条件充分性判断题型的几种解法

条件充分性判断题型的几种解法

条件充分性判断解题方法

充分性判断题解题技巧 【充分条件基本概念】 1.定义 对两个命题A 和B 而言,若由命题A 成立,肯定可以推出命题B 也成立(即B A ?为真命题),则称命题A 是命题B 成立的充分条件。 2.条件与结论 两个数学命题中,通常会有“条件”与“结论”之分,若由“条件命题”的成立,肯定可以推出“结论命题”也成立,则称“条件”充分.若由“条件命题”不一定能推出(或不能推出)“结论命题”成立,则称“条件”不充分. 例如:不等式0652<--x x 能成立. (1)31<x (3)5=x (4)6

3.知识点评述 1.充分条件的判断:从给定的条件出发去分析,在此条件下,结论是否一定成立,若是,则条件充分,若否,则条件不充分.我们在做充分性判断的试题时,不可从“结论”入手去求解!那样只能得出“条件”对“结论”的“必要性”,而与充分性判断相背离.如:在此例中,由结论命题: 0652<--x x 能成立,可解得61<<-x .这只证明条件(5)是必要的.事实上,条件(5)是结论0652 <--x x 能成立的充分必要条件,才“歪打正着”被你找到了一个充分条件. 【充分性判断基本概念】 本书中,所有充分性判断题的A 、B 、C 、 D 、 E 五个选项所规定的含义,均以下列呈述为准,即: (A)条件(1)充分,但条件(2)不充分; (B)条件(2)充分,但条件(1)不充分; (C)条件(1)和(2)充分单独都不充分,但条件(1)和(2)联合起来充分; (D)条件(1)充分,条件(2)也充分; (E)条件(1)和(2)单独都不充分,条件(1)和 (2)联合起来也不充分.

正项级数敛散性地判别方法

正项级数敛散性的判别方法 摘要:正项级数是级数容中的一种重要级数,它的敛散性是其基本性质。正项级数敛散性的判别方法虽然较多,但是用起来仍有一定的技巧,归纳总结正项级数敛散性判别的一些典型方法,比较这些方法的不同特点,总结出一些典型判别法的特点及其适用的正项级数的特征。根据不同级数的特点分析、判断选择适宜的方法进行判别,才能事半功倍。 关键词:正项级数;收敛;方法;比较;应用 1引言 数项级数是伴随着无穷级数的和而产生的一个问题,最初的问题可以追溯到公元前五世纪,而到了公元前五世纪,而到了公元17、18世纪才有了真正的无穷级数的理论。英国教学家Gregory J (1638—1675)给出了级数收敛和发散两个术语从而引发了数项级数敛散性广泛而深入的研究,得到了一系列数项级数的判别法。因而,判断级数的敛散性问题常常被看作级数的首要问题。我们在书上已经学了很多种正项级数敛散性的判定定理,但书上没有做过多的分析。我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性。因此,我们便会去想,我们常用的这些定理到底有哪些局限呢?定理与定理之间会有些什么联系和区别呢?做题目时如何才能更好得去运用这些定理呢?这就是本文所要讨论的。 2正项级数敛散性判别法 2.1判别敛散性的简单方法 由级数收敛的基本判别定理——柯西收敛准则:级数 1 n n u ∞ =∑收敛 ?0,,,,N N n N p N ε+?>?∈?>?∈有12n n n p u u u ε+++++ +<。取特殊的1p =,可 得推论:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =。 2.2比较判别法 定理一(比较判别法的极限形式): 设 1 n n u ∞=∑和1 n n v ∞ =∑为两个正项级数,且有lim n n n u l v →∞=,于是 (1)若0l <<+∞,则 1 n n u ∞ =∑与 1 n n v ∞ =∑同时收敛或同时发散。 (2)若0l =,则当 1 n n v ∞ =∑收敛时,可得 1 n n u ∞ =∑收敛。

数学 讲义 条件充分性判断秒杀技巧

充分性判断题目(才开始有这种题型,为MBA的特色题型) A , 对两个命题A和B而言,若由命题A成立,肯定可以推出命题B成立,即B 则称命题A是命题B成立的充分条件。 当条件给定的参数范围落入题干成立范围内,即判断该条件是充分(子集充分)。 二、解题说明与各选项含义 本类题要求判断所给出的条件能否充分支持题干中陈述的结论,即只要分析条件是否充分即可,而不必考虑条件是否必要。 (A)条件(1)充分,但条件(2)不充分 (B)条件(2)充分,但条件(1)不充分 (C)条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分 (D)条件(1)充分,条件(2)也充分 (E)条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分例1.(2008-01-19) 申请驾驶执照时,必须参加理论考试和路考,且两种考试均通过。若在同一批学员中有 60。 80的人通过了路考,则最后领到驾驶执照的人有% % 70的人通过了理论考试,% 10的人两种考试都没有通过 (1)% 20的人仅通过了路考 (2)% 条件: 10的人两种考试都没有通过 (1)% 20的人仅通过了路考 (2)% 题干: 申请驾驶执照时,必须参加理论考试和路考,且两种考试均通过。若在同一批学员中有

%70的人通过了理论考试,%80的人通过了路考,则最后领到驾驶执照的人有%60。 题干中陈述的结论: 则最后领到驾驶执照的人有%60 三、阅读题目的方法 亚里士多德在逻辑学上最重要的工作就是三段论的学说。一个三段论就是一个包括 有大前提、小前提和结论三个部分的论证。三段论有许多不同的种类,其中每一种经院 学者都给起了一个名字。最为人所熟知的就是称为“Barbara”的那一种: 凡人都有死(大前提)。 苏格拉底是人(小前提)。 所以:苏格拉底有死(结论)。 例2.若x 和y 是整数,那么1xy +能被3整除。 (1)当x 被3除时,其余数为1 (2)当y 被9除时,其余数为8 这里:如果 整除(结论) 能被(小前提)除时,其余数为被是整数(大前提) 和 3 1 1 3 +?? ?? xy x y x 这样,称条件(1)充分。 如果 整除(结论) 能被(小前提)除时,其余数为被是整数(大前提) 和 3 1 8 9 +?? ?? xy y y x 这样,称条件(2)充分。 如果 整除(结论)能被(小前提)除时,其余数为被(小前提)除时,其余数为被是整数(大前提) 和 3 1 8 9 1 3+??? ? ?? xy y x y x 这样,称条件(1)和条件(2)联合起来充分。 四、解题步骤示意图

正项数收敛判别方法

数学与统计学院应用数学系 综合课程设计成绩评定书设计题目:正项级数收敛的判别方法

摘要: 各项都由正数组成的级数称为正项级数,它是数项级数的特例。本文主要考虑正项级数的收敛问题,通过介绍比较原则、比式判别法、根式判别法以及积分判别法等常用的判别方法,并结合相关实例,判断所给级数的敛散性。 关键字:正项级数 收敛 比较原则 比式判别法 根式判别法 积分判别法 1基本概念 1.1 数项级数及其敛散性 在介绍正项级数之前先引入数项级数的相关概念及收敛级数的基本性质,下面介绍数项级数以及级数敛散的定义。 定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 12n u u u ++++ (1) 称为数项级数或无穷级数(简称级数),其中n u 称为数项级数的通项。 数项级数(1)的前n 项之和,记为1 n n k k S u == ∑,称为(1)的前n 项部分和。 定义2:若(1)的部分和数列{}n S 收敛于S (即lim n n S S →∞ =),则称数项级数(1)收 敛,并称S 为(1)的和,记为1 n n S u ∞ == ∑,若{}n S 为发散数列,则称数列(1)发散。 根据级数(1)的收敛性,可以得到收敛级数的一些性质: (i) 收敛级数的柯西收敛准则 级数(1)收敛的充要条件是:0ε?>,0N ?>,n N ?>,p Z + ?>,有 12||.n n n p u u u ε++++++< (ii) 级数收敛的必要条件:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =. (iii)去掉、改变或增加级数的有限项并不改变级数的敛散性。 (iv) 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数也满足)。 (v) 运算性质: 若级数 1 n n u ∞ =∑与 1 n n v ∞ =∑都收敛,c d 是常数,则 1 ()n n n cu dv ∞ =+∑收敛,且满足

数项级数敛散性判别法。(总结)

华北水利水电学院 数项级数敛散性判别法。(总结) 课程名称:高等数学(下) 专业班级: 成员组成 联系方式: 2012年5月18日

摘要:在学习数项级数的时候,对于单一的方法所出的例题,大家都知道用何种方法去解决。但是等到所有的方法学完之后,再给出题目,大家似乎一头雾水,不知道用哪一种方法。有些同学甚至挨个拭每一种方法,虽然也可行。但是对于同一个级数,用不同的方法判断敛散性的难易程度不同,如果选用合适的方式,可以到到事半功倍的效果,但是如果悬选择了错误的方法,可能费了九牛二虎之力之后,得出的结果还是错误的。所以我们有必要总结一下判断敛散性的方法,了解它们的特性,才能更好地运用它们。 关键词:数项级数,敛散性,判断,方法。 英文题目 Abstract:Single out examples to learn a number of series,we all know which way to go.But wait until all of the methods after completing their studies are given topics,everyone seems confused and do not know what kind of way. Some students even one by one swab of each method, although it is also feasible.But for one series,using different methods to determine the convergence and divergence of the degree of difficulty, if the appropriate choice of the way to a multiplier effect,but if the hanging has chosen the wrong way,may have spent nine cattle tigers after the power, the result is wrong.So we need to sum up to determine the convergence and divergence,and to understand their characteristics,in order to make better use of them. Key words:A number of series,convergence and divergence of judgment. 引言:以下介绍书中所提到的判断数项级数敛散性的定理,并通过一些例题,讲解它们各自的适用范围。并总结出判断敛散性的一般思维过程。

2017数学-讲义-条件充分性判断秒杀技巧

充分性判断题目(03.01才开始有这种题型,为MBA的特色题型) A , 对两个命题A和B而言,若由命题A成立,肯定可以推出命题B成立,即B 则称命题A是命题B成立的充分条件。 当条件给定的参数范围落入题干成立范围内,即判断该条件是充分(子集充分)。 二、解题说明与各选项含义 本类题要求判断所给出的条件能否充分支持题干中陈述的结论,即只要分析条件是否充分即可,而不必考虑条件是否必要。 (A)条件(1)充分,但条件(2)不充分 (B)条件(2)充分,但条件(1)不充分 (C)条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分 (D)条件(1)充分,条件(2)也充分 (E)条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分例1.(2008-01-19) 申请驾驶执照时,必须参加理论考试和路考,且两种考试均通过。若在同一批学员中有 60。 80的人通过了路考,则最后领到驾驶执照的人有% % 70的人通过了理论考试,% 10的人两种考试都没有通过 (1)% 20的人仅通过了路考 (2)% 条件: 10的人两种考试都没有通过 (1)% 20的人仅通过了路考 (2)% 题干: 申请驾驶执照时,必须参加理论考试和路考,且两种考试均通过。若在同一批学员中有

%70的人通过了理论考试,%80的人通过了路考,则最后领到驾驶执照的人有%60。 题干中陈述的结论: 则最后领到驾驶执照的人有%60 三、阅读题目的方法 亚里士多德在逻辑学上最重要的工作就是三段论的学说。一个三段论就是一个包括 有大前提、小前提和结论三个部分的论证。三段论有许多不同的种类,其中每一种经院 学者都给起了一个名字。最为人所熟知的就是称为“Barbara”的那一种: 凡人都有死(大前提)。 苏格拉底是人(小前提)。 所以:苏格拉底有死(结论)。 例2.若x 和y 是整数,那么1xy +能被3整除。 (1)当x 被3除时,其余数为1 (2)当y 被9除时,其余数为8 这里:如果 整除(结论) 能被(小前提)除时,其余数为被是整数(大前提) 和 3 1 1 3 +?? ?? xy x y x 这样,称条件(1)充分。 如果 整除(结论) 能被(小前提)除时,其余数为被是整数(大前提) 和 3 1 8 9 +?? ?? xy y y x 这样,称条件(2)充分。 如果 整除(结论)能被(小前提)除时,其余数为被(小前提)除时,其余数为被是整数(大前提) 和 3 1 8 9 1 3+??? ? ?? xy y x y x 这样,称条件(1)和条件(2)联合起来充分。 四、解题步骤示意图

MBA数学充分性判断解题技巧归纳

MBA数学充分性判断解题技巧归纳 为了帮助大家能在短时间内快速提高数学成绩,特意将自己的一些学习心得与各位考生及老师共享。 一、充分性 由A可以推出B,称A为B的充分条件,或称B为A的必要条件 A是B的充分条件 B是A的必要条件 二、题目设计 三、挑战 1、运算方面,代答案至少两次 2、准确度上(高) 3、都有答案 4、不易检查 5、差之毫厘,谬以千里 四、方法 1、自下而上,即由条件带入题干 特点:至少运算两次 应用:纯数值而不是范围 2、自上而下,先把题干的数值算出,再比较条件(1)和(2) 特点:只需运算一次 应用:范围、不确定的 3、特殊值证伪法 应用:可以很快判断条件不成立。对E选项特别有用。 注意:特殊值只能证伪,不能证真。 五、技巧 1、两条件矛盾关系(占近一半) 备选:ABDE 2、两条件包含关系 备选:BDE

3、两条件等价关系 备选:DE 4、明确条件(1)充分,条件(2)未知 备选:AD 5、明确条件(1)不充分,条件(2)未知 备选:BCE 6、题干要由两个参数同时确定,而每个条件只给一个参数 备选:CE 7、条件(1)可推出条件(2) 备选:ADE 8、ABD较多(平均线以上)2-3个 CE较少(平均线一下)1-2个 9、四不相邻,四不连续 10、去掉把握出现多的选项,筛选后再蒙 六、解题心得 1、选择A或B选项: (1)当两条件矛盾时:由于A和B的选项可能要远远高于E,所以大家在做题时应该先选择一个比较容易的选项下手,如果能成立,再去验证另一个选项,如果不成立,你可以直接判断另一个成立。(考试时可以不用再验证了,节省了许多时间) (2)当两条件有包含关系时,一般大家要倾向于选择范围小的选项(子集)。 2、选择D选项: (1)如果两个代数表达式只相差一个符号的话,大家要选D。 (2)当两个条件明显从两个不同角度叙述问题时,应该倾向于选择D. 3、选择C选项 (1)当提干中的变量多于条件所给的变量时,应该联合两条件。 (2)当两个条件中有一个条件是对问题的定性描述,而另一个条件明显是主干时,应该选C选项。 4、选择E选项 经过考核:E选项一般只有1个,而且一般可以通过证伪法来判断,故对于基础薄弱的学员大可以别选择E,这样哪怕放弃一个E,你的分数也会有很大的保证。 注意:这些方法既是对数学基础薄弱学员的“雪中送炭”,又是对数学能力强的学员“锦上添花”!最后,希望大家能把以上的思想方法领悟。以保证您在2011年1月份MBA联考中数学不至于拉你的总分。最后祝愿大家考出好成绩。 条件充分性判断题目,共十道,包含A、B、C、D、E五个选项,根据历年真题总结,其中选择A、B两选项的题目一般为4道,最多5道;选择C选项的题目一般3道;D项

数项级数敛散性的判别法毕业论文

数项级数敛散性的判别法毕业论文

关于数项级数敛散性的判别法 摘要:级数是数学分析中的主要内容之一.我们学习过的数项级数敛散性判别法有许多种,如柯西(Cauchy)判别法、达朗贝尔(D ’Alembert )判别法、拉阿贝(Raabe)判别法、高斯(Gauss)判别法、狄里克莱(Dirichlet)判别法、莱布尼兹(Leibniz)判别法、阿贝尔(Abel)判别法等.对数项级数敛散性判别法进行归纳,使之系统化. 关键词:数项级数; 正项级数 ; 变号级数; 敛散性; 判别法 1 引言 设数项级数 ++++=∑∞ =n n n a a a a 211 的n 项部分和为: 12n S a a =++ +1 n n i i a a ==∑ 若n 项部分和数列{} n S 收敛,即存在一个实数S,使 lim n n S S →∞ =. 则称这个级数是收敛的,否则我们就说它是发散的.在收敛的情况下,我们称S 为级数的和.可见,无穷级数是否收敛,取决于lim n n S →∞ 是否存在.从而由数列的柯西(Cauchy )收敛准则, 可得到级数的柯西(Cauchy )收敛准则[1]:

数项级数1 n n a ∞ =∑收敛0,N N ε+ ??>?∈,对,n N p N + ?>?∈有 12n n n p a a a ε ++++++<. 2 正项级数敛散性判别法 设数项级数1n n a ∞ =∑为正项级数(n a ≥0).则级数的n 项部分和数列{}n S 单调递 增,由数列的单调有界公理,有 定理2.1[1] 正项级数1n n u ∞ =∑收敛?它的部分和数列{}n S 有上界. 由定理2.1可推得 定理2.2 [2] :设两个正项级数1 n n u ∞=∑和1 n n v ∞ =∑,存在常数c 0 >及正整数N ,当n >N 时有 n u ≤c n v ,则 (i )若级数1 n n u ∞=∑收敛,则级数1 n n v ∞ =∑也收敛; (ii )若级数1 n n u ∞=∑发散,则级数1 n n v ∞ =∑也发散. 一般常及其极限形式: 定理2.2’(比较判别法的极限形式) [2] :设1 n n u ∞=∑和1 n n v ∞ =∑是两个正项级数且有 lim n n n u v →∞=λ, (i )若0<λ<+∞,则两个级数同时敛散; (ii )若 λ=0,级数1 n n v ∞ =∑收敛,则级数1 n n u ∞ =∑也收敛; (iii )若 λ=+∞,级数1 n n v ∞=∑发散,则级数1 n n u ∞ =∑也发散. 由比较判别法可推得:

常数项级数敛散性判别法总结

常数项级数敛散性判别法总结 摘要:本文简要阐述了常数项级数敛散性判别法。由于常数项级数敛散性判别法较多,学生判定级数选择判别法时比较困难,作者结合级数判别法的使用条件及特点对判别法进行分析,使学生更好的掌握级数判别法。 关键词:常数项级数;级数敛散性判别法;判别法使用条件及特点 无穷级数是微积分学的一个重要组成部分,它是表示函数、研究函数性质以及进行数值计算的一种非常有用的数学工具。无穷级数的中心内容是收敛性理论,因而级数敛散性的判别在级数研究中极其重要。在学习常数项级数敛散性判别法时,学生按照指定的判别法很容易判定级数的敛散性,但是学习多种判别法后,选择判别法时比较困难。主要原因是学生对所学判别法的使用条件及特点不够熟悉,本文针对这种情况对常数项级数敛散性判别法加以归纳总结。 1 级数收敛的概念 给定一个数列{un},称 u1+u2+...+un+ (1) 为常数项无穷级数,简称常数项级数,记为.级数(1)的前n项之和记为Sn,即Sn=u1+u2+…+un,称它为级数(1)的部分和。若部分和数列{Sn}有极限S,即,则称级数(1)收敛。若部分和数列{Sn}没有极限,则称级数(1)发散。 注意:研究级数的收敛性就是研究其部分和数列是否存在极限,因此级数的收敛性问题是一种特殊形式的极限问题。极限是微积分学的基础概念,也是学生比较熟系的概念,因此在研究级数收敛性时,联系极限概念,学生易于理解。 借助级数的性质与几何级数,调和级数的敛散性可以判别级数的敛散性。例如,由性质(1)和当|q|0时,01,则发散。 当级数含有阶乘、n次幂或分子、分母含多个因子连乘除时,选用比值判别法。比值判别法不需要与已知的基本级数进行比较,在实用上更为方便。 例2:判别级数的敛散性。 解:因为 由比值判别法知级数收敛。 2.3 根植判别法

MBA数学条件充分性判断的猜蒙大法

2 条件充分性判断终极解题技巧 条件充分性判断题目,共十道,包含 A 、B 、C 、D 、E 五个选项,根据历年真题总结, 其中选择 A 、B 两选项的题目一般为 4 道,最多 5 道;选择 C 选项的题目一般 3 道;D 项 2 道左右,E 项 1 道不超过两道。根据以上总结,基础不好的考友可根据以下技巧先将选择 A 、B 、C 项的题目做出来,其余根据技巧不能确定的题目就空着,最后统一选择 D 即可。基础较好的考友,可继续了解掌握选择 D 、E 项的技巧。 一、选 A 或 B 选项 (只有一个条件充分,另一个不充分) 考试中 10 道题里最多 5 道,一般是 4 道,如果两条件复杂程度有明显差异时,可以使用以 下技巧快速解答。 1、印刷的长度明显不同时,选复杂的选项 (简言之,哪个长选那个) 例题:直线 L 的方程为 3x-y-20=0. (1) 过点(5,-2)且与直线 3x-y-2=0 平行的直线方程是 L ; (2) 平行四边形 ABCD 的一条对角线固定在 A (3,-1),C (2,-3)两点,D 点在直线 3x-y+1=0 上移动,则 B 点轨迹所在的方程为 L 。 解析:算都不算,直接选 B 。 2、印刷长度相当时。包含考点相对较难、公式相对复杂、方法较难、运算量大的项更充分。 例题 1: m=2 (1) 设 m 是整数,且方程 3 x 2 +mx-2=0 的两根都大于-2 而小于 1; 2 (2) 数列{a n }的通项公式a n = n 2 ? 4n + 5 ,则{ a n }的最大项是第 m 项。 答案:B (分式比正式复杂,涉及到最值,也复杂很多) 例题 2:M=60. (1) 若 x 1,x 2,x 3,┉,x n 的平均数 x =5,方差 S 2=2,则 3x 1+1,3x 2+1,3x 3+1,┉,3x n +1 的平均数与方差之和为 M 。 (2) 现从一组生产数据中,随机取出五个样本 7,8,9,x ,y 的平均数是 8,标准差是 , 则 xy 的值为 M 。 答案:B (2)两个变量,需要列两个方程,且需平方,(1)一个变量,口算可得,故选 B 3、当两条件矛盾时,既无法联合,否定掉一个,可选另一个充分 4、当两条件出现包含条件关系时,优先选小的充分 例题 1:ax 2+bx+1 与 3x 2-4x+5 的积不含 x 的一次方项和三次方项。 3 (1)a :b=3:4; (2)a= 5 4 ,b= 5

关于数项级数敛散性的判定

关于数项级数敛散性的判定 1、问题的提出 数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的. 2、熟练掌握并准确应用级数的概念、性质和判定定理 2.1数项级数收敛的定义 数项级数 ∑∞ =1 n n u 收敛?数项级数 ∑∞ =1 n n u 的部分和数列{}n S 收敛于S . 这样数项级数的敛散性问题就可以转化为部分和数列{} n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少. 2.2数项级数的性质 (1)若级数 ∑∞ =1n n u 与 ∑∞ =1 n n v 都收敛,则对任意常数c,d, 级数 ∑∞ =+1 )(n n n dv cu 亦收敛,且 ∑∑∑∞ =∞ =∞ =+=+1 1 1)(n n n n n n n v d u c dv cu ;相反的,若级数∑∞ =+1 )(n n n dv cu 收敛,则不能够推出级数∑∞ =1 n n u 与 ∑∞ =1 n n v 都收敛. 注:特殊的,对于级数 ∑∞ =1n n u 与 ∑∞ =1 n n v ,当两个级数都收敛时, ∑∞ =±1 )(n n n v u 必收敛;当其中一个 收敛,另一个发散时, ∑∞ =±1 )(n n n v u 一定发散;当两个都发散时,∑∞ =±1 )(n n n v u 可能收敛也可能发散. 例1 判定级数∑∞ =+1)5131(n n n 与级数∑∞ =+1)21 1(n n n 的敛散性. 解:因为级数∑∞ =131n n 与级数∑∞=15 1n n 收敛,故级数∑∞ =+1)51 31(n n n 收敛.

2016考研数学:无穷级数的敛散性判断方法

2016考研数学:无穷级数的敛散性判断方法无穷级数是高等数学的重要章节,是考研数学一和数学三的必考内容,其主要考点包括两个方面,一个是关于无穷级数的收敛或发散的判断,另一个是无穷级数的求和。关于级数的敛散性(即收敛或发散)判断,由于其方法较多,很多同学在学习和复习中感到有些困惑,为了帮助大家掌握好这些方法,文都网校的蔡老师对其做些分析总结,供各位参考,下面首先对用无穷级数的部分和来判断级数的敛散性方法做些分析。 一、通过部分和来判断级数的敛散性

通过无穷级数的部分和来判断级数的敛散性,是判断敛散性的最基本方法之一,因为按照级数收敛性的定义,收敛就是指其部分和的极限存在;对于正项级数而言,由于其部分

和是单调增加的数列,所以只要其部分和是有界的,则部分和数列就是收敛的,因此级数就是收敛的. 无穷级数中有一类常见的级数,就是正负项相间的级数,即交错级数,交错级数的敛散性判断有多种方法,包括:莱布尼茨判别法、绝对值判别法以及部分和判别法,下面我们对这些方面及其典型题型做些分析总结,供各位同学参考。 一、交错级数的敛散性判别法 对于交错级数的敛散性判别,使用得较多的是莱布尼茨判别法。

从上面的例题我们看到,并非所有的交错级数都是收敛的,即使级数的通项趋于零也不一定收敛,但如果通项趋于零且通项是单调的,则级数是收敛的;有些级数表面上看不是交错级数,但经过恒等变形后却是交错级数,这时就可以利用上面方法进行判断;

如果一个交错级数不满足莱布尼茨条件,但每项取绝对值后的级数是收敛的,即绝对收敛,则原交错级数是收敛的。 正项级数是无穷级数的一种基本类型,其敛散性的判断方法有多种,包括:比较判别法、比值判别法、根值判别法(数一要求)等,在不同的条件下,需要根据具体情况使用不同的判别法,下面我们来分析一下比较判别法及其典型题型,供广大考生参考。 一、正项级数的比较判别法 正项级数的比较判别法是一种基本的、常用的判别法,其基本用法如下:

数学讲义条件充分性判断秒杀技巧

对两个命题A 和B 而言,若由命题A 成立,肯定可以推出命题B 成立,即B A ,则称命题A 是命题B 成立的充分条件。 当条件给定的参数范围落入题干成立范围内,即判断该条件是充分(子集充分)。 二、解题说明与各选项含义 本类题要求判断所给出的条件能否充分支持题干中陈述的结论,即只要分析条件是否充分即可,而不必考虑条件是否必要。 (A ) 条件(1)充分,但条件(2)不充分 (B ) 条件(2)充分,但条件(1)不充分 (C ) 条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分 (D ) 条件(1)充分,条件(2)也充分 (E ) 条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分 例1.(2008-01-19) 申请驾驶执照时,必须参加理论考试和路考,且两种考试均通过。若在同一批学员中有%70的人通过了理论考试,%80的人通过了路考,则最后领到驾驶执照的人有%60。 (1)%10的人两种考试都没有通过 (2)%20的人仅通过了路考 条件: (1)%10的人两种考试都没有通过 (2)%20的人仅通过了路考 题干: 申请驾驶执照时,必须参加理论考试和路考,且两种考试均通过。若在同一批学员中有%70的人通过了理论考试,%80的人通过了路考,则最后领到驾驶执照的人有%60。

则最后领到驾驶执照的人有%60 三、阅读题目的方法 亚里士多德在逻辑学上最重要的工作就是三段论的学说。一个三段论就是一个包括 有大前提、小前提和结论三个部分的论证。三段论有许多不同的种类,其中每一种经院 学者都给起了一个名字。最为人所熟知的就是称为“Barbara ”的那一种: 凡人都有死(大前提)。 苏格拉底是人(小前提)。 所以:苏格拉底有死(结论)。 例2.若x 和y 是整数,那么1xy +能被3整除。 (1)当x 被3除时,其余数为1 (2)当y 被9除时,其余数为8 这里:如果 整除(结论) 能被(小前提)除时,其余数为被是整数(大前提) 和 3 1 1 3 +?? ?? xy x y x 这样,称条件(1)充分。 如果 整除(结论) 能被(小前提)除时,其余数为被是整数(大前提) 和 3 1 8 9 +?? ?? xy y y x 这样,称条件(2)充分。 如果 整除(结论)能被(小前提)除时,其余数为被(小前提)除时,其余数为被是整数(大前提) 和 3 1 8 9 1 3+??? ? ?? xy y x y x 这样,称条件(1) 和条件(2)联合起来充分。 四、解题步骤示意图 (1)当条件(1)成立,备选A ,D 。 (2)当条件(1)不成立,备选B ,C ,E 。 (3)当条件(2)成立,备选B ,D 。 (4)当条件(2)不成立,备选A ,C ,E 。

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳 (西北师大) 摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。 关键词:级数 ;收敛;判别 ;发散 一. 级数收敛的概念和基本性质 给定一个数列{n u },形如 n u u u +++21 ① 称为无穷级数(常简称级数),用∑∞ =1 n n u 表示。无穷级数①的前n 项之和,记为 ∑==n n n n u s 1 =n u u u +++ 21 ② 称它为无穷级数的第n 个部分和,也简称部分和。若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞ =1n n u 收敛,若级数的部分和发散则称级数∑n v 发 散。 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数)(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性 定理 3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。 定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε 以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。 由于级数的复杂性,以下只研究正项级数的收敛判别。

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

级数敛散性判别方法的归纳 (西北师大) 摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。 关键词:级数 ;收敛;判别 ;发散 一. 级数收敛的概念和基本性质 给定一个数列{n u },形如 n u u u +++21 ① 称为无穷级数(常简称级数),用∑∞ =1 n n u 表示。无穷级数①的前n 项之和,记为 ∑==n n n n u s 1 =n u u u +++ 21 ② 称它为无穷级数的第n 个部分和,也简称部分和。若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞ =1n n u 收敛,若级数的部分和发散则称级数∑n v 发散。 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数 )(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性

定理3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。 定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε 以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。 由于级数的复杂性,以下只研究正项级数的收敛判别。 二 正项级数的收敛判别 各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{n s }有界,即存在某正整数M ,对一切正整数 n 有n s <M 。从基本定理出发,我们可以由此建立一系列基本的判别法 1 比较判别法 设∑n u 和∑n v 是两个正项级数,如果存在某正数N ,对一切n >N 都有 n n v u ≤,则 (i )级数∑n v 收敛,则级数∑n u 也收敛; (ii )若级数∑n u 发散,则级数∑n v 也发散。 例 1 . 设∑∞ =1 2 n n a 收敛,证明:∑ ∞ =2 ln n n n n a 收敛(n a >0). 证明:因为 0<∑∞ =1 2 n n a <)ln 1(212 2n n a n +

数项级数的敛散性判别法

第六讲 数项级数的敛散性判别法 §1 柯西判别法及其推广 比较原理适用于正项级数,高等数学中讲过正项级数的比较原理: 比较原理I :设 1 n n u ∞=∑,1 n n v ∞ =∑都是正项级数,存在0c >,使 (1,2,3,...)n n u cv n ≤= (i ) 若 1 n n v ∞ =∑收敛,则 1 n n u ∞ =∑也收敛;(ii ) 若 1 n n u ∞ =∑发散,则 1 n n v ∞ =∑也发散. 比较原理II (极限形式)设 1 n n u ∞ =∑,1 n n v ∞ =∑均为正项级数,若 lim (0,)n n n u l v →∞=∈+∞ 则 1 n n u ∞=∑、1 n n v ∞ =∑同敛散. 根据比较原理,可以利用已知其敛散性的级数作为比较对象来判别其它 级数的敛散性.柯西判别法和达朗贝尔判别法是以几何级数作为比较对象而 得到的审敛法.下面用比较判别法推出更宽泛的柯西判别法. 定理1(柯西判别法1)设 1 n n u ∞ =∑为正项级数, (i )若从某一项起(即存在N ,当n N > 1q ≤<(q 为常数), 则 1 n n u ∞ =∑收敛; (ii 1≥,则1 n n u ∞ =∑发散. 证(i )若当n N > 1q ≤<,即n n u q ≤,而级数 1 n n q ∞ =∑收敛, 根据比较原理I 知级数 1 n n u ∞ =∑也收敛. (ii ) 1≥,则1n u ≥,故l i m 0n n u →∞ ≠,由级数收敛的必要条件知 1 n n u ∞ =∑

发散.定理证毕. 定理2(柯西判别法2) 设 1 n n u ∞ =∑ 为正项级数,n r =, 则:(i )当1r <时,1 n n u ∞ =∑收敛;(ii ) 当1r >(或r =+∞)时,1 n n u ∞ =∑发散;(iii )当1r =时,法则失效. 例1 判别下列正项级数的敛散性 23123(1)()()()357 21 n n n +++ +++;n n n e ∞ -∑n=1 (2) n n x α∞ ∑n=1 (3) (α为任何实数,0x >). 解 (1) 因为11 2 n r ==<,所以原级数收敛. (2) 因为lim n n n r e →∞===∞,所以原级数发散. (3) 对任意α,n r x ==.当01x <<时收敛;当1x >时发散;当1x =时, 此时级数是p -级数,要对p α=-进行讨论,当1α->,即1α<-时收敛;当1 α- ≤时,即1α ≥-时发散. 例2 判别级数11[(1)]3 n n n n ∞ =+-∑的敛散性. 解 由于 (1)lim 3 n n n n →∞-== 不存在,故应用定理2 无法判别级数的敛散性.又因为 (1)1133 n q -==≤=< 由定理1(柯西判别法1)知原级数收敛. 例3(98考研)设正项数列{}n a 单调减少,且1(1)n n n a ∞ =-∑发散,试问级数111n n n a ∞ =?? ?+?? ∑是否收敛?并说明理由.

管理类联考初数条件充分性判断题型详解

管理类联考初数条件充分性判断 题型详解 条件充分性判断是管理类联考第二大题,属于初数学科,但不同于第一大题“问题求解”,该题型学生都是第一次接触,不知该从何下手。本篇文章将详细给大家讲解条件充分性判断题的解题技巧。 一、题型认识: 条件充分性判断题由一个结论、两个条件和五个选项组成,五个选项是固定的,要求对两个条件是否能推出结论做出判断,从五个选项中选出符合的一个。 例:1>x (结论) (1)0)1(>-x x (条件1) (2)01>-x x (条件2) (A )条件(1)充分,但条件(2)不充分。 (B )条件(2)充分,但条件(1)不充分。 (C )条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分。 (D )条件(1)充分,条件(2)也充分。 (E )条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分。 大家要注意的是,由于五个选项是固定的,需要事先就记熟五个选项对应的意思,不能等到了考场还每做一题就往前翻选项。 二、充分条件、必要条件、充要条件(等价条件)的定义 由条件A 成立,就可以推出结论B 成立(即A ?B 是真命题),则说A 是B 的充分条件,B 是A 的必要条件。 比如:1=x 是12=x 的充分条件,因为只要1=x ,则必有12 =x 。 但12=x 并不能推出1=x ,因为还有种可能1-=x 。 如果两个条件互为充分条件,则说互为充要条件,也说两个条件等价。 三、条件联合的定义 条件(1)和条件(2)联合起来,即条件(1)和(2)要同时成立,二者取交集。

比如:条件(1)3>x ;条件(2)4>x 。 大家要注意的是有时候条件(1)和(2)无法同时成立,交集为空集。所以选项(E )包括两种情况:一是联合起来仍然不成立;二是两个条件根本无法联合。 四、简单例题 1、3≥x (1)3=x (2)3>x 分析:3≥x 的意思是“3>x 或3=x ”。条件(1)3=x 是可以推出“3>x 或3=x ”的(P 可以推出P 或Q ),条件(2)也如此。两个条件都充分,选(D )。 2、53≠>x x 且 分析:条件(1)并不能推出53≠>x x 且,比如当5=x 的时候就符合条件但不符合结论;条件(2)也不能推出53≠>x x 且,比如当2=x 的时候也不符合结论。联合起来刚好就是53≠>x x 且,所以选(C ) 总结:当要证明一个条件不充分时,只需举出一个反例即可说明不充分。 3、3x 分析:此题跟上题相反,大于一个小的数并不能推出一定大于一个大的数,反之,大于一个大的数一定能说明大于一个小的数。所以选(B ) 5、3=x 5)2(3 )1(≠>x x 3>x 5≠x 4)2(2 )1(<>x x

关于正项级数敛散性的判别法

关于正项级数敛散性的判别法 作者: 学号: 单位: 指导老师 摘要:级数是数学分析中的主要内容之一,我们学习过的数项级数敛散性判别法有许多种,柯西(Cauchy )判别法、达朗贝尔(D'Alembert )判别法、高斯(Gause )判别法、莱布尼兹(Leibniz )判别法、阿贝尔(Abel )判别法等,对数项级数敛散性判别法进行归纳,使之系统化. 关键词:正项级数;敛散性;判别法 1引言 设数项级数 121...++... n n n a a a a ∞ +==+∑的n 项部分和为: 121 ......n n n i i S a a a a ==++++= ∑.若n 项部分和数列为{n S }收敛,即存在一个实数 S ,使lim n x S S →∞ =.则称这个级数是收敛的,否则我们就说它是发散的.在收敛的情 况下,我们称S 为级数的和,可见无穷级数是否收敛,取决于lim n x S →∞ 是否存在, 从而由数列的柯西(Cauchy )收敛准则,可得到级数的柯西(Cauchy )收敛准则[1]: 数项级数 1 n n a ∞ =∑收敛? 0,, , N N n N p N ε+ + ?>?∈ ?>?∈对,有 +1+2+ +...+

设数项级数 1 n n a ∞ =∑为正项级数( ) 0n a ≥,则级数的n 项部分和数列{}n S 单调递 增,由数列的单调有界定理,有 定理2.1:正项级数n 1u n ∞ =∑收敛?它部分和数列{}n S 有上界. 证明:由于,...), 2,1(0u i =>i 所以{n S }是递增数列.而单调数列收敛的充要条 件是该数列有界(单调有界定理),从而本定理得证 . 由定理2.1可推得 定理2.2(比较判别法): 设两个正项级数n 1 u n ∞ =∑和n 1 n v ∞ =∑,且 , n ,N N N ≥?∈?+ 有n n cv u ≤,c 是正常数, 则 1)若级数n 1 n v ∞ =∑收敛,则级数n 1 u n ∞ =∑也收敛; 2)若级数n 1 u n ∞ =∑发散,则级数n 1 n v ∞ =∑也发散. 证明:由定理知,去掉,增添或改变级数n 1 u n ∞ =∑的有限项,,则不改变级数n 1 u n ∞ =∑的敛散性.因此,不妨设 , + ∈?N n 有 n n cv u ≤,c 是正常.设级数n 1 n v ∞=∑与n 1 u n ∞ =∑的n 项部分和分部是n B A 和n ,有上述不等式有, n n n n cB v v v c cv cv cv u A =+++=++≤+++=)...(......u u 212121n . 1)若级数n 1 n v ∞ =∑收敛,根据定理1,数列{n B }有上届,从而数列{n A }也有上届, 再根据定理1,级数n 1 u n ∞ =∑收敛; 2)若级数n 1 u n ∞ =∑发散,根据定理1,数列{n A }无上届,从而数列{n B }也无上届,

相关文档
最新文档