不等式的基本定理

不等式的基本定理
不等式的基本定理

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

数学苏教版必修5基本不等式(教案)

基本不等式(一) 教学目标: 1. 学会推导并掌握均值不等式定理; 2. 能够简单应用定理证明不等式并解决一些简单的实际问题。 教学重点:均值不等式定理的证明及应用。 教学难点:等号成立的条件及解题中的转化技巧。 教学过程: 重要不等式:如果a 、b ∈R ,那么a 2+b 2 ≥2ab (当且仅当a =b 时取“=”号) 证明:a 2+b 2-2ab =(a -b )2 当a ≠b 时,(a -b )2>0,当a =b 时,(a -b )2=0 所以,(a -b )2≥0 即a 2+b 2 ≥2ab 由上面的结论,我们又可得到 定理:如果a ,b 是正数,那么 a +b 2 ≥ab (当且仅当a =b 时取“=”号) 证明:∵(a )2+(b )2≥2ab 4a +b ≥2ab 即 a +b 2 ≥ab 显然,当且仅当a =b 时,a +b 2 =ab 说明:1)我们称a +b 2 为a ,b 的算术平均数,称ab 为a ,b 的几何平均数,因而, 此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2)a 2+b 2≥2ab 和a +b 2 ≥ab 成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数. 3)“当且仅当”的含义是充要条件. 4)数列意义 问:a ,b ∈R -? 例题讲解: 例1 已知x ,y 都是正数,求证: (1)如果积xy 是定值P ,那么当x =y 时,和x +y 有最小值2P ; (2)如果和x +y 是定值S ,那么当x =y 时,积xy 有最大值14 S 2 证明:因为x ,y 都是正数,所以 x +y 2 ≥xy (1)积xy 为定值P 时,有x +y 2 ≥P ∴x +y ≥2P 上式当x =y 时,取“=”号,因此,当x =y 时,和x +y 有最小值2P . (2)和x +y 为定值S 时,有xy ≤S 2 ∴xy ≤ 14 S 2 上式当x=y 时取“=”号,因此,当x=y 时,积xy 有最大值14 S 2.

几个重要不等式及其应用

几个重要不等式及其应用 一、几个重要不等式 以下四个不等式在数学竞赛中使用频率是最高的,应用极为广泛。 1、算术-几何平均值(AM-GM )不等式 设12,,,n a a a L 是非负实数,则12n a a a n +++≥L 2、柯西(Cauchy )不等式 设,(1,2,)i i a b R i n ∈=L ,则2 22111.n n n i i i i i i i a b a b ===?????? ≥ ??? ??????? ∑∑∑等号成立当且仅当存在R λ∈,使 ,1,2,,.i i b a i n λ==L 变形(Ⅰ):设+ ∈∈R b R a i i ,,则∑∑∑===??? ??≥n i i n i i n i i i b a b a 1 2 112;等号成立当且仅当存在R λ∈, 使,1,2,,.i i b a i n λ==L 变形(Ⅱ)设i i b a ,同号,且0,≠i i b a ,则∑∑∑===??? ??≥n i i i n i i n i i i b a a b a 1 2 11。等号成立当且仅当n b b b ===Λ21 3.排序不等式 设n n n j j j b b b a a a ,,,,,212121?≤?≤≤≤?≤≤是n ,,2,1?的一个排列,则 n n j j j n n n b a b a b a b a b a b a b a b a b a n ΛΛΛ++≤+++≤+++-2211321112121. 等号成立当且仅当 n a a a ===Λ21或n b b b ===Λ21。(用调整法证明). 4.琴生(Jensen )不等式 若()x f 是区间()b a ,上的凸函数,则对任意的点()b a x x x n ,,,,21∈Λ* ()n N ∈有 ()()()12121 ( ).n n x x x f f x f x f x n n +++≤+++??? ?L L 等号当且仅当n x x x ===Λ21时取得。(用归纳法证明) 二、进一步的结论 运用以上四个不等式可得以下更一般的不等式和一些有用的结论,有时用这些结论也会起到意想不到 的效果。 1. 幂均值不等式 设0>>βα,),,2,1(n i R a i Λ=∈+ ,则

多次运用基本不等式错解例析

多次运用基本不等式错解例析 在《不等式》的学习中,我们结识了一个重要的不等式定理,即基本不等式(又叫均值定理),这个定理在解题中应用十分广泛,运用基本不等式时除了要注意 “一正、二定、三相等” 的条件以外,当多次运用基本不等式时,如果忽视了取等号的条件也一样会功败垂成,前功尽弃. 例1.设x ∈(0,π),则函数f(x)=sinx+x sin 4的最小值是( ) A .4 B. 5 C.3 D.6 【典型错误】因为x ∈(0,π),所以sinx>0, x sin 4>0, f(x)=sinx+ x sin 4≥2x x sin 4sin ? =4 因此f(x)的最小值是4.故选A. 【错因分析】忽略了均值不等式a+b ≥2ab (a>O,b>0)中等号成立的条件:当且仅当a=b 时等号成立.事实上,sinx= x sin 4不可能成立,因为它成立的条件是sinx =±2,这不可能. 【正确解答1】f(x)=sinx+x sin 4=sinx+ x sin 1+ x sin 3,因为sinx+ x sin 1≥2, 当且仅当sinx=1,即x=2 π时等号成立.又 x sin 3 ≥3,当且仅当sinx=1,即x= 2 π时等号成立.所以 f(x)=sinx+ x sin 4≥2+3=5,f(x)的最小值是5. 故选B. 【正确解答2】令sinx=t,因为x ∈(0,π),所以03)的最小值. 【典型错误】f(x)=x 2 +33233 )3(233 33 2 2 4 2 2 4 2 2 4 ≥+=+-? -≥+-+ -=-x x x x x x x x x ,因此函数 f(x)的最小值为3.

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

(word完整版)高中数学基本不等式及其应用教案

基本不等式及其应用教案 教学目的 (1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应用它们证明一些不等式. (2)通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力. 教学过程 一、引入新课 师:上节课我们学过证明不等式的哪一种方法?它的理论依据是什么? 生:求差比较法,即 师:由于不等式复杂多样,仅有比较法是不够的.我们还需要学习一些有关不等式的定理及证明不等式的方法. 如果a、b∈R,那么(a-b)2属于什么数集?为什么? 生:当a≠b时,(a-b)2>0,当a=b时,(a-b)2=0,所以(a-b)2≥0.即(a-b)2∈ R+∪{0}. 师:下面我们根据(a-b)2∈R+∪{0}这一性质,来推导一些重要的不等式,同时学习一些证明不等式的方法. 二、推导公式

1.奠基 师:如果a、b∈R,那么有 (a-b)2≥0. ① 把①左边展开,得 a2-2ab+b2≥0, ∴a2+b2≥2ab. ② ②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,它是一个很重要的绝对不等式,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢? 师:充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号). 以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索. 2.探索 师:公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有 a2+b2≥2ab; b2+c2≥2bc;

基本不等式的变形及应用

基本不等式ab b a 22 2≥+的变式及应用 不等式ab b a 22 2 ≥+是课本中的一个定理,它是重要的基本不等式之一,对于它及它各种变式的掌握与熟练运用是求解很多与不等式有关问题的重要方法,这里介绍它的几种常见的变式及应用 1、十种变式 ①222b a ab +≤; ②2 )2(b a ab +≤; ③2)2(222b a b a +≤+ ; ④)(222b a b a +≤+ ⑤若0>b ,则b a b a -≥22; ⑥ ,,+∈R b a 则b a b a +≥+4 11 ⑦若ab b a R b a 4)11( ,,2≥ +∈+ ⑧若0≠ab ,则2 22)11(2111b a b a +≥+ 上述不等式中等号成立的充要条件均为: b a = ⑨若R b a R n m ∈∈+ ,,,,则n m b a n b m a ++≥+2 22)((当且仅当bm an =时等号成立) ⑩)(3)(2 222c b a c b a ++≤++(当且仅当c b a ==时等号成立) 2、应用 例1、若+ ∈R c b a ,,,且2=++c b a ,求证:4111<+++++c b a 证法一:由变式①得21111++≤ +?a a 即12 1+≤+a a 同理:121+≤+ b b ,12 1+≤+c c 因此12111+≤+++++a c b a 412 12≤++++c b 由于三个不等式中的等号不能同时成立,故4111<+++++c b a 评论:本解法应用“2 2 2b a ab +≤”观察其左右两端可以发现,对于某一字母左边是 一次式,而右边是二次式,显然,这个变式具有升幂与降幂功能,本解法应用的是升幂功

不等式及其应用

不等式及其应用 [高考要点] 系统地把握不等式的性质; 把握不等式证明的常用方法; 把握均值不等式: ,∈);,,∈)23 a b a b c a b R a b c R +++++≥≥及其在求最值方面的用途(注意“正、定、等”三个条件的内涵)。 把握整式不等式、分式不等式、无理不等式、指数不等式和对数不等 式的解法。 把握含绝对值不等式的差不多性质,会解含绝对值的不等式。 [例题选讲] [例1] 已知a >x 的等式1 22 21 log 0.2 ax x ->+ [例2] 已知函数()()2.f x g x mx m ==- (1)当1=m 时,解不等式)()(x g x f <; (2)如果对满足1,求x 的取值范畴。

[例3] 关于实数x 的不等式2211(1)(1)22 x a a -+≤-与 23(1)2(31)2(31)0x a x a x a -+++++≤(其中a R ∈)的解集依次记为A 与B. 求A B ?的a 的取值范畴 [能力训练] 一、选择题 1.不等式44log (28)log (3)x x x x --->-的解集是( ) (A ){|4}x x > (B ){|5}x x > (C ){|46}x x << (D )x x x >且 2.不等式22log x x >的解集是( ) (A )(0,∞)+ (B )[1,∞)+ (C )R (D )ф 3.不等式312≤9x -的整数解的个数是( ) (A )7 (B )6 (C )5 (D )4 4.设111()()1222 b a <<<,则( ) (A )b a a a a << (B )a b a a a << (C )b a a a a << (D )a b a a a << 5.若实数,,a b c 满足a c b -<,则下列不等式中成立的是( ) (A )a b c >- (B )a b c <+ (C )a c b >- (D )a b c <+ 6.若不等式1x a -<成立的充分条件是04x <<,则a 的取值范畴是( ) (A )1a ≥ (B )3a ≥ (C )1a ≤ (D )3a ≤ 7.若关于x 的不等式2≥x x a a -+-在R 上恒成立,则a 的最大值是( )

不等式选讲大题及答案

选修4-5 :不等式选讲 不等式选讲考点问题解答题:利用基本不等式等主要不等式和绝对值不等式定理,求解或证明有关不等式, 包括求已知不等式的解集;根据已知条件列出并求解有关参数的不等式;通过证明有关不等式,解决与不等式有关的问题。 1. ( 2013 全国I 24 .)已知函数f(x) |2x 1| |2x a|, g(x) x 3。 (i)当a 2时,求不等式f(x) g(x)的解集; a 1 (n)设a 1,且当x [ 2,2>时,f(x) g(x),求a的取值范围。 2. (2014 全国1 24 )若a 0,b 1 1 0,且丄丄 ,ab a b (I )求a3b3的最小值; (II )是否存在a,b,使得2a 3b 6 ?并说明理由 3. (2015全国1 2 4.)已知函数f x x 1 2 x a ,a 0 (I )当a 1时求不等式f x 1的解集; (II )若f x 图像与x轴围成的三角形面积大于6,求a的取值范围

4. (2013全国II 24 .)设均为正数,且, 证明:(i);(n) 1 |X a |(a 0) 5. (2014 全国II 24.)设函数f(x) |X | a (1)证明:f(x) 2 ; (2)若f (3) 5,求a的取值范围 6. ( 2015 全国II 24. )设均为正数,且. 证明:(I )若,则; (ll )是的充要条件

1 2x 2 x 3,则 y x 2 - x 1, 2 3x 6,x 1. 其图像如图所示 从图像可知,当且仅当 x (0,2)时,y<0,所以原不等式的解集是 x 0 x 2 a 1 (II )当 x , f (x) 1 a.不等式 f (x) W g(x)化为 1+a w x+3. 2 2 所以x > a-2对x 二丄都成立,故 a a 4 2 ,即a ,所以a 的范围 2 2 2 3 3 __ 1 1 2.解:(I )由,ab ,得 ab 2 , 且当a b .. 2时等号成立. a b '一 ab 故 a 3 b 3 2 a 3b 3 4、、2 ,且当 a b .2 时等号成立. 所以a 3 b 3的最小值为412 .……5分 (II )由(I )知,2a 3b 2.6 . ab 4,3. 由于4 .3 6,从而不存在a,b ,使得2a 3b 6. ……10分 3. x 1 2a, x 1 (n)由题设可得, f (x) 3x 1 2a, 1 x a , x 1 2a, x a 所以函数f (x)的图像与x 轴围成的三角形的三个顶点分别为 2a 1 2 A( ,0) , B(2a 1,0), C(a,a+1),所以△ ABC 的面积为三(a 1)2. 1 ?解: (1 )当 a 2时,不等式 f (x)

常见的几个函数不等式及其应用

常见的几个函数不等式及其应用 武汉市教育科学研究院 孔峰 在近几年的高考中,无论是国家考试中心的数学命题,还是一些独立命题省市的数学命题,有一些函数不等式在命题中出现的频率很高,它们在函数的性质的应用中和函数不等式的证明中发挥着很重要的作用,下面分别介绍这些函数不等式. 一、函数不等式的介绍 (1))1()1ln(1->≤+≤+x x x x x ① 证明:令x x x f -+=)1ln()(,则x x x x f +-= -+='1111)(. 当01<<-x 时,0)(>'x f ;当0>x 时,0)(<'x f . 所以)(x f 在0=x 时取得极大值,故0)0()(=≤f x f , 所以)1()1ln(->≤+x x x . 令x x x x g +-+=1)1ln()(,则2 2)1()1()1(11)(x x x x x x x g += +-+-+='. 当01<<-x 时,0)(<'x f ;当0>x 时,0)(>'x f . 所以)(x f 在0=x 时取得极小值,故0)0()(=≥g x g , )1)(1ln(1->+≤+∴x x x x . 综上可知,)1()1ln(1->≤+≤+x x x x x . 变式:)0(1ln >-≤x x x , ② )0(11 ln >≥+x x x . ③ (2))1)(1 (21ln ≥-≤x x x x ④ )10)(1 (21ln ≤<-≥x x x x ⑤ 证明:令)1 (21ln )(x x x x f --=,则02)1()11(211)(22≤--=+-='x x x x x f . 所以函数)(x f 在),0(+∞单调递减. 所以,当1≥x 时,0)1()(=≤f x f ;当10≤

基本不等式及其应用知识梳理及典型练习题含答案

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 . (3)ab ≤2 2?? ? ??+b a (a ,b ∈R ). (4)b a +a b ≥2(a ,b 同号且不为0).

(5)22?? ? ??+b a ≤a 2+b 2 2(a ,b ∈R ). (6) b a a b b a b a 112 2222+≥≥+≥+()0,>b a (7)abc ≤ a 3+ b 3+ c 3 3 ;(),,0a b c > (8) a + b + c 3 ≥3 abc ;(),,0a b c > 3.利用基本不等式求最大、最小值问题 (1)求最小值:a >0,b >0,当ab 为定值时,a +b ,a 2+b 2有 ,即a +b ≥ , a 2+ b 2≥ . (2)求最大值:a >0,b >0,当a +b 为定值时,ab 有最大值,即 ;或a 2+b 2 为定值时,ab 有最大值(a >0,b >0),即 . 设a ,b ∈R ,且a +b =3,则2a +2b 的最小值是( ) A.6 B.42 C.2 2 D.26 解:因为2a >0,2b >0,由基本不等式得2a +2b ≥22a ·2b =22a +b =42,当且仅当a =b =3 2 时取等号,故选B. 若a >0,b >0,且a +2b -2=0,则ab 的最大值为( )

不等式的均值定理

高二数学 必修五 NO 使用时间: 班级: 组别: 课题:均值不等式一学案 1.掌握均值定理的内容,特别是等号成立的条件; 2.理解均值定理的内容及几何意义,会用均值定理去解实际简单的最值问题。 1.不等式的对称性用字母可以表示为 . 2.不等式的传递性用字母可以表示为____________________. 3.不等式的加减法则是指不等式两边都加上(或减去)同一个数(或整式)不等号方向不变,用字母可以表示为 ;由此性质和传递性可以得到两个同向不等式可以相加,用字母可以表示为 . 4.不等式的乘法法则是指不等式两边都乘以同一个不为零的正数,不等号方向不变用字母可以表示为 ;同时乘以同一个不为零的负数,不等号方向改变,用字母可以表示为 ;由此性质和传递性可以得到两个同向同正的不等式具有可乘性,用字母可以表示为 。 5.乘方、开方法则要注意性质仅针对于正数而言,若底数(或被开方数)为负数时,需先 变形。如:a

下面我们给出均值不等式的一个几何直观解释,以加深同学们对均值不等式的理解。 我们可以令正实数b a ,为两条线段的长,用几何作图的方法,作出长度为 2 b a +和ab 的两条线段,然后比较这两条线段的长。 具体作图如下: ⑴作线段b a AB +=,使;,b DB a AD == ⑵以AB 为直径作半圆O; ⑶过D 点作CD ⊥AB 于D ,交半圆于点C ; ⑷连接AC,BC,OC,则2 b a CO += 。 例1已知,0>ab 求证:2≥+b a a b ,并推导出式中等号成立的条件。 例2(1)一个矩形的面积为1002 m 。问这个矩形的长和宽各为多少时,矩形的周长最短?最短周长是多少? (2)已知矩形的周长为36m 。问这个矩形的长和宽各为多少时,它的面积最大?最大面积是多少? 由例2的求解过程,可以总结出以下规律: 例3求函数())0(322>-+-=x x x x x f 的最大值,以及此时x 的值。 巩固检测 1、若a 、b 为正数且a+b=4,则ab 的最大值是________. 2、已知x>1.5,则函数y =2x+3 24-x 的最小值是_________.

不等式exp(x)-1...引申出的一个不等式及其应用

不等式1x e x -≥引申出的一个不等式及其应用 王永洪1 (北京市海淀区北京理工大学机电学院,100081) 导数公式()x x e e '=重要极限01 lim 1x x e x →-=, 可导函数的极值定理得到了不等式1x e x -≥,而围绕这个形式上简单的不等式及其证明过程了还有很多与自然对数(指数)有关的不等式和极限,如不等式 1(0)1x x e x x x -≤-≤≥+,ln(1)(1)1x x x x x ≤+≤>-+与极限()1 0lim 1x x x e +→+=、111lim 11ln 2n n n →∞??+++= ??? 2可由不等式11x x e x e --≥≥-经过适当变形和放缩处理就可以得到,关于1(0)1x x e x x x -≤-≤≥+(即 11x x e x e --≤≤-),有这样的问题,是否存在这样的正数,(0,1)a b ∈,对于任意0x ≥,成立111x x x e bx ax -≤-≤ ++,根据x 趋于正无穷大时不等式两边的函数极限可以直接判断b 是不存在的,下面将指出这样的a 值是存在的。 考虑下面的问题:设0x ≥,11x x e ax --≤+恒成立,求a (0)a ≥的取值范围。下面利用不等式 11x x e x e --≤≤-给出解答: 设()(1)(1)x f x ax e x -=+--,0x ≥.只需()0f x ≤.()(1)(1)x x f x a e axe --'=--+,利用1x x e ≤-得 ()(1)(1)(1)(21)(1)x x x x f x a e a e e a e ---'≤--+-?=-?-,当1 02 a ≤≤,()0f x '≤,()f x 单调递减, ()(0)0f x f ≤=.当1 2 a >时,注意1a <,利用1x e x --≤,()(1)(1)x x f x a x axe x a ae --'≥-+=-+, 0ln 1a x a <<-时,()0f x '>,则()(0)0f x f >=,不符合要求。因此原问题中的a 值是存在的,其取值范围是10,2?? ???? .特别地,取12a =,有不等式: 1 1112x e x x --?? -≤+ ??? (1.1) 由(1.1)再考虑对该不等式的修正,即提出了下面的问题,其中1 111x x x p e p e e -----=+--。 例1 (Ⅰ)对于任意正数x ,11x x e x p e p ax ---<--+(1)p >.求证:1 02 p a +≤≤. (Ⅱ)对于任意正数x ,2 11x x e x p e p x x αβ--->--++(1)p >,若12 p α+=,求β的最小值. (I ) 证明:该不等式是(1.1)的变形式,但证明方法有异。 分式1x p ax -+对于一切正数x 有意义,于是0a ≥. 设()(1)(1)()x x F x e ax p p e x --=-+---,0x ≥.只需证明()0F x ≤. []()(1)(1)() (1)(1)(1). x x x x x F x e ax p a e xe p e a x a x a p e -----'=+-+----=-+-+-- (i ) 1a ≥时,由于1x e x -≥即(1)(1)x x x e -≤+-,则 1 作者联系方式:北京市海淀区中关村南大街5号北京理工大学机电学院116信箱,100081; E-mail :mt_xxx2007@https://www.360docs.net/doc/441068078.html, 2 ln(1)1x x x x <+<+,(1)x >-中取1 x n =,再累加,对不等式取极限即可。

中值定理在不等式证明中的应用

摘要 本文主要写在不等式证明过程中常用到的几种中值定理,其中在拉格朗日中值定理证明不等式的应用中讲了三种方法:直接公式法、变量取值法、辅助函数构造法.在泰勒中值定理证明不等式的应用中,给出了泰勒公式中展开点选取的几种情况:区间的中点、已知区间的两端点、函数的极值点或最值点、已知区间的任意点.同时对各种情况的运用范围和特点作了说明,以便更好的运用泰勒中值定理证明不等式.并对柯西中值定理和积分中值定理在证明不等式过程中的应用问题作简单介绍. 关键词:拉格朗日中值定理;泰勒公式;柯西中值定理;积分中值定理;不等式 Abstract This paper idea wrote in inequality proof of use frequently during several of the mean value theorem, which in the Lagrange mean value theorem proving inequality in the application of the three methods to speak: direct formula method, variable value method, the method to construct auxiliary function. in the application of proof inequalities of the Taylor mean value theorem , which gave Taylor formula on the point in several ways: the point of the interval, the interval of two known extreme, the function extreme value point or the most value point, the interval of known at any point. And the application range of of all kinds of situation and characteristics that were explained, in order to better use Taylor of the mean value theorem to testify inequality. And Cauchy mid-value theorem and integral mean value theorem in the application process to prove the inequality were briefly discussed Key words :The Lagrange Mean Value Theorem;Taylor's Formula;Cauchy Mean Value Theorem;Inequality;The Mean Value Theorem for Integrals

常见不等式

1、算术-几何平均值不等式 在数学中,算术-几何平均值不等式是一个常见而基本的不等式,表现了两类平均数:算术平均数和几何平均数之间恒定的不等关系。 设为个正实数,它们的算术平均数是 ,它们的几何平均数是。算术-几何平均值不等式表明,对任意的正实数,总有: 等号成立当且仅当。 2、柯西不等式 二维形式 (a^2+b^2)(c^2 + d^2)≥(ac+bd)^2 等号成立条件:ad=bc (a/b=c/d) 扩展:((a1^2)+(a2^2)+(a3^2)+...+(an^2))((b1^2)+(b2^2)+(b3^2)+...(bn^2))≥(a1·b1+a2·b2+a3·b3+.. .+an·bn)^2 等号成立条件:a1:b1=a2:b2=…=an:bn(当ai=0或bi=0时ai和bi都等于0,不考虑ai:bi,i=1,2,3,…,n) 三角形式 √(a^2+b^2)+√(c^2+d^2)≥√*(a+c)^2+(b+d)^2+ 等号成立条件:ad=bc 注:“√”表示平方根 3、托勒密定理、托勒密不等式 圆内接凸四边形两对对边乘积的和等于两条对角线的乘积。 2.托勒密定理的逆定理同样成立:一个凸四边形两对对边乘积的和等于两条对 角线的乘积,则这个凸四边形内接于一圆、 托勒密不等式:凸四边形的两组对边乘积和不小于其对角线的乘积,取等号当且仅 当共圆或共线。

4、费马点 在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。 (1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好三等分费马点所在的周角。所以三角形的费马点也称为三角形的等角中心。 (2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。(3)在凸四边形ABCD中,费马点为两对角线AC、BD交点P。 三角形中费马点的找法: 当三角形有一个内角大于或等于120°的时候,费马点就是这个内角的顶点;如果三个内角都在120°以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120°的点。 5、莱布尼茨定理 点A\B\V

高中数学不等式的综合应用(提高)知识梳理

不等式的综合应用 【考纲要求】 1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力; 2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式; 3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题; 4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力; 5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题. 6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.. 【知识网络】 【考点梳理】 考点一:不等式问题中相关方法 1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰. 2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函 数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式 化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用. 4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形 →判断符号(值). 5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维 等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相不 等 式 的 综 合 应 用 解不等式问题 实际应用问题 不等式中的含参问题 不等式证明

相关文档
最新文档