三角函数中的给值求值及给值求角问题的常见技巧

三角函数中的给值求值及给值求角问题的常见技巧
三角函数中的给值求值及给值求角问题的常见技巧

(完整版)三角函数特殊角值表

角度 函数 0 30 45 60 90 120 135 150 180 270 360 角a 的弧度 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan √3/3 1 √3 -√3 -1 -√3/3 1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=2 1 ,sin45°=cos45°=22, tan30°=cot60°=33, tan 45°=cot45°=1 正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 2、列表法: 说明:正弦值随角度变化,即0? 30? 45? 60? 90?变化;值从0 2 1 22 23 1变化,其余类似记忆. 3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为 2m 形式,正切、余切值可表示为3 m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七. 30? 1 2 3 1 45? 1 2 1 2 60? 3

高考三角函数化简求值

高考 三角函数式的化简与求值三角函数式的化简和求值是高考考查的 重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍.●难点磁场(★★★★★)已知 2 π <β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________.● 案例探究[例1]不查表求sin 220°+cos 280°+3cos20°cos80°的值.命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高.属于★★★★级题目. 知识依托:熟知三角公式并能灵活应用.错解分析:公式不熟,计算易出错.技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体 会.解法一:sin 220°+cos 280°+3sin 220°cos80°= 21 (1-cos40°)+2 1 (1+cos160°)+ 3sin20°cos80°=1-21cos40°+21cos160°+3sin20°cos(60°+20°)=1-2 1 cos40° +2 1 (cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°)=1- 21cos40°-41cos40°-43sin40°+43sin40°-23sin 220°=1-43cos40°-4 3 (1- cos40°)= 4 1 解法二:设x =sin 220°+cos 280°+3sin20°cos80°y =cos 220°+sin 280°- 3cos20°sin80°,则x +y =1+1-3sin60°=21 ,x -y =-cos40°+cos160°+3sin100°= -2sin100°sin60°+3sin100°=0∴x =y =4 1 ,即x =sin 220°+cos 280°+3sin20°cos80° =41.[例2]设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.命题意图:本题主要考查最值问题、三角函数的有界性、计算能力以及较强的逻辑思维能力.属★★★★★级题目知识依托:二次函数在给定区间上的最值问题.错解分析:考生不易考查三角函数的有界性,对区间的分类易出错.技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座 等.解:由y =2(cos x -2 a )2-22 42+-a a 及cos x ∈[-1,1]得: f (a )?? ? ????≥-<<-----≤)2( 41)22( 122) 2( 12 a a a a a a ∵f (a )=21,∴1-4a =21?a =81?[2,+∞)故- 22a -2a -1= 21,解得:a =-1,此时,y =2(cos x +21)2+2 1 ,当cos x =1时,即x =2k π,k ∈Z ,y max =5.[例3]已知函数f (x )=2cos x sin(x + 3 π )-3sin 2x +sin x cos x (1)求函数f (x )的最小正周期;(2)求f (x )的最小值及取得最小值时相应的x 的值;(3)若当x ∈[12 π,127π ]时,f (x )的反函数

三角函数特殊角值表

三角函数特殊值 1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°= 21 sin45°=cos45°=2 2 tan30°=cot60°=3 3 tan 45°=cot45°=1 2 30? 1 2 3 1 45? 1 2 1 2 60? 3

说明:正弦值随角度变化,即0? 30? 45? 60? 90?变化;值从0 2 3 1变化,其余类似记忆. 3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为 2m 形式,正切、余切值可表示为3 m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七. 巧记特殊角的三角函数值 初学三角函数,记忆特殊角三角函数值易错易混。若在理解掌握的基础上,经过变形,使其呈现某种规律,再配以歌诀,则可浅显易记,触目成诵。 仔细观察表1,你会发现重要的规律。

两角和与差的三角函数求值 高中数学教案

两角和与差的三角函数求值微课设计 一、教材分析 三角函数的求值主要有两种类型,即给值求值,给值求角. (1)正确地理解、选用公式,把非特殊角的三角函数值化为特殊角的三角函数值; (2)找出已知条件与所求结论之间的联系,一般可以适当变换已知代数式,从而达到解题的目的。 二、教学目标 知识与技能:探究已知与未知的内在联系,加深对公式的理解,培养学生的运算能力及逻辑推理能力。 过程与方法:通过两角和与差的三角函数公式的运用,会进行简单的求值、化简,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题的能力。 情感态度与价值观:通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质。 三、学情分析 (1)对公式记忆不准确而使公式应用错误; (2)公式不能灵活应用和变形应用; (3)忽略角的范围或者角的范围判断错误.。 四、教学重、难点 教学重点: 两角和与差的三角函数公式的理解; 教学难点: 两角和与差的三角函数公式的运用。 五、教法学法 讲授法。 六、教学过程设计

故知新 通过分析两角和与差的三角函数公式,加深对知识的理解. 创设情境问题情境: 通过对热点考向的分析, 明确本节主要内容与学习方 向。 通过设计一系列典型例 题,让学生进一步体会两角和 与差的三角函数公式的正用、 逆用,以及整体代换思想的融 合,,提高学生的观察分析能 力,培养学生的应用意识。

典 例 分 析 引导学生从多角度思考 问题,意识到解决问题方法的 不唯一性,加深学生对两角和 与差的三角函数公式的理解, 拓展学生思维。 课 堂梳理公式特点分析; 整体代换思想。 课堂梳理,可以把课堂探究生 成的知识尽快转化为学生的 素质,巩固深化这节课的内 容.

三角函数的求值

三角函数的求值 一、教学目标:能正确地运用三角函数的有关公式进行三角函数式的求值. 二、教学重点:有关公式的灵活应用及一些常规技巧的运用. 三、教学过程: (一)主要知识: 三角函数式的求值的关键是熟练掌握公式及应用, 掌握公式的逆用和变形 三角函数式的求值的类型一般可分为: (1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角 (2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解 (3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。 (4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之 三角函数式常用化简方法:切割化弦、高次化低次 注意点:灵活角的变形和公式的变形 重视角的范围对三角函数值的影响,对角的范围要讨论 (二)主要方法: 1.寻求角与角之间的关系,化非特殊角为特殊角; 2.正确灵活地运用公式,通过三角变换消去或约去一些非特殊角的三角函数值; 3.一些常规技巧:“1”的代换、切割化弦、和积互化、异角化同角等. (三)例题分析: 例1、计算)310(tan 40sin 00-的值。 【分析】将切函数化成弦函数,3转化成特殊角的三角函数,再利用两角和与差的三角函数即可求解。 解:原式=)60cos 60sin 10cos 10sin (40sin 00000 - =0 000 60 cos 10cos 50sin 40sin -? =160cos 10cos 280sin 0 00 -=?- [点评] “给角求值” 观察非特殊角的特点,找出和特殊角之间的关系 注意特殊值象1、3等,有时需将其转化成某个角的三角函数,这种技巧在化简求值中经常用到。 练习:(全国高考)tan20°+4sin20° 解:tan20°+4sin20°=00020cos 40sin 220sin +=000020cos 40sin 10cos 30sin 2+=0 020cos 40sin 80sin +

特殊角的三角函数值的巧记

特殊角的三角函数值的巧记 特殊角的三角函数值在计算,求值,解直角三角形和今后的学习中,常常会用到,所以一定要熟记.要在理解的基础上,采用巧妙的方法加强记忆.这里关键的问题还是要明白和掌握这些三角函数值是怎样求出的,既便遗忘了,自己也能推算出来,切莫死记硬背. 那么怎样才能更好地记熟它们呢?下面介绍几种方法,供同学们借鉴。 1、“三角板”记法 根据含有特殊角的直角三角形的知识,利用你手里的一套三角板,就可以帮助你记住30°、45°、60°角的三角函数值.我们不妨称这种方法为“三角板”记法. 首先,如图所标明的那样,先把手中一套三角板的构造特点弄明白,记清它们的边角是什么关系. 对左边第一块三角板,要抓住在直角三角形中,30°角的对边是斜边的一半的特点,再应用勾股定理.可以知道在这个直角三角形中30°角的对边、邻边、 斜边的比是掌握了这个比例关系,就可以依定义求出30°、60°角的任意 一个锐角三角函数值,如:001sin 30,cos302== 求60°角的三角函数值,还应抓住60°角是30°角的余角这一特点. 在右边那块三角板中,应注意在直角三角形中,若有一锐角为45°,则此三 角形是等腰直角三角形,且两直角边与斜边的比是1∶1 住:00sin 45cos 452 == ,00tan 45cot 451==。这种方法形象、直观、简单、易记,同时巩固了三角函数的定义. 二、列表法:

说明:正弦值随角度变化,即0? →30?→45? →60? →90?变化;值从 0→2 1 →22→23→1变化,其余类似记忆. 三、口诀记忆法 口诀是:“一、二、三,三、二、一,三、九、二十七,弦是二,切是三,分子根号不能删.”前三句中的1,2,3;3,2,1;3,9,27,分别是30°,45°,60°角的正弦、余弦、正切值中分子根号内的值.弦是二、切是三是指正弦、余弦的分母为2,正切的分母为3.最后一句,讲的是各函数值中分子都加上根号, 不能丢掉.如tan60°= =tan45°1=.这种方法有趣、简单、易记. 四、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ①有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sinA <sinB ;tanA <tanB ;cosA >cosB ;cotA >cotB ;特别地:若0°<α<45°,则sinA <cosA ;tanA <cotA ;若45°<A <90°,则sinA >cosA ;tanA >cotA . 例1.tan30°的值等于( )

(完整版)三角函数化简求值证明技巧

第三讲 一、三角函数的化简、计算、证明的恒等变形的应用技巧 1、网络

2、三角函数变换的方法总结 (1)变换函数名 对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。 【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。 练习:已知sin(α+β)=,cos(α-β)=,求的值。 2)变换角的形式 对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。 【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。练习已知,求的值

【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α +β)= 提示:sin[(α+β)-β]=Asin (α+β) (3)以式代值 利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。这其中以“1”的变换为最常见且最灵活。“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。 【例4】化简: (4)和积互化 积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。这往往用到倍、半角公式。 【例5】解三角方程:sin2x+sin22x=sin23x

已知三角函数值求角知识讲解

【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin x =,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin x =知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 4π=,所以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=. (2)在R 上符合条件的角是所有与 54 π终边相同的角和所有与74π 终边相同的角.因此x 的取值集合为

2018版高考数学二轮复习特色专题训练专题04解密三角函数之给值求值问题理.doc

专题04 解密三角函数之给值求值问题一、单选题 1.若0, 2 ,cos 2 2cos2 4 ,则sin2 等于() A. 15 16 B. 7 8 C. 31 16 D. 15 32 【答案】 A 2.已知sin π 1 6 3 , 则cos 2 2π 3 的值是 A. 5 9 B. 8 9 C. 1 3 D. 7 9 【答案】 D 【解析】∵sin π 1 6 3 ∴ 1 cos a cos a 2 6 3 3 ∴cos a 1 3 3

2 2π 1 7 2 cos 2 2cos a 2 1 3 3 3 9 故选 D 二、填空题 3.已知sin 3 4 5 ,, 4 2 ,则tan __________. 【答案】7 点睛:本题主要考查同角三角函数的基本关系、两角和差的三角公式、二倍角的正弦公式的应用,属于基 础题.一般sin cos ,sin cos ,sin *cos ,这三者我们成为三姐妹,结合 2 2 sin cos 1,可以知一求三。 4.已知sin 4 5 ,,则cos 2 4 __________. 【答案】 2 10 【解析】sin 4 5 ,,所以 2 cos 3 5 . 2 2 2 3 2 4 2 cos cos sin 4 2 2 2 5 2 5 10 . 答案为: 2 10 . 5.已知锐角, 满足tan 1 tan 1 2,则的值为________.3 【答案】 4 【解析】因为tan 1 tan 1 2 ,所以tan tan tan tan 1

因此 tan tan tan 1 1 tan tan 因为0, 3 4 6.若sin cos 3, t an 2 sin cos , 则tan 2 ______. 【答案】4 3 点睛:这个题目考查了三角函数中,两角和差的正切公式的应用,考查了给值求值的应用;一般这种题目是尽量用已知三角函数值的角表示要求的角;在这种题型中需要注意角的范围,已知三角函数值的角的范围是否能通过值缩小。 7.若tan 3 cos 2 , 2 2 2 ,则sin2 __________. 【答案】4 5 9 【解析】由题意, 1 3 cos 3cos 2 cos sin tan 2 sin 2 3 , 又,所以0 cos ,得 2 2 5 3 , 所以sin2 2sin cos 4 5 9 。 点睛:三角函数恒等关系的题型关键在于公式的掌握和应用。本题中,首先应用诱导公式将条件化简,切 3

特殊三角函数数值表

两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA) 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA tan3a = tan a · tan(π/3+a)· tan(π/3-a) 半角公式 sin(A/2) = √{(1--cosA)/2} cos(A/2) = √{(1+cosA)/2} tan(A/2) = √{(1--cosA)/(1+cosA)} cot(A/2) = √{(1+cosA)/(1-cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA) 和差化积 sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB 积化和差 sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sin(a) cos(-a) = cos(a) sin(π/2-a) = cos(a) cos(π/2-a) = sin(a) sin(π/2+a) = cos(a) cos(π/2+a) = -sin(a) sin(π-a) = sin(a) cos(π-a) = -cos(a) sin(π+a) = -sin(a)

三角函数化简题

4三角函数得化简、求值与证明日期:2009年月日星期 ,能正确地运用三角公式进行三角函数式得化简与恒等式得证明、 用、 (1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③三角公式得逆用等。(2)化简要求:①能求出值得应求出值; ②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数 2、三角函数得求值类型有三类:(1)给角求值:一般所给出得角都就就是非特殊角,要观察所给角与特殊角间得关系,利用三角变换消去非特殊角,转化为求特殊角得三角函数值问题;(2)给值求值:给出某些角得三角函数式得值,求另外一些角得三角函数值,解题得关键在于“变角”,如等,把所求角用含已知角得式子表示,求解时要注意角得范围得讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得得所求角得函数值结合所求角得范围及函数得单调性求得角。 3、三角等式得证明:(1)三角恒等式得证题思路就就是根据等式两端得特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端得化“异”为“同”;(2)三角条件等式得证题思路就就是通过观察,发现已知条件与待证等式间得关系,采用代入法、消参法或 、三角函数得求值: ,化非特殊角为特殊角; ?2、正确灵活地运用公式,通过三角变换消去或约去一些非特殊角得三角函数值; ?3、一些常规技巧:“1”得代换、切割化弦、与积互化、异角化同角等、 1、三角函数式得化简: 三角函数式得化简常用方法就就是:异名函数化为同名三角函数,异角化为同角,异次化为同次,切割化弦,特殊值与特殊角得三角函数互化、 ?2、三角恒等式得证明: 三角恒等式包括有条件得恒等式与无条件得恒等式、①无条件得等式证明得基本方法就就是化繁为简、左右归一、变更命题等,使等式两端得“异”化为“同”;②有条件得:代入法、消去法、综合法、分析法等、 ( A) A、B、C、D、 2、函数得最小正周期( B) A、B、C、D、 3、等于( D) A、1 B、2 C、-1 D、-2 4、已知,则实数得取值范围就就是__[-1,]___。 ____。 ,(),则?( ) ???或 略解:由得或(舍),∴,∴、 例2、已知,就就是第三象限角,求得值、 解:∵就就是第三象限角,∴(), ∵,∴就就是第四象限角,∴, ?∴原式 221 cos(15)sin(15)sin(75)cos(75) 3αααα + =---=+-+=-、 例3、已知,求得值、

已知三角函数值求角知识讲解

已知三角函数值求角 【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin 2 x =- ,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin 2x =- 知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 42 π=,所以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=. (2)在R 上符合条件的角是所有与 54 π终边相同的角和所有与74π 终边相同的角.因此x 的取值集合为

高三数学专题 三角函数之给值求值问题

三角函数之给值求值问题 一、单选题 1.若0,2πα? ?∈ ???, cos 4παα??-= ??? ,则sin2α等于( ) A . 1516 B . 78 C D . 1532 【答案】A 2.已知π1sin 63α? ?+= ???,则2πcos 23α??- ?? ?的值是 A . 59 B . 89- C . 13- D . 79 - 【答案】D 【解析】∵π1sin 63 α? ?+= ??? ∴1cos cos 2633 a a πππ????--=-= ? ????? ∴1cos 33a π? ?-=- ?? ?

222π17cos 22cos 213339a πα??????-=-=?--=- ? ? ??????? 故选D 二、填空题 3.已知3sin 45πα??- = ???, ,42ππα??∈ ??? ,则tan α=__________. 【答案】7 点睛:本题主要考查同角三角函数的基本关系、两角和差的三角公式、二倍角的正弦公式的应用,属于基础题.一般sin cos sin cos αααα+-,, sin *cos αα,这三者我们成为三姐妹,结合22sin cos 1αα+=,可以知一求三。 4.已知4sin 5α=, 2παπ<<,则cos 4πα??-= ?? ?__________. 【解析】4sin 5α=, 2παπ<<,所以3cos 5 α=-. 34cos cos sin 422252510πααα????-=+=-+= ? ?? ???. 答案为. 5.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为________. 【答案】34 π 【解析】因为()()tan 1tan 12αβ--=,所以tan tan tan tan 1αβαβ+=-

知识讲解_已知三角函数值求角

已知三角函数值求角 【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin 2 x =- ,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin 2 x =- 知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 42π=,所 以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=.

【原创】三角函数求值教学设计

三角函数求值 一、三维目标: (1)知识目标:能运用三角函数有关公式进行简单的恒等变换。 (2)能力目标:对于遇到角、函数名及其整体结构的分析,提高公式选择的恰当性。 (3)情感态度和价值观:角的变换体现出将未知化为已知的思想方法,这是解决三角中关于角的变换问题常用的数学方法之一。 二、教学重点:能正确地运用三角函数的有关公式进行三角函数式的求值. 三、教学难点:有关公式的灵活应用及一些常规技巧的运用.角度范围的控制。 四、教学过程: 1.讲授新课 问题一(给角求值) 50sin80(13tan10) ++ . 解:原式 2sin 80132sin 50(cos10sin10)cos102cos5+ +=2sin 80 2sin 50cos(6010 ) cos10cos5 +-= 250cos50) 22cos5+= 2cos(5045)2cos5-== [点评] 观察非特殊角的特点,找出和特殊角之间的关系。实现函数 名与角度的统一。 问题二(给值求值) 已知tan(45°+θ)=3,求sin2θ-2cos 2θ的值

解:法一:由已知 21 tan ,3tan 1tan 1=?=-+θθθ sin2θ-2cos 2 θ=θθθθ222cos sin 2cos -sin2+=5 4tan 12tan 22 -=+-θθ 法二: sin2θ -2cos 2θ=sin2θ-cos2θ -1=-cos(θπ 22 +)-sin(θπ 22 +)-1 =5 41) 4(tan 1) 4tan(2)4(tan 1) 4( tan 1222-=-+++-+++--θπθπ θπθπ [点评]法一:弦化切;法二:角度的配凑 问题三(给角求值)(1)已知A 、B 均为钝角且5SinA = ,10 SinB =。求A B +。 解:cos()cos cos sin sin A B A B A B +=-,2A B ππ<+<, 74 A B π∴+= [点评]选取恰当的函数名。 (2)已知11tan()tan (0)2 7 αββαβπ-==-∈,,且,,, 求2αβ-的值。 解:tan 2()tan tan(2)tan[2()]1tan 2()tan αββ αβαββαββ -+-=-+= --?, 又22tan()4tan 2()1tan ()3 αβαβαβ--===--,4137tan(2)141137 αβ- -= =+?, 而tan()tan 1 tan tan[()]1tan()tan 3 αββααββαββ-+=-+===--?,(0)αβπ∈,,,所以 04π α<< ,所以13tan 202724 ππ ββππαβαβ= -<<-<-<-=-,所以,,所以。 [点评]注意角度范围控制。 2.课堂练习 (1)11cos(2),sin(2)14αβαβ-=- -=已知

已知三角函数值求角教案1

已知三角函数值求角教案1 教学目标 1.使学生掌握已知三角函数值求角(给值求角)的方法和步骤. 2.通过启发学生总结给值求角的步骤,培养学生归纳、类比、总结的能力. 3.培养学生严谨的科学态度,促进良好个性品质发展. 教学重点与难点 重点是给值求角的基本方法.难点在于归纳给值求角的基本步骤. 教学过程设计 一、复习引入 师:我们学习了5组诱导公式,如何概括这5组公式? 生:k·360°+α(k∈Z),-α,180°±α,360°-α的三角函数值等于α的同一三角函数值,前面加上一个把α看成锐角时原函数值的符号. 师:那么k·360°+α,……这些角从“形”这一角度看,与α又有什么关系呢? (这应在诱导公式那一节有所渗透,或曾经留给同学思考过.) 生:角k·360°+α(k∈Z)的终边与α角的终边相同,180°-α的终边与α的终边关于y轴成轴对称图形,180°+α的终边与α的终边关于原点成中心对称图形,360°-α和-α终边相同,与α的终边关于x轴成轴对称图形. 师:α是什么样角? 生:使三角函数有意义的任意角. 师:如果把α看作是锐角,那么k·360°+α(k∈Z),180°±α,360°-α各是第几象限角?它们的三角函数值与α的同一三角函数值有什么联系?

生:k·360°+α(k∈Z)是第一象限角,180°-α是第二象限角,180°+α是第三象限角,360°-α是第四象限角.这些角的三角函数与α的同一三角函数值相等或互为相反数. (如图1,帮助学生形象思维与记忆.) 师:利用这幅图,记忆诱导公式的符号是不是变得直观了?!那么诱导公式又有什么功能呢? 生:把任意角的三角函数转化为0°~90°间角的三角函数,然后就可以查表求值了. 师:这些任意角的终边和某个锐角α0的终边有刚才所说的对称关系,那么同一三角函数值之间有没有关系? 生:有关系,那些角的三角函数值要么等于α0的同一三角函数值,要么等于这个值的相反数,相等还是相反由这些角所在象限决定. 师:可以这样说,这些角的三角函数值的绝对值等于α0的同一三角函数值.每个角α都可通过一个锐角α0求得这个角的三角函数值(当值存在时),这个值由α唯一确定.那么反过来,知道某个角α的某个三角函数值,要反求α,这个α怎么求?是否唯一?这与我们本节课要研究的知识有关. 二、讲授新课 (板书)已知三角函数值求角. 师:我们先来研究给正弦值求角. (板书) 例1 求满足下列条件的角α的取值集合.

特殊角的三角函数值及计算

特殊角及计算 0° 30° 45° 60° 90° sinA cosA tanA cotA 当锐角α越来越大时, α的正弦值越来___________,α的余弦值越来___________. 当锐角α越来越大时, α的正切值越来___________,α的余切值越来___________. 1:求下列各式的值. (1)cos 260°+sin 260°. (2)cos 45sin 45? ? -tan45°. 2:(1)如图(1),在Rt △ABC 中,∠C=90,6,3,求∠A 的度数. (2)如图(2),已知圆锥的高AO 等于圆锥的底面半径OB 3倍,求a . 一、应用新知: 1.(1)(sin60°-tan30°)cos45°= .(2)若0sin 23=-α,则锐角α= . 2.在△ABC 中,∠A=75°,2cosB=2,则tanC= .

3.求下列各式的值. (1)o 45cos 230sin 2-? (2)tan30°-sin60°·sin30° (3)cos45°+3tan30°+cos30°+2sin60°-2tan45° (4)?+?+? +?-?45sin 30cos 30tan 1 30sin 145cos 222 4.求适合下列条件的锐角. (1)2 1cos =α (2)3 3tan = α (3)2 22sin = α (4)33)16cos(6=-οα (5) (6) 6.如图,在△ABC 中,已知BC=1+ ,∠B=60°,∠C=45°,求AB 的长. 7.在△ABC 中,∠A 、∠B 为锐角,且有 ,则△ABC 的 |tanB-3|+(2sinA-3)2 =002sin 2=-α0 1tan 3=-α3

三角函数中的给值求值及给值求角问题的常见技巧

三角函数中的给值求值及给值求角问题的常见技巧 1.三角函数的给值求值问题 解决的关键在于把“所求角”用“已知角”表示。 (1)当“已知角”有两个时,“所求角”一般表示两个“已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”。 (3)常见的配角技巧 22 ()()1 [()()]21 [()()]2() 424 α αααββαββαααβαββαβαβπ ππ αα=?=+-=--=++-=+--+= -- 〖例〗已知3335 0,cos(),sin()4445413 ππβαπαπβ<<<<-=+=,求s i n ()αβ+的值。 思路解析:比较题设中的角与待求式中的角,不难发现 3( )()()442πππβααβ+--=++或将c o s ()4 π α-变化为s i n ()4 π α+ ,再由 ()3()44ππαβπαβ??+++=++ ??? 求解。 解答:方法一:∵ 34 4π πα<< ,3,0.4424 ππππ αα∴- <-<--<-<又3 4cos ,sin()45 45ππαα??-=∴-=- ???。 又 330,.4 44 π ππ ββπ<< ∴ <+<又 35 sin( )413 πβ+=

3sin()cos[()]cos[()()] 244 33cos()cos()sin()sin() 444412354362056()()135135656565 πππ αβαββαππππ βαβα∴+=-++=-+--=-+--+-=--?-?-=+= 方法二:3 cos( )sin()445 π παα-=+= 4,cos()24453533sin(),, 41344312cos(). 413 3sin()sin() 44 33[sin()cos()sin()cos ] 4444 5665 ππ παπαπππββππβππ αβαβππππ αββα<+ < ∴+=- +=<+< ∴+=-∴+=-+++=-+++++= 2、三角函数的给值求角问题 (1)通过先求角的某个三角函数值来求角,在选取函数时,遵照以下原则: ①已知正切函数值,选正切函数; ②已知正、余弦函数值,选正弦或余弦函数。若角的范围是0,2π?? ?? ? ,选正、余弦皆可;若角的范围是()0,π,选余弦较好;若角的范围为(,)22 ππ - ,选正弦较好。 (2)解给值求角问题的一般步骤为: ①求角的某一个三角函数值; ②确定角的范围; ③根据角的范围写出所求的角。 〖例1〗如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别与单位圆交于A 、B (1)求tan(α+β)的值; (2)求的α+2β值。

相关文档
最新文档