处理平抛运动的临界和极值问题

处理平抛运动的临界和极值问题
处理平抛运动的临界和极值问题

处理平抛运动的临界和极值问题

一、极端分析法

所谓极端分析法,是指两个变量之间的关系,若是单调上升或单调下降的函数关系,可以通过连续地改变某个变量甚至达到变化的极端,来对另一个变量进行判断的研究方法.

典例1

(教科版必修2P12发展空间改编)如图1所示,排球场总长为18 m,设球网高度为2 m,运动员站在离网3 m的线上(图中虚线所示)正对网前跳起将球水平击出.(不计空气阻力,取g=10 m/s2)

图1

(1)设击球点在3 m 线正上方高度为2.5 m 处,试问击球的速度在什么范围内才能使球既不触网也不越界?

(2)若击球点在3 m 线正上方的高度小于某个值,那么无论击球的速度多大,球不是触网就是越界,试求这个高度. 答案 见解析

解析 (1)如图甲所示,设球刚好擦网而过,则击球点到擦网点的水平位移x 1=3 m ,竖直位移y 1=h 2-h 1=(2.5-2) m =0.5 m ,根据位移关系x =v t ,y =1

2gt 2,可得v =x

g

2y

,代入数据可得v 1=310 m/s ,即所求击球速度的下限

设球刚好打在边界线上,则击球点到落地点的水平位移x 2=12 m ,竖直位移y 2=h 2=2.5 m ,

代入上面的速度公式v=x g

2y,可求得v2=12 2 m/s,即所求击球速度的上限

欲使球既不触网也不越界,则击球速度v应满足

310 m/s

(2)设击球点高度为h3时,球恰好既触网又压线,如图乙所示

设此时排球的初速度为v,击球点到触网点的水平位移x3=3 m,竖直位移y3=h3-h1=(h3

-2) m,代入速度公式v=x g

2y可得v=3

5

h3-2;同理对压线点有x4

=12 m,y4=h3,

代入速度公式v=x g

2y可得v=12

5

h3

两式联立解得h3≈2.13 m,即当击球高度小于2.13 m时,无论球被水平击出的速度多大,球不是触网,就是越界.

二、对称法

所谓对称法,就是利用所给物理问题结构上的对称性或物理过程在时间、空间上的对称性,把已知结论推广,从而简化运算过程的处理方法.用对称法解题的关键是抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径.一般情况下,对称性表现为研究对象在结构上的对称性、物理过程在时间上和空间上的对称性、物理量在分布上的对称性及作用效果的对称性等.

典例2

抛体运动在各类体育运动项目中很常见,如乒乓球运动.现讨论乒乓球发球问题,设球台长2L、网高h,乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力.(设重力加速度为g)

图2

(1)若球在球台边缘O 点正上方高度为h 1处以速度v 1水平发出,落在球台上的P 1点(如图2实线所示),求P 1点距O 点的距离x 1.

(2)若球从O 点正上方以速度v 2水平发出,恰好在最高点时越过球网落在球台上的P 2点(如图虚线所示),求v 2的大小.

(3)若球从O 点正上方水平发出后,球经反弹恰好越过球网且刚好落在对方球台边缘P 3点,求发球点距O 点的高度h 3. 答案 (1)v 1

2h 1g (2)L 2

g 2h (3)4

3

h 解析 (1)如图甲所示,根据平抛规律得:

h 1=12

gt 2

1,x 1=v 1t 1

联立解得:x 1=v 1

2h 1

g

. (2)根据平抛规律得:h 2=12gt 2

2,x 2=v 2t 2

且h 2=h,2x 2=L ,联立解得v 2=L

2

g 2h

. (3)如图乙所示,得:h 3=12

gt 2

3,x 3=v 3t 3

且3x 3=2L

设球从恰好越过球网到达到最高点时所用的时间为t ,水平距离为s ,有h 3-h =1

2gt 2,s =v 3t

由几何关系得:x 3+s =L ,解得:h 3=4

3

h .

动力学中的临界极值问题的处理

动力学中临界极值问题的处理及分析 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、力学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 【例1】速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m 时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间? (2)相遇前这鸟飞行了多少路程? 【致远提示】甲、乙火车和小鸟运动具有等时性,要分析相遇的临界条件。 【思维总结】本题难度不大,建立物理情景,分清运动过程,找到相遇的临界条件、三个运动物体运动具有等时性和小鸟速率不变是解题的切入点。

平抛运动斜面距离问题的解法赏析

平抛运动斜面距离问题的解法赏析 无锡市堰桥中学 周维新 平抛运动是生活中常见的运动,也是高中物理曲线运动中典型的运动形式。因此平抛运动高考中的重点和热点。学生在处理较为简单的问题时,进行分解合成处理还能完成,但是对于较为复杂的问题时就感觉到束手无策。本文就平抛运动中较为复杂的斜面距离问题的解法作如下探讨。 例题:如图,AB 斜面倾角为37°,小球从A 点以 初速度v 0=20m/s 水平抛出,恰好落到B 点,求: (1)物体在空中飞行的时间;AB 间的距离; (2)小球在B 点时速度的大小和方向; (3)从抛出开始经多少时间小球与斜面间的距离最大, 最大距离是多少g=10m/s 2; 1、分解法 第(3)问的传统解法将平抛运动分解到斜面方向和垂直于斜面方向:沿斜面方向:V //=V 0cos37o=20×0.8=16m/s ,a //=gsin37o=10×0.6=6m/s 2匀加速直线 运动。垂直斜面方向:V ⊥= V 0sin37o=20×0.6=12m/s ,a ⊥=gcos37o=10×0.8=8m/s 2匀减速直线运动。当垂直斜面方向的速度减为零时,球离斜面距离最远。t= ==1.5s ,最远距离S==。 此种解法沿用了离地最高必有在垂直地面方向的速度为零的结论。球离斜面距离最大,则球在垂直斜面上的速度必为零。因而本解法采用正交分解,可以巩固学生的运动合成与分解知识,同时拓展对平抛运动的处理方法。平抛运动分解为两个方向的匀变速直线运动,学生较易理解但运算较繁。 2、追击解法 设斜面上有一个点,该点沿斜面作匀速直线运动。该点的水平分速度v 0=20m/s 与小球的平抛初速度相等,竖直方向的分速度v y = v 0tan37°=15m/s ,所以小球由A 点平抛运动到B 点时,该点也恰好从A 点匀速运动到B 点,在运动过程中该点始终在小球的正下方。在竖直方向,小球自由落体追击该点匀速直线运动,当小球在竖直方向上的速度等于该点的竖直方向上的速度时,两点间有最大距离,此时小球与斜面间的距离也最大。解答如下: 研究对象:点 V 点x = 20m/s V 点y = 15m/s 小球:V 球x = 20m/s V 球y =gt 当V 球y = V 点y 时,点和球之间有最大距离y CD (如图) t= ==1.5s y CD = y 点-y 球=V 点y t-=15×1.5-5× 1.52=11.25m 则球与斜面间大最大距离S=y CD cos37o=9m 追击解法也采用运动的分解,但增加了研究对象,充分利用追击问题中的规律:两物速度相同时距离有极值。思维独特,想法新颖,运算较为简便,具有一定创造性,有利与学生发散性思维的培养。 3、数学几何法

在学习物理中有关临界极值问题的处理

在动力学中临界极值问题的处理 佛山市高明第一中学(528500)周兆富 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的 问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、电磁学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。 一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 ?例1?速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间? (2)相遇前这鸟飞行了多少路程? ?灵犀一点?甲、乙火车和小鸟运动具有等时性,要分析相遇的临界条件。 ?解析?飞鸟飞行的时间即为两车相遇前运动的时间,由于飞鸟在飞行过程中速率没有变化,可用s=vt求路程。 (1)设甲、乙相遇时间为t,则飞鸟的飞行时间也为t,甲、乙速度大小相等v甲= v乙=5m/s,同相遇的临界条件可得:s = (v甲+v乙)t 则: 2000 =200 10 s t s s v v == + 乙 甲

圆周运动临界问题 极值问题

圆周运动临界问题 极值问题 相关知识复习: 一、由于受静摩擦力作用 二、绳 杆等恰好无作用力或者有承受最大力 三、两个典型模型 1、绳球模型(已知绳长L ,小球质量m ,线速度V ) 1)画出小球的受力示意图 2)写出小球过最高点的动力学方程 3)若小球刚好过最高点,F =拉 ,此时 V= 2、杆球模型 (已知杆长L ,小球质量m ,线速度V ) 1)若小球刚好过最高点,杆对球的作用力F = ,方向 此时 V= 2 )若v = F = 。 3 )若v >F = ,方向 。 4 )若0v

平抛运动中临界问题的分析(含答案)

平抛运动中临界问题的分析 1、如图所示,在水平路面上一运动员驾驶摩托车跨越壕沟,壕沟 两侧的高度差为0.8 m ,水平距离为8 m ,则运动员跨越壕沟的 初速度至少为(取g =10 m/s 2) ( ) A .0.5 m/s B .2 m/s C .10 m/s D .20 m/s 答案 D 解析 运动员做平抛运动的时间t = 2Δh g =0.4 s ,v =x t =8 0.4 m/s =20 m/s. 2、《愤怒的小鸟》是一款时下非常流行的游戏,游戏中的故事也相当有趣,如图甲所示,为 了报复偷走鸟蛋的肥猪们,鸟儿以自己的身体为武器,如炮弹般弹射出去攻击肥猪们的堡垒.某班的同学们根据自己所学的物理知识进行假设:小鸟被弹弓沿水平方向弹出,如图乙所示,若h 1=0.8 m ,l 1=2 m ,h 2=2.4 m ,l 2=1 m ,小鸟飞出后能否直接打中肥猪的堡垒?请用计算结果进行说明.(取重力加速度g =10 m/s 2) 答案 不能 解析 (1)设小鸟以v 0弹出后能直接击中堡垒,则 ????? h 1+h 2=12gt 2 l 1+l 2=v 0t t = 2(h 1+h 2) g = 2×(0.8+2.4) 10 s =0.8 s 所以v 0=l 1+l 2t =2+1 0.8 m/s =3.75 m/s 设在台面的草地上的水平射程为x ,则 ???? ? x =v 0t 1h 1=12gt 21 所以x =v 0 2h 1 g =1.5 m

3、乒乓球在我国有广泛的群众基础,并有“国球”的美誉,现 讨论乒乓球发球问题,已知球台长L ,网高h ,若球在球台 边缘O 点正上方某高度处,以一定的垂直球网的水平速度 发出,如图所示,球恰好在最高点时刚好越过球网.假设乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力,则根据以上信息可以求出(设重力加速度为g ) ( ) A .球的初速度大小 B .发球时的高度 C .球从发出到第一次落在球台上的时间 D .球从发出到被对方运动员接住的时间 答案 ABC 解析 根据题意分析可知,乒乓球在球台上的运动轨迹具有重复和对称性,故发球时的高度等于h ;从发球到运动到P 1点的水平位移等于1 4L ,所以可以求出球的初速度大小, 也可以求出球从发出到第一次落在球台上的时间.由于对方运动员接球的位置未知,所以无法求出球从发出到被对方运动员接住的时间,故本题选A 、B 、C. 4、2011年6月4日,李娜获得法网单打冠军,实现了大满贯这一梦想,如图所示为李娜将球在边界A 处正上方B 点水平向右击出,球恰好过网C 落在D 处(不计空气阻力)的示意图,已知AB =h 1,AC =x ,CD =x 2 ,网高为h 2,下列说法中正确的是( ) A .击球点高度h 1与球网的高度h 2之间的关系为h 1=1.8h 2 B .若保持击球高度不变,球的初速度v 0只要不大于x 2gh 1 h 1 ,一定落在对方界内 C .任意降低击球高度(仍高于h 2),只要击球初速度合适(球仍水平击出),球一定能落在对方界内 D .任意增加击球高度,只要击球初速度合适(球仍水平击出),球一定能落在对方界内 答案 AD 解析 由平抛运动规律可知h 1=12gt 21,1.5x =v 0t 1,h 1-h 2=12gt 2 2,x =v 0t 2,得h 1=1.8h 2, A 正确;若保持击球高度不变,球的初速度v 0较小时,球可能会触网, B 错误;任意降低击球高度,只要初速度合适,球可能不会触网,但球会出界, C 错误;任意增加击球高度,只要击球初速度合适,使球的水平位移小于2x ,一定能落在对方界内, D 正确. 5、如图所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子 的水平距离L =3 m ,围墙外马路宽x =10 m ,为使小球从屋顶水平飞出 落在围墙外的马路上,求小球离开屋顶时的速度v 的大小范围.(g 取

平抛运动地典型例的题目

平抛运动典型例题 专题一:平抛运动轨迹问题——认准参考系 1、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是( C )A.从飞机上看,物体静止 B.从飞机上看,物体始终在飞机的后方 C.从地面上看,物体做平抛运动 D.从地面上看,物体做自由落体运动 专题二:平抛运动运动性质的理解——匀变速曲线运动(a→) 2、把物体以一定速度水平抛出。不计空气阻力,g取10,那么在落地前的任意一秒内( BD ) A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m 专题三:平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 3、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须( C ) A.甲先抛出球B.先抛出球 C.同时抛出两球D.使两球质量相等 4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1.v2的速度沿同一水平方 向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是( D ) A.同时抛出,且v1< v2B.甲后抛出,且v1> v2 C.甲先抛出,且v1> v2D.甲先抛出,且v1< v2

专题四:平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系 ①基本公式、结论的掌握 5、一个物体从某一确定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是( D ) A . B . C . D . 6、作平抛运动的物体,在水平方向通过的最大距离取决于( C ) A.物体所受的重力和抛出点的高度 B.物体所受的重力和初速度 C.物体的初速度和抛出点的高度 D.物体所受的重力、高度和初速度 7、如图所示,一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向 的夹角 满足 ( D ) A.tan φ=sin θ B. tan φ=cos θ C. tan φ=tan θ D. tan φ=2tan θ 8、将物体在h =20m 高处以初速度v 0=10m/s 水平抛出,不计空气阻力(g 取10m/s 2 ),求: (1)物体的水平射程——————————————————20m (2)物体落地时速度大小————————————————m 510 ②建立等量关系解题

动力学的临界和极值问题

动力学的临界和极值问题 教学目标: 教学重点、难点: 新课引入: 教学过程: 一、临界和极值 在应用牛顿定律解决动力学问题中,当物体运动的加速度不同时,物体 有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词语时,往往会有临界现象。此时要采用极限分析法,看物体在不同加速度时,会有哪些现象发生,尽快找出临界点,求出临界条件。 在某些物理情境中,物体运动状态变化的过程中,由于条件的变化,会出现两种状态的衔接,两种现象的分界,同时使某个物理量在特定状态时,具有最大值或最小值。这类问题称为临界问题。在解决临界问题时,进行正确的受力分析和运动分析,找出临界状态是解题的关键。 1、相互接触的物体,它们分离的临界条件是:它们之间的弹力0 N ,而且此时它们的速度相等,加速度相同。 【例】如图,在竖直立在水平面的轻弹簧上面固定一块质量不计的薄板,将薄板上放一重物,并用手将重物往下压,然后突然将手撤去,重物即被弹射出去,则在弹射过程中,(即重物与弹簧脱离之前),重物的运动情况是( ) A 、一直加速 B 、先减速,后加速 C 、先加速、后减速 D 、匀加速

【例】如图所示,劲度系数为k 的轻弹簧竖直固定在水平面上,上端固定一质量为0m 的托盘,托盘上有一个质量为m 的木块。用竖直向下的力将原长为0l 的弹簧压缩后突然撤去外力,则m 即将脱离0m 时的弹簧长度为( ) A 、0l B 、()k g m m l +- C 、k mg l -0 D 、k g m l 00-

【例】如图所示,一细线的一端固定于倾角为?45的光滑楔形滑块A 的顶端P 处,细线的另一端拴一质量为m 的小球。当滑块至少以加速度______=a 向的 左运动时,小球对滑块的压力等于零。当滑块以g a 2=加速度向左运动时,线的拉力大小______=F 。

高中物理专题训练含答案-19--平抛运动的临界问题

19 平抛运动的临界问题 【核心方法点拨】 涉及平抛运动的临界问题关键是找出“恰好”“刚好”对应的状态物理量关系。 【训练】 (2016·宁夏银川高三质检)如图所示为四分之一圆柱体OAB 的竖直截面,半径为R ,在B 点上方的C 点水平抛出一个小球,小球轨迹恰好在D 点与圆柱体相切,OD 与OB 的夹角为60°,则C 点到B 点的距离为( ) A .R B.R 2 C.3R 4 D.R 4 【解析】设小球平抛运动的初速度为v 0,将小球在D 点的速度沿竖直方向和水平方向分解,则有v y v 0=tan 60°,得gt v 0=3。小球平抛运动的水平位移x =R sin 60°,x =v 0t ,解得v 20 =Rg 2,v 2y =3Rg 2。设平抛运动的竖直位移为y ,v 2 y =2gy ,解得y =3R 4,则BC =y -(R -R cos 60°)=R 4,D 选项正确。 【答案】D (2014·上海)如图所示,宽为L 的竖直障碍物上开有间距d =0.6 m 的矩形孔,其下沿离地高h =1.2 m .离地高H =2 m 的质点与障碍物相距x ,在障碍物以v 0=4 m/s 匀速向左运动的同时,质点自由下落,为使质点能穿过该孔,L 的最大值为______m ;若L =0.6 m ,x 的取值范围是________m .(取g =10 m/s 2) 【解析】以障碍物为参考系,相当于质点以v 0的初速度,向右平抛,当L 最大时,从抛出点经过孔的左上边界飞到孔的右下边界时,L 最大,y 1=H -d -h =12gt 21,x 1=v 0t 1;y 2=H - h =12gt 22,x 2=v 0t 2;解得t 1=0.2 s ,t 2=0.4 s ,x 1=0.8 m ,x 2=1.6 m ,L =x 2-x 1=0.8 m ;从孔的左上边界飞入小孔的临界的值x ′1=v 0t 1=0.8 m ,x ′2+0.6 m =v 0t 2,解得x ′2=1 m ,知0.8 m≤x ≤1 m. 【答案】0.8 0.8 m≤x ≤1 m

动力学中的临界与极值问题

考点二 动力学中的临界与极值问题 动力学中的临界问题一般有三种解法: 1.极限法 在题目中如出现“最大”“最小”“刚好”等词语时,一般隐含着临界问题,处理这类问题时,应把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,达到尽快求解的目的. 2.假设法 有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答这类题,一般用假设法. 3.数学法 将物理过程转化为数学公式,根据数学表达式求解得出临界条件. 命题点1 接触与脱离的临界条件 3.一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M =10.5 kg ,Q 的质量m =1.5 kg ,弹簧的质量不计,劲度系数k =800 N/m ,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2 s 内,F 为变力,0.2 s 以后,F 为恒力.求力F 的最大值与最小值.(取g =10 m/s 2) 【解析】 设开始时弹簧压缩量为x 1,t =0.2 s 时弹簧的压缩量为x 2,物体P 的加速度为a ,则有 kx 1=(M +m )g ① kx 2-mg =ma ② x 1-x 2=12 at 2③ 由①式得x 1=(M +m )g k =0.15 m , 由②③式得a =6 m/s 2. F min =(M +m )a =72 N ,

F max =M (g +a )=168 N. 【答案】 F max =168 N F min =72 N 命题点2 相对滑动的临界条件 4.如图所示,12个相同的木块放在水平地面上排成一条直线,相邻两木块接触但不粘连,每个木块的质量m =1.2 kg ,长度l =0.5 m .木块原来都静止,它们与地面间的动摩擦因数均为μ1=0.1,在左边第一个木块的左端放一质量M =1 kg 的小铅块(可视为质点),它与各木块间的动摩擦因数均为μ2=0.5,现突然给小铅块一个向右的初速度v 0=9 m/s ,使其在木块上滑行.设木块与地面间及小铅块与木块间的最大静摩擦力均等于滑动摩擦力,重力加速度g =10 m/s 2.求: (1)小铅块相对木块滑动时小铅块的加速度大小; (2)小铅块下的木块刚发生运动时小铅块的瞬时速度大小. 【解析】 (1)设小铅块相对木块滑动时加速度大小为a ,由牛顿第二定律可知μ2Mg =Ma 解得a =5 m/s 2. (2)设小铅块最多能带动n 个木块运动,对n 个木块整体进行受力分析,当小铅块下的n 个木块发生运动时,则有μ2Mg ≥μ1(mgn +Mg ) 解得n ≤3.33 即小铅块最多只能带动3个木块运动 设当小铅块通过前面的9个木块时的瞬时速度大小为v ,由动能定理可知-μ2Mg ×9l =12 M (v 2-v 20) 解得v =6 m/s. 【答案】 (1)5 m/s 2 (2)6 m/s 命题点3 数学方法求解极值问题 5.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33 .重力加速度g 取10 m/s 2.求:

【第14课时平抛运动】考点三 平抛运动中的临界问题(

考点三平抛运动中的临界问题(高频17) 处理平抛运动中的临界问题要抓住两点 (1)找出临界状态对应的临界条件. (2)要用分解速度或者分解位移的思想分析平抛运动中的临界问题. 命题点1 用极端分析法分析临界问题 所谓极端分析法,是指两个变量之间的关系,若是单调上升或单调下降的函数关系,可以通过连续地改变某个变量甚至达到变化的极端,来对另一个变量进行判断的研究方法. 6.如图所示,排球场总长为18 m,设球网高度为2 m,运动员站在离网3 m的线上(图中虚线所示)正对网前跳起将球水平击出.(不计空气阻力,取g=10 m/s2)

(1)设击球点在3 m线正上方高度为2.5 m处,试问击球的速度在什么范围内才能使球既不触网也不越界? (2)若击球点在3 m线正上方的高度小于某个值,那么无论击球的速度多大,球不是触网就是越界,试求这个高度. 【解析】(1)如图甲所示,设球刚好擦网而过,则击球点到擦网点的水平位移 x 1=3 m,竖直位移y1=h2-h1=(2.5-2)m=0.5 m,根据位移关系x=vt,y= 1 2 gt2,可得v=x g 2y ,代入数据可得v1=310 m/s,即所求击球速度的下限. 设球刚好打在边界线上,则击球点到落地点的水平位移x2=12 m,竖直位移y2=

h 2=2.5 m,代入上面的速度公式v=x g 2y ,可求得v2=12 2 m/s,即所求击 球速度的上限. 欲使球既不触网也不越界,则击球速度v应满足 310 m/s

平抛运动高考考点及典型题总结 卢强撰稿

命题点一平抛运动的基本规律 1.如图所示,A、B两质点从同一点O分别以相同的水平速度υ0沿x轴正方向抛出,A在竖直平面内运动,落地点为P1;B沿光滑斜面运动,落地点为P2,P1和P2在同一水平面上,不计阻力,则下列说法正确的是( ) A. A. B的运动时间相同 B. A. B沿x轴方向的位移相同 C. A. B运动过程中的加速度大小相同 D. A. B落地时速度大小相同 2.如图为足球球门,球门宽为L.一个球员在球门中心正前方距离球门s处高高跃起,将足球顶入球门的左下方死角(图中P点).球员顶球点的高度为h,足球做平抛运动(足球可看成质点,忽略空气阻力),则() A.足球位移的大小x= B.足球初速度的大小v0= C.足球末速度的大小v= D.足球初速度的方向与球门线夹角的正切值 tanθ= 3.(多选)在如图所示的平面直角坐标系中,A、B、C三个小球沿图示方向做平抛运动,下列表述正确的是() A.若A、B、C同时抛出,恰好能在地面相遇,需要满足v C>v B>v A B.若A、B能在地面相遇,则A、B在空中运动的时间之比为2:1 C.若A、C在(x0,0)相遇,则一定满足v A=v C D.只要B、C同时开始做平抛运动,二者绝不可能相遇 命题点二与斜面有关的平抛运动问题

1.如图所示,一名跳台滑雪运动员经过一段时间的加速滑行后从O点水平飞出,经过3s落到斜坡上的A点。已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量 m=50kg.不计空气阻力(sin 37°=0.6,cos 37°=0.8;g取10m/s2).求: (1)A点与O点的距离L; (2)运动员离开O点时的速度大小; (3)运动员从O点飞出开始到离斜坡距离最远所用的时间。 2.如图所示,小球以v0正对倾角为θ的斜面水平抛出,若小球到达斜面的位移最小,则飞行时间t为(重力加速度为g)() A. B. C. D. 3.如图所示。倾角为θ的斜面上有A. B. C三点,现从这三点分别以不同的初速度水平抛出一小球,三个小球均落在斜面上的D点。今测得AB:BC:CD=5:3:1,由此可判断( ) A. A. B. C处三个小球运动时间之比为1:2:3 B. A. B. C处三个小球落在斜面上时速度与初速度间的夹角之比为1:1:1 C. A. B. C处三个小球的初速度大小之比为3:2:1 D. A. B. C处三个小球的运动轨迹可能在空中相交 命题点三平抛运动中的临界问题 1.在真空环境内探测微粒在重力场中能量的简化装置如图所示。P是一个微粒源,能持续水平向右发射质量相同、初速度不同的微粒。高度为h的探测屏AB竖直放置,离P点的水平距离为L,上端A与P点的高度差也为h。

板块模型的临界极值问题

板块模型的临界极值问 题 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

板块模型的临界极值问题 1【经典模型】 如图甲所示,M 、m 两物块叠放在光滑的水平面上,两物块间的动摩擦因数为μ,一个恒力F 作用在物块M 上. (1)F 至少为多大,可以使M 、m 之间产生相对滑动 (2)如图乙所示,假如恒力F 作用在m 上,则F 至少为多大,可以使M 、m 之间产生相对滑动 练1、如图所示,物体A 、B 的质量分别为2kg 和1kg ,A 置于光滑的水平地面上,B 叠加在A 上。已知A 、B 间的动摩擦因数为,水平向右的拉力F 作用在B 上, A 、 B 一起相对静止开始做匀加速运动。加速度为2/s m 。 (2/10s m g =)求: (1)力F 的大小。 (2)A 受到的摩擦力大小和方向。 (3)A 、B 之间的最大静摩擦力A 能获得的最大加速度 (4)要想A 、B 一起加速(相对静止),力F 应满足什么条件 (5)要想A 、B 分离,力F 应满足什么条件 练2、物体A 放在物体B 上,物体B 放在光滑的水平面上,已知6=A m kg , 2=B m kg ,A 、B 间动摩擦因数2.0=μ,如图所示。现用一水平向右的拉力F 作用于物体A 上,则下列说法中正确的是(10=g m/s 2)( ) A .当拉力F <12N 时,A 静止不动 B .当拉力F =16N 时,A 对B 的摩擦力等于4N C .当拉力F >16N 时,A 一定相对B 滑动 D .无论拉力F 多大,A 相对B 始终静止 2、如图,物体A 叠放在物体B 上,B 置于光滑水平面上,A 、B 质量分别为m A =6 kg 、m B =2 kg ,A 、B 之间的动摩擦因数是,开始时F =10 N ,此后逐渐增加,在增大到45 N 的过程中,则( ) A .当拉力F <12 N 时,两物体均保持静止状态 B .两物体开始没有相对运动,当拉力超过12 N 时,开始相对滑动 C .两物体间从受力开始就有相对运动 D .两物体间始终没有相对运动

平抛物体的运动临界问题

平抛物体的运动临界问题 一、【模型】:排球不触网且不越界问题 模型简化(运动简化):将排球看成质点,把排球在空中的运动看成平抛运动。 问题:标准排球场:场总长为l 1=18m ,宽l 2 = 9m 女排网高h=2.24m 如上图所示。若运动员在3m 线上方水平击球,则认为排球做类平抛运动。 分析方法:设击球高度为H ,击球后球的速度水平为v 0。当击球点高度为H 一定时,击球速度为υ1时恰好触网;击球速度为υ2时恰好出界。当击球点高度为H 时,击球速度为υ时,恰好不会触网,恰好不会出界,其运动轨迹分别如下图 中的(a )、(b )、(c )所示。 1、不出界: 如图(a )、(b)当击球点高度为H 一定时,要不越界,需飞行的水平距离m m l l 12321=+? 由于 时,不越界。 因此,m g H v l gt H t v l 1222 102 0?=== 结论: ① 若H 一定时,则v 0越大越易越界,要不越界,需H g g H v 2122120=< ② 若v 0一定时,则H 越大越易越界,越不越界,需0 0022722144212v g v g v g H = =< 2、不触网: 如图(c )要不触网,则需 竖直高度:2 2 1gt h H > - 水平距离:m t v 30= 以上二式联立得:0 2 29v t h H >- 结论: ①若H 一定(()一定h H -)时,则v 0越小,越易触网。要不触网,需() h H g v ->230 ②若v 0一定时,则H 越小,越易触网。要不触网,需2 29v g h H +> 3、总结论: ①当H 一定时,不触网也不越界的条件是:()??? ? ? ?=<<-H g g H v h H g 21221223 0 (即当H 一定时,速度太大太小均不行,太小会触网,太大又易越界) ② 若v 0一定时,且v 0在()??? ? ? ?=< <-H g g H v h H g 21221223 0之外 ()????? ?? ??<>h H g v g H v -2321200或即 则无论初速度多大,结果是或越界或触网。 简言之:g H H g 21223>??? ??

平抛运动典型例题(含答案)

[例1] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。 解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。 又根据运动学的规律可得 竖直方向上, 水平方向上 , 所以Q点的速度 ?[例2] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A 和B两小球的运动时间之比为多少? 图3 解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到 所以有 同理 则 ? [例3] 如图6所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少? 图6 解析:将平抛运动分解为沿斜面向下和垂直斜面向上的分运动,虽然分运动比较复杂一些,但易将物体离斜面距离达到最大的物理本质凸显出来。 取沿斜面向下为轴的正方向,垂直斜面向上为轴的正方向,如图6所示,在轴上,小球做初速度为、加速度为的匀变速直线运动,所以有 ?① ?② 当时,小球在轴上运动到最高点,即小球离开斜面的距离达到最大。 由①式可得小球离开斜面的最大距离 当时,小球在轴上运动到最高点,它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。由②式可得小球运动的时间为

例4:在平直轨道上以20.5/m s 的加速度匀加速行驶的火车上,相继下落两个物体下落的高度都是2.45m .间隔时间为1s .两物体落地点的间隔是2.6m ,则当第一个物体下落时火车的速度是多大?(g 取210/m s ) 分析:如图所示.第一个物体下落以0v 的速度作平抛运动,水平位移0s ,火车加速到下落第二个物体时,已行驶距离1s .第二个物体以1v 的速度作平抛运动水平位移2s .两物体落地点的间隔是2.6m . 解:由位置关系得 1202.6s s s =+- 物体平抛运动的时间 0.7t s '= 由以上三式可得 例5:光滑斜面倾角为θ,长为L ,上端一小球沿斜面水平方向以速度0v 抛出(如图所示),小球滑到底端时,水平方向位移多大? 解:小球运动是合运动,小球在水平方向作匀速直线运动,有 0s v t = ① 沿斜面向下是做初速度为零的匀加速直线运动,有 2 12 L at = ② 根据牛顿第二定律列方程 sin mg ma θ= ③ 由①,②,③式解得s v v == 例6:某一物体以一定的初速度水平抛出,在某1s 内其速度方向与水平方向成37?变成53?,则此物体初速度大小是________/m s ,此物体在1s 内下落的高度是________m (g 取210/m s ) 选题目的:考查平抛物体的运动知识的灵活运用. 解析:作出速度矢量图如图所示,其中1v .2v 分别是ts 及(1)t s +时刻的瞬时速度.在这两个时刻,物体在竖直方向的速度大小分别为gt 及(1)g t +,由矢量图可知: 由以上两式解得017.1/v m s = 9 7 t s = 物体在这1s 内下落的高度 例7如图,跳台滑雪运动员经过一段加速滑行后从O 点水平飞出,经过3.0s 落到斜坡上的A 点.已知O 点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50kg .不计空气阻力.(取sin37°=0.60,cos37°=0.80;g 取10m/s 2)求: (1)A 点与O 点的距离L ;(2)运动员离开O 点时的速度大小;

临界与极值问题

热点综合专题四牛顿运动定律的综合应用 热点一超重和失重问题 超重、失重和完全失重的比较 【典例】(2018·福建福州期末)广州塔,昵称小蛮腰,总高度达600米,游客乘坐观光电梯大约一分钟就可以到达观光平台.若电梯简化成只受重力与绳索拉力,已知电梯在t=0时由静止开始上升,a -t图象如下图所示.则下列相关说法正确的是()

A.t=4.5 s时,电梯处于失重状态 B.5~55 s时间内,绳索拉力最小 C.t=59.5 s时,电梯处于超重状态 D.t=60 s时,电梯速度恰好为零 [审题指导](1)判断超重与失重,仅看加速度方向即可,与加速度大小如何变化无关. (2)a-t图线与t轴所围的“面积”代表速度的变化量. [解析]利用a-t图象可判断:t=4.5 s时,电梯有向上的加速度,电梯处于超重状态,则A错误;0~5 s时间内,电梯处于超重状态,拉力>重力,5~55 s时间内,电梯处于匀速上升过程,拉力=重力,55~60 s时间内,电梯处于失重状态,拉力<重力,综上所述,B、C错误;因a-t图线与t轴所围的“面积”代表速度改变量,而图中横轴上方的“面积”与横轴下方的“面积”相等,则电梯的速度在t=60 s时为零,D正确. [答案]D 判断超重和失重的方法

[针对训练] 1.(2018·吉林省白城市通榆一中考试)某运动员(可看成质点)参加跳台跳水比赛,t=0时,为其向上起跳离开跳台的瞬间,其速度与时间关系图象如图所示,不计空气阻力,则下列说法错误的是() A.可以求出水池的深度 B.可以求出跳台距离水面的高度

C.0~t2时间内,运动员处于失重状态 D.t2~t3时间内,运动员处于超重状态 [解析]跳水运动员在跳水过程中的v-t图象不能反映是否到达水底,所以不能求出水池的深度,故A错误;应用v-t图象中,图线与横轴围成的面积表示位移大小,可以求出跳台距离水面的高度,故B正确;t=0时刻是运动员向上起跳离开跳台的瞬间,速度是负值时表示速度方向向上,则知0~t1时间内运动员做匀减速运动,t1~t2时间内向下做匀加速直线运动,0~t2时间内,运动员一直在空中具有向下的加速度,处于失重状态,故C正确;由题图可知,t2~t3时间内,运动员向下做减速运动,则加速度的方向向上,处于超重状态,故D正确. [答案]A 2.(多选)飞船绕地球做匀速圆周运动,宇航员处于完全失重状态时,下列说法正确的是() A.宇航员不受任何力作用 B.宇航员处于平衡状态 C.地球对宇航员的引力全部用来提供向心力 D.正立和倒立时宇航员一样舒服 [解析]飞船绕地球做匀速圆周运动时,飞船以及里面的宇航员都受到地球的万有引力,选项A错误;宇航员随飞船绕地球做匀速圆周运动,宇航员受到地球的万有引力提供其做圆周运动的向心力,不是处于平衡状态,选项B错误,选项C正确;完全失重状态下,重力的作用效果完全消失,正立和倒立情况下,身体中的器官都是处于悬浮状态,没有差别,所以一样舒服,选项D正确. [答案]CD

动力学中的临界极值问题的处理讲课教案

动力学中的临界极值问题的处理

动力学中临界极值问题的处理及分析 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、力学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。 一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题 注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题 常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语 其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界 术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀 减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问 题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情 景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分 析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 【例1】速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间?

相关文档
最新文档