD 2 =D E·DF ,为什么? 4.如图(1),AD 是△ABC 的高,AE 是△ABC 的外接圆直径,则有结论:AB · AC =AE · A D成立,请证明.如果把图(1)中的∠ABC 变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立? 5.如图,AD 是△A BC的角平分线,延长AD 交△A BC 的外接圆O 于点E ,过点C 、D 、E 三点的⊙O 1与AC 的延长线交于点F ,连结E F、DF . (1)求证:△A EF ∽△F ED ; (2)若AD =8,DE =4,求EF 的长. 6.如图,PC 与⊙O 交于B ,点A 在⊙O 上,且∠PCA =∠B AP. (1)求证:P A 是⊙O 的切线. (2)△ABP 和△CAP 相似吗?为什么? (3)若PB :BC =2:3,且P C=20,求PA 的长. D C B A O E 7.已知:如图, AD 是⊙O 的弦,OB ⊥A D于点E,交⊙O 于点C ,OE =1,BE =8,A E:A B=1:3. (1)求证:AB 是⊙O 的切线; (2)点F 是A CD 上的一点,当∠AOF =2∠B时,求AF 的长. 8.如图,⊿AB C内接于⊙O ,且BC 是⊙O 的直径,AD ⊥B C于D ,F是弧BC 中点,且AF 交BC 于E ,A B=6,AC =8,求CD ,DE ,及EF 的长. 9. 已知:如图,在Rt ABC △中,90ACB ∠=,4AC =,43BC =,以AC 为直径的O 交AB 于点D ,点E 是BC 的中点,连结OD ,OB 、DE 交于点F. A C P E D H F O

(新整理)最新北师大版九年级上相似三角形讲解学习

(新整理)最新北师大版九年级上相似三角 形

①、反身性:对于任一ABC ?有ABC ?∽ABC ?. ②、对称性:若ABC ?∽'''C B A ?,则'''C B A ?∽ABC ?. ③、传递性:若ABC ?∽C B A '?'',且C B A '?''∽C B A ''''''?,则ABC ?∽C B A ''''''? (2) 、三角形相似的判定定理的预备定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似. 定理的基本图形: 用数学语言表述是:BC DE //Θ, ∴ ADE ?∽ABC ?. 知识点7 、三角形相似的判定方法 1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似. 2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似. 3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似. 4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似. 6、判定直角三角形相似的方法: (1)、以上各种判定均适用. (2)、如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边 对应成比例,那么这两个直角三角形相似. (3)、直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 知识点8 、相似三角形常见的图形 (1) E A B C D (3) D B C A E (2) C D E A B

初三数学《相似三角形》专题复习

B C 初三数学期末复习 相似三角形及应用 一、比例的基本性质,线段的比、成比例线段,黄金分割. (1)比例的基本性质:b a =d c ?ad=bc (b d ≠0) 1、甲、乙两地的实际距离20千米,则在比例尺为 1∶1000000 的地图上两地间的距离应为 厘米. 2、若3a =5b ,则a b = . 3、若线段a 、b 、c 、d 成比例且a =3cm ,b =6cm ,c =5cm ,则d = cm . 二、两个三角形相似的条件.常用基本图形——A 形、X 形…… 例1、已知如图(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB 、CD 交于O 点,对于各图中的两个的两个三角形而言,下列说法正确的是( ) A.都相似 B.都不相似 C.只有(1)相似 D.只有(2)相似 2、如图, 小正方形的边长均为1, 则下列图中的三角形(阴影部分)与△ABC 相似的是( ) 三、相似三角形的概念、性质:相似多边形的对应角相等,对应边成比例,面积比等于对应边 比的平方. 例题1.△ABC 的三条边的长分别为3、4、5,与△ABC 相似的△A′B′C′的最长边为15. 求△ A′B′C′最短边的长. 变化:△ABC 的三条边的长分别为3、4、5,与△ABC 相似的△A′B′C′的一边长为15. 求△ A′B′C′的周长. 4、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O , 若1AD =,3BC =,则AO CO 的值为 (1) A B C D O 4 3 6 8 (2)

5、如图,□ ABCD 中,E 为DC 边的中点,AE 交BD 于O ,若DO =4cm ,BO = cm . 6、如图所示,在△ABC 中,∠C=90°,AC=3,D 为BC 上一点,过点D 作DE ⊥BC 交AB 于E ,若ED=1,BD=2,则DC 的长为________. 7、如图所示,在△ABC 中,∠C=90°,AC=3,D 为BC 上一点,过点D 作 DE ⊥AB 于E ,若ED=1,BD=2,则DC 的长为________. 8、如图,△ABC 中,DE ∥BC ,DE 分别交边AB 、AC 于D 、E 两点,若AD :AB =1:3,则△ADE 与△ABC 的面积比为 . 9、如图,DE 是△ABC 的中位线,S △ADE =2,则S △ABC =_______. 10、如图所示,已知点E F 、分别是ABC △中AC AB 、边的中点,BE CF 、相交于点G , 2FG =,则CF =_______. 11、如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A 与点B 重合, 折痕为DE ,则S △BCE :S △BDE 等于( ) A . 2:5 B .14:25 C .16:25 D . 4:21 12、如图,△ABC,是一张锐角三角形的硬纸片,AD 是边BC 上的高,BC=40cm,AD=30cm,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G 、H 分别在AC ,AB 上,AD 与HG 的交点为M. (1)、求证:;AM HG AD BC = (2)、求这个矩形EFGH 的周长. A D E C B O A F E C B

九年级相似三角形知识点总结及例题讲解

相似三角形基本知识 知识点一:放缩与相似 1.图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m : n (或n m b a = ) 2、比的前项,比的后项:两条线段的比a :b 中。a 叫做比的前项,b 叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 3、比例:两个比相等的式子叫做比例,如d c b a = 4、比例外项:在比例d c b a = (或a :b =c :d )中a 、d 叫做比例外项。 5、比例内项:在比例 d c b a =(或a :b =c :d )中b 、c 叫做比例内项。 6、第四比例项:在比例 d c b a =(或a :b = c : d )中,d 叫a 、b 、c 的第四比例项。 7、比例中项:如果比例中两个比例内项相等,即比例为a b b a = (或 a:b =b:c 时,我们把b 叫做a 和d 的比 例中项。 8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 d c b a =(或a :b= c : d ) ,那么,这四条线段叫做成比例线段,简称比例线段。(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)

相似三角形与圆的结合

E D C B A B E D C B A B B B 相似三角形与圆的结合 1、 如图,圆中的弦AB 、CD 相交于E 点, 已知CE=4,BE=5,DB=6;求:弦AC 的长 2、 如图,AB 是⊙O 的直径,CD ⊥AB 于E ,观察图形, 你能得到哪些结论,请将你所得的结论写下来,和同学交流, 看谁写的多写的对。 3、 已知:如图,ABCD 是圆内节四边形,AC 、BD 相交于点E , 求证:AD ?BE=BC ?AE 4、 已知:如图,△AOB 中,∠AOB=90°,OC ⊥AB 于C , OA=3cm ,OB=4cm ,以O 为圆心,以2.4cm 为半径作⊙O 。 求证:⊙O 与AB 相切 5、 已知:如图,AB 是⊙O 的直径,C 是⊙O 外一点, CB 交⊙O 于D ,AD 2=CD ?BD 求证:AC 是⊙O 的切线 6、 已知:如图,AB 是⊙O 的直径,CD 切⊙O 于B , AC 交⊙O 于E ,AD 交⊙O 于F , 求证:AE ?AC=AF ?AD 7、 已知:如图,AB 是⊙O 的直径,CA 与⊙O 相切于点A , CE ∥AB 交⊙O 于D 、E. 求证;BE 2 =CD ?AB 8、 如图,AD 是△ABC 的高,AE 是△ABC 的外接圆的直径; 求证:AB ?AC=AD ?AE

19、如图,4531===∠=∠∠=∠BC DE AB D B ,,, (1)ABC ?∽ADE ?吗?说明理由。 (2)求AD 的长。 20、如图4,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线. 21、已知:如图,ΔABC 中,AD=DB,∠1=∠2. 求证:A E A C D E A B = 22、如图,在正方形ABCD 中,E 为AD 的中点,EF ⊥EC 交AB 于F ,连接FC (),AE AB >试证明: EF 平分∠AFC. 23、已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD

最新初三数学专题复习(相似三角形)

中考复习--相似三角形 【课前热身】 1.以下列长度(同一单位)为长的四条线段中,不成比例的是( ) A .2,5,10,25 B .4,7,4,7 C .2,0.5,0.5,4 D .2,5,52,25 2.两地的距离是 500 米,地图上的距离为 10 厘米,则这张地图的比例尺为( ) A .1∶50 B .1∶500 C .1∶5000 D .1∶50000 3.下列各组图形不一定相似的是( ) A .两个等边三角形 B .各有一个角是100°的两个等腰三角形 C .两个正方形 D .各有一个角是45°的两个等腰三角形 4.△ABC 的三边之比为 3∶4∶5,若 △ABC∽△A'B'C' ,且△A'B'C' 的最短边长为6,则△A'B'C'的周长为 ( ) A .36 B .24 C .18 D .12 5.如图,在△ABC 中,若D 、E 分别是边AB 、AC 上的点,且DE∥BC,AD=1,DB=2, 则△ADE 与△ABC 的面积比为____________; 【中考考点链接】 一、相似三角形的定义 三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 二、相似三角形的判定方法 判定1. 两个角对应相等的两个三角形__________. 判定2. 两边对应成_________且夹角相等的两个三角形相似. 判定3. 三边对应成比例的两个三角形___________. 【拓展】常见的相似形式: 1. 若DE∥BC(A 型和X 型)则______________. 2. 射影定理:若CD 为Rt△ABC 斜边上的高(双直角图形) 则Rt△ABC∽Rt△ACD∽Rt△CBD 且AC 2=________,CD 2=_______,BC 2=__ ____. 三、相似三角形的性质 1. 相似三角形的对应边_________,对应角________. 2. 相似三角形的对应边的比叫做________,一般用k 表示. 3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______?线的比等于_______比,周长之比也等于________比,面积比等于_________. 【典例精析】 1、比例的性质 例1:若322=-y y x , 则_____=y x ; 变式1.若a ∶3 =b ∶4 =c ∶5 , 且6=-+c b a , 则___________,____,===c b a ; E D C B A 第5题图

《相似三角形性质》教学反思

《相似三角形性质》教 学反思 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

《相似三角形性质》教学反思 导读:《相似三角形性质》教学反思篇1 《相似三角形的性质》是北师大版九年级上册第四章第七小节内容。本节课的教学重点是探索相似三角形的性质并能用相似三角形的性质解决简单的实际问题。实际上就是在了解相似三角形基本性质和判定方法的基础上,进一步研究相似三角形的特性,以完成对相似三角形的全面研究。 这节课我以合作探究的形式展开,让学生探究发现结论,体验成功的乐趣,培养学生探究问题的科学态度,促进创造性思维的发展。通过学生独立思考、小组交流、学生展示、师生共评等环节,让学生在学习探究中,体会、理解、掌握相似三角形对应中线的比、对应高的比、对应角平分线的比都等于相似比。并通过教师设问,学生大胆猜想,分组交流讨论,类比得出相似三角形对应线段的比等于相似比这一结论。在此基础上,让学生趁热打铁,适时训练,在“我来抢答”环节中,设置了不同层次的问题,以使不同层次的同学都能获得应用知识的快乐,激发学生的学习热情,特别是练习第3题,涉及到了分类讨论的思想,使学生在学习的同时渗透数学的思想与方法,为学生的终身学习打下基础。学以致用环节中,我对教材稍作处理,所增添的题为后面二次函数的学习做好铺垫,在作业的设计上体现了分层布置,同时课外作业主要是为了拓展学生的思维,提高学生思考问题、分析问题、解决问题的能力,同时进一步体会分类讨论的数学思想。

本节课总体上学生的学习积极性高,参与率高,而且学生能做到在自己独立思考的基础上,与同伴交流互动,大胆发言,小结部分也能对照目标进行自查。但是在今后教学中,特别是在学生活动中,教师还是应该给学生稍微留出相对宽松的时间和空间,多让学生去展示,学会去放手,让学生自身在经历中成长,在交流中获知和进步。 《相似三角形性质》教学反思篇2 我在上《相似三角形的性质》这节课时,先复习全等三角形的性质:全等三角形的对应角相等;对应边相等;对应中线、对应角平分线、对应高线相等;周长相等;面积相等。根据全等三角形是特殊的相似三角形,诱导学生们在类比中,猜想相似三角形的性质,同学们积极性很高,抢着猜,大多数同学猜对了相似三角形的对应角相等;对应边成比例;对应中线、角平分线、高线的比等于相似比;周长的比等于相似比; 可对面积的比有争议,有的说等于相似比,有的.说等于相似比的平方。我又及时诱导:猜想并不能代替证明,它只是一个推理,一个假设,你们应该再进一步深入,把你们的猜想结果去证明,看到底是谁的对,让它更有说服力,同学们为了证明自己的猜想是正确的,马上开始证明,这一节课掌握的很好。而且对相似三角形面积的比等于相似比的平方印象非常深刻。因为那是在有争议的情况下,得到的正确结论。这一节课中,引导学生复习全等三角

圆与相似三角形综合训练题

圆与相似三角形专题训练 例1.如图,PD切⊙O于D,PC = PD,B为⊙O上一点,PB交⊙O于A,连结AC、BC. 求证:AC·PB = PC·BC 证明: 训练1. 如图,⊙O是弦AB∥CD,延长DC到E,EB延长线交⊙O于F,连结DF. 求证:AD·ED = BE·DF 证明:连结CB 2. 如图,CD切⊙O于P,PE⊥AB于E,AC⊥CD,BD⊥CD. 求证:① PE:AC = PB:PA;② PE 2 = AC·BD

例2.如图,△ABC内接于⊙O,⊙O的直径BD交AC于E,AF⊥BD于F,延长AF 交BC于G. 求证:AB 2 = BG·BC 证明:连结AD 训练1. 如图,AB是⊙O的直径,弦CD垂直AB于M,P是CD延长线上一点,PE 切⊙O于E,BE交CD于F. 求证:PF 2 = PD·PC 证明:连结AE 2. 如图,△ABC中,AB = AC,O是BC上一点,以O为圆心,OB长为半径的圆与AC相切于点A,过点C作CD⊥BA,垂足为D. 求证:①∠DAC = 2∠B;② CA 2 = CD·CO

例3.如图,⊙O 1和⊙O 2 相交于点A和点B,且O 1 在⊙O 2 上;过点A的直线 CD分别与⊙O 1、⊙O 2 交于点C、D,过点B的直线EF分别与⊙O 1 、⊙O 2 交于 点E、F,⊙O 2的弦O 1 D 交AB于P. 求证:① CE∥DF;② O 1 A 2 = O 1 P·O 1 D 证明: 训练1. 如图,圆内接四边形ABCD的对角线AC平分∠BCD,BD交AC于点F,过点A作圆的切线AE交CB的延长线于E. 求证:①AE∥BD;②AD 2 = DF·AE 证明: 2. 已知:,过点D作直线交AC于E,交BC于F,交AB的延长线于G,经过B、G、F三点作⊙O,过E作⊙O的切线ET,T为切点. 求证:ET = ED 证明:

最新九年级数学专题复习 相似三角形解题技巧及口诀

F 相似三角形解题技巧及口诀 A 字形,A ’形,8 旋转形 双垂直结论:射影定理:①直角三角形中, 斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项 ⑴△ACD ∽△CDB →AD:CD=CD:BD →CD2=AD ?BD ⑵△ACD ∽△ABC →AC:AB=AD:AC →AC2=AD ?AB ⑶△CDB ∽△ABC →BC:AC=BD:BC →BC2=BD ?AB 结论:⑵÷⑶得AC2:BC2=AD:BD 结论:面积法得AB ?CD=AC ?BC →比例式 证明等积式(比例式)策略 直接法:找同一三角形两条边 变化:等号同侧两边同一三角形 三点定形法 2、间接法: ⑴3种代换 ①等线段代换; ②等比代换; ③等积代换; ⑵创造条件 ①添加平行线——创造“A ”字型、“8”字型 ②先证其它三角形相似——创造边、角条件 相似判定条件:两边成比夹角等、两角对应三边比 相似终极策略: 遇等积,化比例,同侧三点找相似; 四共线,无等边,射影平行用等比; 四共线,有等边,必有一条可转换; 两共线,上下比,过端平行条件边。 彼相似,我角等,两边成比边代换。 (3)等比代换:若是四条线段,欲证,可先证得 ( 是两 条线段)然后证,这 里把叫做中间比。 ①∠ABC=∠ADE .求证:AB ·AE=AC ·AD ②△ABC 中,AB=AC ,△DEF 是等边三角形 求证: BD?CN=BM?CE . ③等边三角形ABC 中,P 为BC 上任一点,AP 的垂直平分线交AB 、AC 于M 、N 两点。 求证:BP ?PC=BM ?CN ?有射影,或平行,等比传递我看行 ①在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于D ,E 为AC 的中点,求证:AB ?AF=AC ?DF

九年级上册数学相似三角形练习题

九年级上册数学相似三 角形练习题 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

九年级上册数学相似三角形练习题 姓名:日 期: 一、选择题。 1.DE是ABC的中位线,则ADE与ABC面积的比是() A、 1:1 B、1:2 C、1:3 D、 1:4 BC=() 2.如图1,已知△ADE∽△ABC,相似比为2:3,则 DE A、3:2 B、2:3 C、 2:1 D、不能确定 3.如图2,已知△ACD∽△BCA,若CD=4,CB=9,则AC等于() A、 3 B、 4 C、 5 D、 6 4.△ADE∽△ABC,相似比为2:3,则△ADE与△ABC的面积比为() A、 2:3 B、 3:2 C、 9:4 D、 4:9 5.若DE是△ABC的中位线,△ABC的周长为6,则△ADE的周长为() A、4 B、3 C、2 D、1 6.如图3,△ABC中,DE∥BC,AD=1,DB=2,AE=2,那么EC=() A、1 B、2 C、3 D、4

7.如图4,D 是△ABC 的AB 边上的一点,过点D 作DE ∥BC 交AC 于E 。已知AD :DB=2:3.则S △ADE :S BCED =( ) A 、2:3 B 、4:9 C 、4:5 D 、4:21 8. 如图5,已知:AD 是Rt △ABC 斜边BC 上的高线,DE 是RtCADC 斜边AC 上的高 线,如果DC :AD=1:2,a S CDE =?,那么ABC S ? 等于( ) A 、 4a B 、9a C 、16a D 、25a 二、填空题: 1.两个相似三角形的面积比为4∶25,则它们的周长比为 。 2.顺次连结三角形三边中点所构成的三角形与原三角形 ,它们的面积比 为 。 3.如图6,AB ∥DC ,AC 交BD 于点O .已知5 3 =CO AO ,BO =6,则DO=_____________。 4.某校绘制的校园平面图的面积为,比例尺为1:200,则该校占地面积 m 2 。 5.如图7,在△ABC 中,点D 在线段BC 上,∠BAC=∠ADC ,AC=8,BC=16,那么CD=__________。 6.如图8,AD 、BC 交于点E ,AC ∥EF ∥BD ,EF 交AB 于F ,设AC=p ,BD=q ,则EF=_________。 图6 E B C A F D 图8 图7 图9 图10 图3 图2 图 图

相似三角形的判定定理2的教学反思

相似三角形的判定定理3的教学反思 九数许国祥 我的教学宗旨是: 一般情况下,按照教材上的教学设计进行教学,以学生为主体,教师做学生的组织者、引导者、合作者,只在关键处点拨,补充,尤其是在几何教学中,以培养学生的合情推理能力,发展学生逻辑推理能力,靠近中考。 我的教学设计 一、知识回顾。(小黑板出示) 1.我们已学过了哪些判定三角形相似的方法? 2.在△ABC与△DEF中因为∠A=∠D=45°,∠B=26,°∠E=109°.则这两个三角形是否相似? 二、动脑筋 鼓励学生动手画图,认真思考书中问题,引导同学们讨论得出判定定理3:两边对应成比例且夹角相等的两个三角形相似。 指名说一说:这个定理的条件和结论各是什么?关键处是什么? 同桌完成课本上的做一做。然后指名在班上说。教师及时给予表扬和肯定。三、出示例题2.要求学生尝试完成。不会做的自己看书,然后再做。教师行巡 回辅导,适时指点练习中容易出现的问题。最后指名板演,集体订正。四、出示课本78页中的B组2题作为典例分析。 要求学生凭眼睛看这两个三角形相似吗?再通过计算他们的对应边是否成比例。有一个角对应相等吗?他们相似吗?同桌讨论各自的心得。从这个例子你能得出什么结论?指名说。 教师示范:规范写出两个三角形对应边成比例,且夹角相等的两个三角形相似已知,求证及证明过程 五、出示B组1题作为典例分析。要求学生先自学,再试着做一做。最后师 规范板书全过程。 六、启迪学生除这种解法外,你还能用别的方法来证明吗?鼓励学生用多种方 法解题。 七、引导学生归纳解题所得。 八、总结整堂课内容。 九、巩固练习。完成教材第78--79页练习1、2题 十、作业:基本训练78--79页A组1-2题。教师巡回辅导 我的反思: 成功之处:. 1、课前对旧知识的回顾,以防止负迁移现象,特别是做一做的设计注重了相 似三角形中对应元素的训练,为潜能生设置了一个障碍,以培养学生的合理想象力。 2、整堂课体现了以学生为主体的教学理念。教师的点拨很到位,对定理的剖

华东师大版数学九年级上册8.考点综合专题:相似三角形与其他知识的综合

考点综合专题:相似三角形与其他知识的综合 ◆类型一相似与四边形 1.如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME =3,则AN=() A.3 B.4 C.5 D.6 第1题图 第2题图 2.如图,在?ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F.S△DEF∶S△ABF =4∶25.则DE∶EC=. 3.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,△ABE 与△DEF相似吗?为什么? 4.(上海中考)如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE. (1)求证:DE⊥BE; (2)如果OE⊥CD,求证:BD·CE=CD·DE.

◆类型二相似与函数 5.(滨州中考)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA 的两边分别与函数y=- 1 x、y= 2 x的图象交于B、A两点,则∠OAB的大小的变化趋势为()A.逐渐变小B.逐渐变大 C.时大时小D.保持不变 第5题图 第6题图 6.(重庆模拟)如图,点A在双曲线y= 3 x上,点B在双曲线y= k x(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6 B.9 C.10 D.12 7.如图,在矩形ABCD中,AB=4,BC=3,O为矩形的对称中心,OE⊥OF,若设OE=x,OF=y,则x与y之间的函数关系为. 考点综合专题:相似三角形与其他知识的综合 1.B 2.2∶3

3.解:△ABE与△DEF相似.理由如下:∵四边形ABCD为正方形,∴∠A=∠D=90°,AB=AD=CD.设AB=AD=CD=4a,∵E为边AD的中点,CF=3FD,∴AE=DE= 2a,DF=a,∴ AB DE= 4a 2a=2, AE DF= 2a a=2,∴ AB DE= AE DF,而∠A=∠D,∴△ABE∽△DEF. 4.证明:(1)∵四边形ABCD是平行四边形,∴BO=OD.∵OE=OB,∴OE=OD,∴∠OBE =∠OEB,∠OED=∠ODE.∵∠OBE+∠OEB+∠OED+∠ODE=180°,∴∠BEO+∠DEO =∠BED=90°,∴DE⊥BE; (2)∵OE⊥CD,∴∠CEO+∠DCE=∠CDE+∠DCE=90°,∴∠CEO=∠CDE.∵OB= OE,∴∠DBE=∠CEO,∴∠DBE=∠CDE.∵∠BED=∠BED,∴△BDE∽△DCE,∴ BD CD = DE CE,∴BD·CE=CD·DE. 5.D 6.B解析: 过点B作BE⊥x轴于E,延长线段BA,交y轴于F.∵AB∥x轴,∴AF⊥y轴,∴四边形AFOD是矩形,四边形OEBF是矩形,∴AF=OD,BF=OE,∴AB=DE,∵点A在双曲线y= 3 x上,∴S矩形AFOD=3,同理S矩形OEBF=k,∵AB∥OD,∴ OD AB= CD AC= 1 2,∴AB=2OD,∴DE=2OD,∴S矩形OEBF=3S矩形AFOD=9,∴k=9.故选B. 7.y= 3 4x 8.解:如图,过点P作PM⊥AB,则∠PMB=90°,当PM⊥AB时,PM最短,因为直 线y= 3 4x-3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,-3).在Rt△AOB中,AO=4,BO=3,AB=32+42=5.∵∠BMP=∠AOB=90°,∠ABO =∠PBM,PB=OP+OB=7,∴△PBM∽△ABO,∴ PB AB= PM AO,即 7 5= PM 4,∴可得PM= 28 5. 8.(宿迁中考)如图,在平面直角坐标系中,点P的坐标为(0,4),直线y= 3 4x-3与x 轴、y轴分别交于点A、B,点M是直线AB上的一个动点,求PM长的最小值.

相似三角形综合试相似与圆(难)

相似三角形综合试相似与圆(难)

————————————————————————————————作者:————————————————————————————————日期: 2

D C B A O M N E H A B C P E D H F O 相似三角形与圆 1.如图,AB 是⊙O 直径,ED ⊥AB 于D ,交⊙O 于G ,EA 交⊙O 于C ,CB 交ED 于F ,求证:DG 2=DE ?DF 2.如图,弦EF ⊥直径MN 于H ,弦MC 延长线交EF 的反向延长线于A ,求证:MA ?MC =MB ?MD 3.(2006年黄冈)如图,AB 、AC 分别是⊙O 的直径和弦,点D 为劣弧AC 上一点,弦ED 分别交⊙O 于点E ,交AB 于点H ,交AC 于点F ,过点C 的切线交ED 的延长线于点P . (1)若PC =PF ,求证:AB ⊥ED ; (2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE ·DF ,为什么? 4.如图(1),AD 是△ABC 的高,AE 是△ABC 的外接圆直径,则有结论:AB · AC =AE · AD 成立,请证明.如果把图(1)中的∠ABC 变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立?

D C B A O E F 5.如图,AD是△ABC的角平分线,延长AD交△ABC的外接圆O于点E,过点C、D、E三点的⊙O1与AC的延长线交于点F,连结EF、DF. (1)求证:△AEF∽△FED; (2)若AD=8,DE=4,求EF的长. 6.如图,PC与⊙O交于B,点A在⊙O上,且∠PCA=∠BAP. (1)求证:P A是⊙O的切线. (2)△ABP和△CAP相似吗?为什么? (3)若PB:BC=2:3,且PC=20,求P A的长. 7.已知:如图,AD是⊙O的弦,OB⊥AD于点E,交⊙O于点C,OE=1,BE=8,AE:AB=1:3. (1)求证:AB是⊙O的切线; (2)点F是ACD上的一点,当∠AOF=2∠B时,求AF的长. 8.如图,⊿ABC内接于⊙O,且BC是⊙O的直径,AD⊥BC于D,F是弧BC中点,且AF交BC于E,AB=6,AC=8,求CD,DE,及EF的长.

最新九年级圆与相似三角形专题复习

九年级圆中三角形相似复习专题 1.(2014·荆州)如图,AB 是半圆O 的直径,D ,E 是半圆上任意两点,连接AD ,DE ,AE 与BD 相交于点C , 要使△ADC 与△ABD 相似,可以添加一个条件,下列添加的条件其中错误的是( ) A .∠ACD =∠DA B B .AD =DE C .AD2=B D ·CD D .AD ·AB =AC ·BD (第一题) (第二题) 2.如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连接CD ,OD ,给出以下四 个结论:①AC ∥OD ;②CE =OE ;③△ODE ∽△AOD ;④2CD2=CE ·AB ,其中正确结论的序号是__________. 3.如图,边长为2的正方形ABCD 中,P 是CD 的中点,连接AP 并延长交BC 的延长线于点F ,作△CPF 的外 接圆⊙O ,连接BP 并延长交⊙O 于点E ,连接EF ,则EF 的长为( ) A .32 B .53 C .35 5 D .45 5 4.如图,△ABC 内接于⊙O ,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC 相似 吗?请证明你的结论. (第三题) (第四题) 5.如图,AB 是⊙O 的直径,点E 是AD ︵ 上的一点,∠DBC =∠BED. (1)求证:BC 是⊙O 的切线; (2)已知AD =3,CD =2,求BC 的长.

6.如图,AB 是⊙O 的直径,过点O 作弦BC 的平行线,交过点A 的切线AP 于点P ,连接AC. (1)求证:△ABC ∽△POA ; (2)若OB =2,OP =72,求BC 的长. 7.如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线,交BC 于E. (1)求证:点E 是边BC 的中点; (2)求证:BC2=BD ·BA.

北师大版九年级数学上相似三角形

一对一教案

三、主要练习: 【知识点】: 相似多边形定义:各角分别相等、各边成比例的两个多边形叫做相似多边形。 相似多边形可以用符号“∽”表示,读作“相似于”。在记两个多边形相似时,要把表示对应顶点的字母写在对应的位置上。 相似多边形对应边的比叫做相似比。 【例题】: 1.以下五个命题:①所有的正方形都相似;②所有的矩形都相似;③所有的三角形都相似;④所有的等腰直角三角形都相似;⑤所有的正五边形都相似.其中正确的命题有_______. 2、若五边形ABCDE∽五边形MNOPQ ,且AB=12,MN=6,AE=7,则MQ= . 3、矩形ABCD 与矩形EFGH 中,AB=4,BC=2,EF=2,FG=1,则矩形ABCD 与矩形EFGH 相似(填“一定”或“不一定”) 4、如图,在□ABCD 中,AB//EF ,若AB = 1,AD = 2,AE= 2 1 AB ,则□ABFE 与□BCDA 相似吗?说明理由. 【课堂练习】: 1.下面图形是相似形的为 ( ) A .所有矩形 B .所有正方形 C .所有菱形 D .所有平行四边形 2.下列说法正确的是 ( ) A . 对应边成比例的多边形都相似 B . 四个角对应相等的梯形都相似 C . 有一个角相等的两个菱形相似 D . 有一个锐角相等的两个等腰三角形相似 3.□ABCD 与□ EFGH 中,AB = 4,BC = 2,EF = 2,FG=1,则□ABCD 与□ EFGH 相似(填“一定”或“不一定”) 4.如图,等腰梯形ABCD 与等腰梯形A′B′C′D′相似,∠A′=65°,A′B′=6 cm, AB=8 cm , AD=5 cm ,试求梯形ABCD 的各角的度数与A′D′, B′C′的长. F E D C B A

人教版初三数学下册相似三角形教学反思

星海中学二0一二学年第一学期 《相似三角形的判定(三)》教学反思 数学科组甘琼姬 本学期非常荣幸地承担了一节学校的优质公开课,在学校领导以及备课组同事的帮助与支持下,在“探究式”教学课改这股东风下,我也进行了一些尝试与改变,终于顺利完成了课题为《相似三角形的判定(三)》的课程。 《相似三角形的判定(三)》主要教学目标是让学生在亲自操作、探究的过程中,获得三角形相似的识别方法;培养学生提出问题、解决问题的能力。在这节课中,我先让学生自己分组操作完成满足:①∠A=600,∠B=500;②∠A=600,∠B=200;③∠A=600,∠B=300,三类不同的三角形,通过观察、猜测出组内三角形是否相似,再让学生自己量一量、算一算、比一比,判断出三角板相似的结论。然后让学生思考、讨论、归纳对于组内的三角形满足两个角相等的关系,如何证明出相似的结论,类比上一节的证明方法展示多种不同证法。再通过例题与练习加以巩固。在这节课中,我认为有以下几点感受较好: 一、这一节课通过情景创设,引入新知较恰当,切合实际。用4分钟回顾提高后,我让学生对比组内剪出的三角板,通过猜测、度量、计算和比较得出这些三角板相似的结论。这样引入能很好的使学生体验到生活中的数学知识的乐趣,从而能调动学生探索新知的兴趣和学习的积极性。 二、这节课多给学生提供自主学习,自主操作、自主活动的机会。不论是回顾旧知,还是探究新知,都是我在引导,学生自主探索。我再通过设计问题和启发、引导,让学生悟出学习方法和途径,培养学生独立学习的能力。比例对特殊三角形,我提问由于三角形有了300这个特殊角,使边是否具有什么特殊关系?理由是什么?所以相似的证法有没有特殊性?而对任意两个三角形,特殊关系不存在,特殊证法行不通时,怎么办?让从多角度去思考问题。回过头,一般证法对于特殊图形又适用吗?让学生学会从特殊到一般,再从一般到特殊去考虑问题,使学生体会了数学内容间的内在联系,初步认识了特殊与一般的辩证关系,

(完整版)圆与相似三角形的综合常见题型

圆与相似三角形专题训练 27、如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 是AB 延长线上一点,AE ⊥DC 交DC 的延长线于点E ,且AC 平分∠EAB 。【2005成都】 ⑴求证:DE 是⊙O 的切线;⑵若AB =6,AE = 24 5 ,求BD 和BC 的长。 27、已知:如图,⊙O 与⊙A 相交于C 、D 两点,A 、O 分别是两圆的圆心,△ABC 内接于⊙O ,弦CD 交AB 于点G ,交⊙O 的直径AE 于点F ,连结BD 。【2006成都】 (1)求证:△ACG ∽△DBG ;(2)求证:2 AC AG AB =? ; (3)若⊙A 、⊙O 的直径分别为15,且CG :CD =1:4,求AB 和BD 的长。 E

O D G C A E F B P 27.如图,A 是以BC 为直径的O e 上一点,AD BC ⊥于点D ,过点B 作O e 的切线,与CA 的延长线相交于点 E G ,是AD 的中点,连结CG 并延长与BE 相交于点 F ,延长AF 与CB 的延长线相交于点P .【2007成都】 (1)求证:BF EF =;(2)求证:PA 是O e 的切线; (3)若FG BF =,且O e 的半径长为32,求BD 和FG 的长度. 27. 如图,已知⊙O 的半径为2,以⊙O 的弦AB 为直径作⊙M ,点C 是⊙O 优弧? AB 上的一个动点(不与点A 、点B 重合).连结AC 、BC ,分别与⊙M 相交于点D 、点E ,连结DE.若AB=23.【2008成都】 (1)求∠C 的度数;(2)求DE 的长; (3)如果记tan ∠ABC=y ,AD DC =x (0

相关文档
最新文档