三角函数中给值求值专题训练

三角函数中给值求值专题训练
三角函数中给值求值专题训练

三角函数中给值求值专题训练(2009-2011)

7.(2009北京文)“”是“”的

A.充分而不必要条件B.必要而不充分条件

C.充分必要条件D.既不充分也不必要条件

【答案】A

8.(2009北京理)“”是“”的

()

A.充分而不必要条件B.必要而不充分条件

C.充分必要条件D.既不充分也不必要条件

【答案】A

【解析】本题主要考查三角函数的基本概念、简易逻辑中充要条件的判断. 属于基础知识、基本运算的考查.

当时,,

反之,当时,有,

或,故应选A.

【命题立意】:本题考查三角函数的图象的平移和利用诱导公式及二倍角公式进行化简解析

式的基本知识和基本技能,学会公式的变形.

11.(2009全国卷Ⅱ文)已知△ABC 中,

,则

(A)

(B) (C) (D)

答案:D

解析:本题考查同角三角函数关系应用能力,先由cotA=知A为钝角,cosA<0排除A 和B ,再由选D

23.(2009辽宁卷文)已知,则

(A )(B )(C )(D )

【解析】

==

【答案】D

【答案】A

26.(2009宁夏海南卷理)有四个关于三角函数的命题:

:x R, +=: x、y R, sin(x-y)=sinx-siny

: x ,=sinx : sinx=cosy x+y=

其中假命题的是

(A ),(B ),(3),(4),

解析::x

R, +=是假命题;是真命题,如x=y=0时成立;

是真命题,x ,=sinx ;

是假命题,。选A.

27.(2009全国卷Ⅰ文)的值为

(A) (B) (C) (D)

【解析】本小题考查诱导公式、特殊角的三角函数值,基础题。

解:,故选择A。

7.(全国新课标理5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=

(A )

45- (B )35- (C ) 35 (D )4511.(辽宁理7)设sin 1+=43πθ(),则sin 2θ=(A )79- (B )19- (C )19 (D )7912.(福建理3)若tan α=3,则2sin 2cos a α的值等于A .2 B .3 C .4 D .622.(全国大纲理14)已知a ∈(2π,π),

,则tan2α= 24.(江苏7)已知,24tan(=+πx 则x x 2tan tan 的值为__________19.(重庆理14)已知1sin cos 2α=+α,且0,2π??α∈ ???,则cos 2sin 4πα??α- ???的值为__________28.(2009全国卷Ⅰ文)已知tan =4,cot =,则tan(a+)=(A) (B) (C) (D) 【解析】本小题考查同角三角函数间的关系、正切的和角公式,基础题。解:由题,

,故选择B 。29.(2009陕西卷文)若,则的值为

术管架等多项方式,为解决及系统启动方案;对整来避免不必要高中资料试

(A)0 (B) (C)1 (D)

答案:B.

解析: 利用齐次分式的意义将分子分母同时除以得,

故选B.

31.(2009湖北卷文)“sin =”是“”的

A.充分而不必要条件

B.必要而不充分条件

C.充要条件

D.既不充分也不必要条件

【答案】A

【解析】由可得,故成立的充分不必要条

件,故选A.

36.(2009重庆卷文)下列关系式中正确的是()

A .

B .

C .

D .

【答案】C

解析因为,由于正弦

函数在区间上为递增函数,因此,即

二、填空题

1.(2009北京文)若,则 .

【答案】

【解析】本题主要考查简单的三角函数的运算.属于基础知识、基本运算的考查.

由已知,在第三象限,∴,∴应填.2.(2009

江苏卷)函数(为常数,)在闭区间上的图象如图所示,则= .【解析】 考查三角函数的周期知识。 ,,所以, 8.(2009年上海卷理)在极坐标系中,由三条直线,,围成图形的面积是________. 【答案】 【解析】化为普通方程,分别为:y =0,y =x ,x +y =1,画出三条直线的图象如右图,可求得A (,),B (1,0),三角形AOB 的面积为:

=7.(2009江苏卷)(本小题满分14分)设向量

(1)若与垂直,求的值;(2)求的最大值;(3)若,求证:∥.

【解析】本小题主要考查向量的基本概念,同时考查同角三角函数的基本关系式、二倍角

分。

的正弦、两角和的正弦与余弦公式,考查运算和证明得基本能力。满分14

已知向量与互相垂直,其中.

(1)求和的值;

(2)若,求的值.

解:(1)∵与互相垂直,则,即,代入

得,又,∴

.

(2)∵,,∴,则

,∴

.

19.(2009湖南卷文)(每小题满分12分)

已知向量

(Ⅰ)若,求的值;

(Ⅱ)若求的值。

解:(Ⅰ)因为,所以

于是,故

(Ⅱ)由知,

所以

从而,即,于是.又由知,,

所以,或.

因此,或

高考三角函数化简求值

高考 三角函数式的化简与求值三角函数式的化简和求值是高考考查的 重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍.●难点磁场(★★★★★)已知 2 π <β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________.● 案例探究[例1]不查表求sin 220°+cos 280°+3cos20°cos80°的值.命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高.属于★★★★级题目. 知识依托:熟知三角公式并能灵活应用.错解分析:公式不熟,计算易出错.技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体 会.解法一:sin 220°+cos 280°+3sin 220°cos80°= 21 (1-cos40°)+2 1 (1+cos160°)+ 3sin20°cos80°=1-21cos40°+21cos160°+3sin20°cos(60°+20°)=1-2 1 cos40° +2 1 (cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°)=1- 21cos40°-41cos40°-43sin40°+43sin40°-23sin 220°=1-43cos40°-4 3 (1- cos40°)= 4 1 解法二:设x =sin 220°+cos 280°+3sin20°cos80°y =cos 220°+sin 280°- 3cos20°sin80°,则x +y =1+1-3sin60°=21 ,x -y =-cos40°+cos160°+3sin100°= -2sin100°sin60°+3sin100°=0∴x =y =4 1 ,即x =sin 220°+cos 280°+3sin20°cos80° =41.[例2]设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.命题意图:本题主要考查最值问题、三角函数的有界性、计算能力以及较强的逻辑思维能力.属★★★★★级题目知识依托:二次函数在给定区间上的最值问题.错解分析:考生不易考查三角函数的有界性,对区间的分类易出错.技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座 等.解:由y =2(cos x -2 a )2-22 42+-a a 及cos x ∈[-1,1]得: f (a )?? ? ????≥-<<-----≤)2( 41)22( 122) 2( 12 a a a a a a ∵f (a )=21,∴1-4a =21?a =81?[2,+∞)故- 22a -2a -1= 21,解得:a =-1,此时,y =2(cos x +21)2+2 1 ,当cos x =1时,即x =2k π,k ∈Z ,y max =5.[例3]已知函数f (x )=2cos x sin(x + 3 π )-3sin 2x +sin x cos x (1)求函数f (x )的最小正周期;(2)求f (x )的最小值及取得最小值时相应的x 的值;(3)若当x ∈[12 π,127π ]时,f (x )的反函数

两角和与差的三角函数求值 高中数学教案

两角和与差的三角函数求值微课设计 一、教材分析 三角函数的求值主要有两种类型,即给值求值,给值求角. (1)正确地理解、选用公式,把非特殊角的三角函数值化为特殊角的三角函数值; (2)找出已知条件与所求结论之间的联系,一般可以适当变换已知代数式,从而达到解题的目的。 二、教学目标 知识与技能:探究已知与未知的内在联系,加深对公式的理解,培养学生的运算能力及逻辑推理能力。 过程与方法:通过两角和与差的三角函数公式的运用,会进行简单的求值、化简,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题的能力。 情感态度与价值观:通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质。 三、学情分析 (1)对公式记忆不准确而使公式应用错误; (2)公式不能灵活应用和变形应用; (3)忽略角的范围或者角的范围判断错误.。 四、教学重、难点 教学重点: 两角和与差的三角函数公式的理解; 教学难点: 两角和与差的三角函数公式的运用。 五、教法学法 讲授法。 六、教学过程设计

故知新 通过分析两角和与差的三角函数公式,加深对知识的理解. 创设情境问题情境: 通过对热点考向的分析, 明确本节主要内容与学习方 向。 通过设计一系列典型例 题,让学生进一步体会两角和 与差的三角函数公式的正用、 逆用,以及整体代换思想的融 合,,提高学生的观察分析能 力,培养学生的应用意识。

典 例 分 析 引导学生从多角度思考 问题,意识到解决问题方法的 不唯一性,加深学生对两角和 与差的三角函数公式的理解, 拓展学生思维。 课 堂梳理公式特点分析; 整体代换思想。 课堂梳理,可以把课堂探究生 成的知识尽快转化为学生的 素质,巩固深化这节课的内 容.

三角函数的求值

三角函数的求值 一、教学目标:能正确地运用三角函数的有关公式进行三角函数式的求值. 二、教学重点:有关公式的灵活应用及一些常规技巧的运用. 三、教学过程: (一)主要知识: 三角函数式的求值的关键是熟练掌握公式及应用, 掌握公式的逆用和变形 三角函数式的求值的类型一般可分为: (1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角 (2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解 (3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。 (4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之 三角函数式常用化简方法:切割化弦、高次化低次 注意点:灵活角的变形和公式的变形 重视角的范围对三角函数值的影响,对角的范围要讨论 (二)主要方法: 1.寻求角与角之间的关系,化非特殊角为特殊角; 2.正确灵活地运用公式,通过三角变换消去或约去一些非特殊角的三角函数值; 3.一些常规技巧:“1”的代换、切割化弦、和积互化、异角化同角等. (三)例题分析: 例1、计算)310(tan 40sin 00-的值。 【分析】将切函数化成弦函数,3转化成特殊角的三角函数,再利用两角和与差的三角函数即可求解。 解:原式=)60cos 60sin 10cos 10sin (40sin 00000 - =0 000 60 cos 10cos 50sin 40sin -? =160cos 10cos 280sin 0 00 -=?- [点评] “给角求值” 观察非特殊角的特点,找出和特殊角之间的关系 注意特殊值象1、3等,有时需将其转化成某个角的三角函数,这种技巧在化简求值中经常用到。 练习:(全国高考)tan20°+4sin20° 解:tan20°+4sin20°=00020cos 40sin 220sin +=000020cos 40sin 10cos 30sin 2+=0 020cos 40sin 80sin +

(完整版)三角函数化简求值证明技巧

第三讲 一、三角函数的化简、计算、证明的恒等变形的应用技巧 1、网络

2、三角函数变换的方法总结 (1)变换函数名 对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。 【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。 练习:已知sin(α+β)=,cos(α-β)=,求的值。 2)变换角的形式 对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。 【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。练习已知,求的值

【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α +β)= 提示:sin[(α+β)-β]=Asin (α+β) (3)以式代值 利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。这其中以“1”的变换为最常见且最灵活。“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。 【例4】化简: (4)和积互化 积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。这往往用到倍、半角公式。 【例5】解三角方程:sin2x+sin22x=sin23x

已知三角函数值求角知识讲解

【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin x =,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin x =知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 4π=,所以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=. (2)在R 上符合条件的角是所有与 54 π终边相同的角和所有与74π 终边相同的角.因此x 的取值集合为

2018版高考数学二轮复习特色专题训练专题04解密三角函数之给值求值问题理.doc

专题04 解密三角函数之给值求值问题一、单选题 1.若0, 2 ,cos 2 2cos2 4 ,则sin2 等于() A. 15 16 B. 7 8 C. 31 16 D. 15 32 【答案】 A 2.已知sin π 1 6 3 , 则cos 2 2π 3 的值是 A. 5 9 B. 8 9 C. 1 3 D. 7 9 【答案】 D 【解析】∵sin π 1 6 3 ∴ 1 cos a cos a 2 6 3 3 ∴cos a 1 3 3

2 2π 1 7 2 cos 2 2cos a 2 1 3 3 3 9 故选 D 二、填空题 3.已知sin 3 4 5 ,, 4 2 ,则tan __________. 【答案】7 点睛:本题主要考查同角三角函数的基本关系、两角和差的三角公式、二倍角的正弦公式的应用,属于基 础题.一般sin cos ,sin cos ,sin *cos ,这三者我们成为三姐妹,结合 2 2 sin cos 1,可以知一求三。 4.已知sin 4 5 ,,则cos 2 4 __________. 【答案】 2 10 【解析】sin 4 5 ,,所以 2 cos 3 5 . 2 2 2 3 2 4 2 cos cos sin 4 2 2 2 5 2 5 10 . 答案为: 2 10 . 5.已知锐角, 满足tan 1 tan 1 2,则的值为________.3 【答案】 4 【解析】因为tan 1 tan 1 2 ,所以tan tan tan tan 1

因此 tan tan tan 1 1 tan tan 因为0, 3 4 6.若sin cos 3, t an 2 sin cos , 则tan 2 ______. 【答案】4 3 点睛:这个题目考查了三角函数中,两角和差的正切公式的应用,考查了给值求值的应用;一般这种题目是尽量用已知三角函数值的角表示要求的角;在这种题型中需要注意角的范围,已知三角函数值的角的范围是否能通过值缩小。 7.若tan 3 cos 2 , 2 2 2 ,则sin2 __________. 【答案】4 5 9 【解析】由题意, 1 3 cos 3cos 2 cos sin tan 2 sin 2 3 , 又,所以0 cos ,得 2 2 5 3 , 所以sin2 2sin cos 4 5 9 。 点睛:三角函数恒等关系的题型关键在于公式的掌握和应用。本题中,首先应用诱导公式将条件化简,切 3

三角函数化简题

4三角函数得化简、求值与证明日期:2009年月日星期 ,能正确地运用三角公式进行三角函数式得化简与恒等式得证明、 用、 (1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③三角公式得逆用等。(2)化简要求:①能求出值得应求出值; ②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数 2、三角函数得求值类型有三类:(1)给角求值:一般所给出得角都就就是非特殊角,要观察所给角与特殊角间得关系,利用三角变换消去非特殊角,转化为求特殊角得三角函数值问题;(2)给值求值:给出某些角得三角函数式得值,求另外一些角得三角函数值,解题得关键在于“变角”,如等,把所求角用含已知角得式子表示,求解时要注意角得范围得讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得得所求角得函数值结合所求角得范围及函数得单调性求得角。 3、三角等式得证明:(1)三角恒等式得证题思路就就是根据等式两端得特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端得化“异”为“同”;(2)三角条件等式得证题思路就就是通过观察,发现已知条件与待证等式间得关系,采用代入法、消参法或 、三角函数得求值: ,化非特殊角为特殊角; ?2、正确灵活地运用公式,通过三角变换消去或约去一些非特殊角得三角函数值; ?3、一些常规技巧:“1”得代换、切割化弦、与积互化、异角化同角等、 1、三角函数式得化简: 三角函数式得化简常用方法就就是:异名函数化为同名三角函数,异角化为同角,异次化为同次,切割化弦,特殊值与特殊角得三角函数互化、 ?2、三角恒等式得证明: 三角恒等式包括有条件得恒等式与无条件得恒等式、①无条件得等式证明得基本方法就就是化繁为简、左右归一、变更命题等,使等式两端得“异”化为“同”;②有条件得:代入法、消去法、综合法、分析法等、 ( A) A、B、C、D、 2、函数得最小正周期( B) A、B、C、D、 3、等于( D) A、1 B、2 C、-1 D、-2 4、已知,则实数得取值范围就就是__[-1,]___。 ____。 ,(),则?( ) ???或 略解:由得或(舍),∴,∴、 例2、已知,就就是第三象限角,求得值、 解:∵就就是第三象限角,∴(), ∵,∴就就是第四象限角,∴, ?∴原式 221 cos(15)sin(15)sin(75)cos(75) 3αααα + =---=+-+=-、 例3、已知,求得值、

已知三角函数值求角知识讲解

已知三角函数值求角 【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin 2 x =- ,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin 2x =- 知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 42 π=,所以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=. (2)在R 上符合条件的角是所有与 54 π终边相同的角和所有与74π 终边相同的角.因此x 的取值集合为

高三数学专题 三角函数之给值求值问题

三角函数之给值求值问题 一、单选题 1.若0,2πα? ?∈ ???, cos 4παα??-= ??? ,则sin2α等于( ) A . 1516 B . 78 C D . 1532 【答案】A 2.已知π1sin 63α? ?+= ???,则2πcos 23α??- ?? ?的值是 A . 59 B . 89- C . 13- D . 79 - 【答案】D 【解析】∵π1sin 63 α? ?+= ??? ∴1cos cos 2633 a a πππ????--=-= ? ????? ∴1cos 33a π? ?-=- ?? ?

222π17cos 22cos 213339a πα??????-=-=?--=- ? ? ??????? 故选D 二、填空题 3.已知3sin 45πα??- = ???, ,42ππα??∈ ??? ,则tan α=__________. 【答案】7 点睛:本题主要考查同角三角函数的基本关系、两角和差的三角公式、二倍角的正弦公式的应用,属于基础题.一般sin cos sin cos αααα+-,, sin *cos αα,这三者我们成为三姐妹,结合22sin cos 1αα+=,可以知一求三。 4.已知4sin 5α=, 2παπ<<,则cos 4πα??-= ?? ?__________. 【解析】4sin 5α=, 2παπ<<,所以3cos 5 α=-. 34cos cos sin 422252510πααα????-=+=-+= ? ?? ???. 答案为. 5.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为________. 【答案】34 π 【解析】因为()()tan 1tan 12αβ--=,所以tan tan tan tan 1αβαβ+=-

知识讲解_已知三角函数值求角

已知三角函数值求角 【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin 2 x =- ,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin 2 x =- 知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 42π=,所 以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=.

【原创】三角函数求值教学设计

三角函数求值 一、三维目标: (1)知识目标:能运用三角函数有关公式进行简单的恒等变换。 (2)能力目标:对于遇到角、函数名及其整体结构的分析,提高公式选择的恰当性。 (3)情感态度和价值观:角的变换体现出将未知化为已知的思想方法,这是解决三角中关于角的变换问题常用的数学方法之一。 二、教学重点:能正确地运用三角函数的有关公式进行三角函数式的求值. 三、教学难点:有关公式的灵活应用及一些常规技巧的运用.角度范围的控制。 四、教学过程: 1.讲授新课 问题一(给角求值) 50sin80(13tan10) ++ . 解:原式 2sin 80132sin 50(cos10sin10)cos102cos5+ +=2sin 80 2sin 50cos(6010 ) cos10cos5 +-= 250cos50) 22cos5+= 2cos(5045)2cos5-== [点评] 观察非特殊角的特点,找出和特殊角之间的关系。实现函数 名与角度的统一。 问题二(给值求值) 已知tan(45°+θ)=3,求sin2θ-2cos 2θ的值

解:法一:由已知 21 tan ,3tan 1tan 1=?=-+θθθ sin2θ-2cos 2 θ=θθθθ222cos sin 2cos -sin2+=5 4tan 12tan 22 -=+-θθ 法二: sin2θ -2cos 2θ=sin2θ-cos2θ -1=-cos(θπ 22 +)-sin(θπ 22 +)-1 =5 41) 4(tan 1) 4tan(2)4(tan 1) 4( tan 1222-=-+++-+++--θπθπ θπθπ [点评]法一:弦化切;法二:角度的配凑 问题三(给角求值)(1)已知A 、B 均为钝角且5SinA = ,10 SinB =。求A B +。 解:cos()cos cos sin sin A B A B A B +=-,2A B ππ<+<, 74 A B π∴+= [点评]选取恰当的函数名。 (2)已知11tan()tan (0)2 7 αββαβπ-==-∈,,且,,, 求2αβ-的值。 解:tan 2()tan tan(2)tan[2()]1tan 2()tan αββ αβαββαββ -+-=-+= --?, 又22tan()4tan 2()1tan ()3 αβαβαβ--===--,4137tan(2)141137 αβ- -= =+?, 而tan()tan 1 tan tan[()]1tan()tan 3 αββααββαββ-+=-+===--?,(0)αβπ∈,,,所以 04π α<< ,所以13tan 202724 ππ ββππαβαβ= -<<-<-<-=-,所以,,所以。 [点评]注意角度范围控制。 2.课堂练习 (1)11cos(2),sin(2)14αβαβ-=- -=已知

已知三角函数值求角教案1

已知三角函数值求角教案1 教学目标 1.使学生掌握已知三角函数值求角(给值求角)的方法和步骤. 2.通过启发学生总结给值求角的步骤,培养学生归纳、类比、总结的能力. 3.培养学生严谨的科学态度,促进良好个性品质发展. 教学重点与难点 重点是给值求角的基本方法.难点在于归纳给值求角的基本步骤. 教学过程设计 一、复习引入 师:我们学习了5组诱导公式,如何概括这5组公式? 生:k·360°+α(k∈Z),-α,180°±α,360°-α的三角函数值等于α的同一三角函数值,前面加上一个把α看成锐角时原函数值的符号. 师:那么k·360°+α,……这些角从“形”这一角度看,与α又有什么关系呢? (这应在诱导公式那一节有所渗透,或曾经留给同学思考过.) 生:角k·360°+α(k∈Z)的终边与α角的终边相同,180°-α的终边与α的终边关于y轴成轴对称图形,180°+α的终边与α的终边关于原点成中心对称图形,360°-α和-α终边相同,与α的终边关于x轴成轴对称图形. 师:α是什么样角? 生:使三角函数有意义的任意角. 师:如果把α看作是锐角,那么k·360°+α(k∈Z),180°±α,360°-α各是第几象限角?它们的三角函数值与α的同一三角函数值有什么联系?

生:k·360°+α(k∈Z)是第一象限角,180°-α是第二象限角,180°+α是第三象限角,360°-α是第四象限角.这些角的三角函数与α的同一三角函数值相等或互为相反数. (如图1,帮助学生形象思维与记忆.) 师:利用这幅图,记忆诱导公式的符号是不是变得直观了?!那么诱导公式又有什么功能呢? 生:把任意角的三角函数转化为0°~90°间角的三角函数,然后就可以查表求值了. 师:这些任意角的终边和某个锐角α0的终边有刚才所说的对称关系,那么同一三角函数值之间有没有关系? 生:有关系,那些角的三角函数值要么等于α0的同一三角函数值,要么等于这个值的相反数,相等还是相反由这些角所在象限决定. 师:可以这样说,这些角的三角函数值的绝对值等于α0的同一三角函数值.每个角α都可通过一个锐角α0求得这个角的三角函数值(当值存在时),这个值由α唯一确定.那么反过来,知道某个角α的某个三角函数值,要反求α,这个α怎么求?是否唯一?这与我们本节课要研究的知识有关. 二、讲授新课 (板书)已知三角函数值求角. 师:我们先来研究给正弦值求角. (板书) 例1 求满足下列条件的角α的取值集合.

三角函数中的给值求值及给值求角问题的常见技巧

三角函数中的给值求值及给值求角问题的常见技巧 1.三角函数的给值求值问题 解决的关键在于把“所求角”用“已知角”表示。 (1)当“已知角”有两个时,“所求角”一般表示两个“已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”。 (3)常见的配角技巧 22 ()()1 [()()]21 [()()]2() 424 α αααββαββαααβαββαβαβπ ππ αα=?=+-=--=++-=+--+= -- 〖例〗已知3335 0,cos(),sin()4445413 ππβαπαπβ<<<<-=+=,求s i n ()αβ+的值。 思路解析:比较题设中的角与待求式中的角,不难发现 3( )()()442πππβααβ+--=++或将c o s ()4 π α-变化为s i n ()4 π α+ ,再由 ()3()44ππαβπαβ??+++=++ ??? 求解。 解答:方法一:∵ 34 4π πα<< ,3,0.4424 ππππ αα∴- <-<--<-<又3 4cos ,sin()45 45ππαα??-=∴-=- ???。 又 330,.4 44 π ππ ββπ<< ∴ <+<又 35 sin( )413 πβ+=

3sin()cos[()]cos[()()] 244 33cos()cos()sin()sin() 444412354362056()()135135656565 πππ αβαββαππππ βαβα∴+=-++=-+--=-+--+-=--?-?-=+= 方法二:3 cos( )sin()445 π παα-=+= 4,cos()24453533sin(),, 41344312cos(). 413 3sin()sin() 44 33[sin()cos()sin()cos ] 4444 5665 ππ παπαπππββππβππ αβαβππππ αββα<+ < ∴+=- +=<+< ∴+=-∴+=-+++=-+++++= 2、三角函数的给值求角问题 (1)通过先求角的某个三角函数值来求角,在选取函数时,遵照以下原则: ①已知正切函数值,选正切函数; ②已知正、余弦函数值,选正弦或余弦函数。若角的范围是0,2π?? ?? ? ,选正、余弦皆可;若角的范围是()0,π,选余弦较好;若角的范围为(,)22 ππ - ,选正弦较好。 (2)解给值求角问题的一般步骤为: ①求角的某一个三角函数值; ②确定角的范围; ③根据角的范围写出所求的角。 〖例1〗如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别与单位圆交于A 、B (1)求tan(α+β)的值; (2)求的α+2β值。

已知三角函数值求角知识点梳理及例题解释

已知三角函数值求角 例1、已知2 3sin =α,且πα20<≤,求α 解:① 23sin = α>0 α∴是第一、第二象限角,且πα20<≤ ②又 2 33sin =π 2 33sin )3sin(==-π π π ③∴适合条件的角是3 π或32π 说明:若用解集的形式,则应写为:所求α的集合是{ 3π,32π} 练习:已知2 1cos = α,且πα20<≤,求α 例2、已知2 1cos - =α,且πα20<≤,求α 解:① 2 1cos -=α<0 α∴是第二、第三象限角,且πα20<≤ ②满足条件21cos =α的锐角3 πα= 又 2 13cos )3cos(-==-πππ 2 13cos )3cos(-==+πππ ③∴适合条件的角是3ππ-或3ππ+,即32π或34π 小结:由已知三角函数值求角,其解法步骤: (1)由已知三角函数值,确定α所在象限; (2)先求出与其函数值的绝对值对应的锐角θ,再根据α所在象限得出0到2π的角; 若适合条件的角在第二象限,则它是θπ- 若适合条件的角在第三象限,则它是θπ+ 若适合条件的角在第四象限,则它是θπ-2 (3)写出适合条件的角或用集合表达出来。

练习:写出适合条件的角 (1)21sin = α且πα20<≤,求α (2)23cos - =α且πα20<≤,求α (3)1tan =α且πα20<≤,求α (4)21sin = α且πα<≤0,求α (5)23cos - =α且πα<≤0,求α (6),1sin 22=x πα20<≤,求α (7)2 1sin =α,求α (8)1tan =α,求α

三角函数给值求值

三角函数(2) 三角函数式的化简原则:一是统一角,二是统一函数名;能求值的求值,必要时切化弦,更易通分、约分 一、和差角公式、二倍角公式的应用(三角恒等变形) 1.sin 7cos37sin83cos53-的值为( ) A .21- B .21 C .23 D . 2.000 0sin 47sin17cos30cos17-= ( ). A.23- B.21- C.2 3 D.21 3.sin15cos75cos15sin105+ =_________. 4.cos 43cos77sin 43cos167o o o o +=_________. 5.tan 70tan 5070tan 50?+???=_________. 6.=?+- 50tan 20tan 350tan 320tan 3_________. 二、通过整合条件与问题的关系,运用公式进行求值(条件复杂就化简条件,问题复杂就化简问题,条件问题都复杂则将两者朝同一方向化简) 7.已知角α为第二象限角,,5 3sin =α则=α2sin _____. 8.若cos 212sin()4α πα=+,则sin 2α的值为( ) A 、 78 B 、78- C 、47- D 、47 9.已知3cos sin cos sin =+-α ααα,则α2tan 等于________. 10.若,2παπ??∈ ???,则3cos 2sin 4παα??=- ??? ,则sin 2α的值为( ) A .118 B .118- C .1718 D .1718 - 11 .若ααπαπαcos sin ,224sin )2cos(+=??? ? ?-+则的值为 A.2- B. 12- C. 12 D.2 12.若4cos 5θ=-,θ是第三象限的角,则1tan 21tan 2θ θ-+=( ) A .12 B .12- C .35 D .-2 13.已知sin2α=- 2425,α∈(-4 π,0),则sin α+cos α=( ) A .-15 B .15 C .-75 D .75

三角函数中的求值问题(I)

3.5 三角函数中的求值问题(I ) 1.“给角求值”:在不查表前提下,求三角函数值,其一般方法是: (1)非特殊角三角函数化为特殊角的三角函数; (2)将非特殊角的三角函数消去. 2.“给值求角”问题,给出三角函数值,求符合条件的角. 3.三角函数各种公式的灵活运用及变形运用. 【典型例题】 例1.求.49cos 49cos 71cos 71cos 22的值 ++ 例2.求.18sin 36cos 22的值 + 例3.求.10tan 50sec 的值 + 例4.求πππ15 14 cos 152cos 15cos 的值. 【基础训练】 1.=12cos 125sin ππ_________,= 75sin 30sin 15sin _________,= 80cos 40cos 20cos ________, = 70tan 50tan 10tan ____________. 2.________36cos 18sin _________)25tan 1)(20tan 1(=-=++ =++ 40tan 20tan 340tan 20tan ___________ .__________2 12cos 412csc )312tan 3(2 =-- 3.若.___________cos sin ),(,__________cot tan ,2cot tan =+∈=+=++ααααααN n n n 则 4.若.__________sin cos ),,0(,3 6 cos sin =-∈= +θθπθθθ则 【拓展练习】 1.若θθθθθ8622cos cos cos ,1sin sin ++=+则的值等于 ( ) A .0 B .1 C .-1 D .21 5- 2.已知θθθθcos sin ,1cos sin 44+=+则的值是 ( ) A .1 B .-1 C .±1 D .±2 3.0322tan 0367tan '-' 等于 ( ) A .1 B .2 C .2 D .4 4. 15cos 75cos 15cos 75cos 22++等于 ( ) A .2 6 B .23 C .45 D .43 1+ 5. 70sin 2170sin 21-的值等于 ( ) A .1 B .-1 C . 2 1 D .- 2 1 6.求下列各式的值 (1)._______________)12 sin 12)(cos 12sin 12(cos =-+π πππ (2).______________10cos 110cos 80cos 200cos =+

高中数学第四章三角函数复习教案2复习已知三角函数值求角1.doc

高中数学第四章三角函数复习教案2 复习已知三角函数值求角1 第二教时 教材:复习已知三角函数值求角 目的:要求学生对反正弦、反余弦、反正切函数的认识更加深,并且能较正确的 根据三角函数值求角。 过程: 一、复习:反正弦、反余弦、反正切函数 已知三角函数值求角的步骤 二、例题: 例一、1?用反三角函数表示)2 3,(,65sin ππ∈-=x x 中的角x 2?用反三角函数表示)2 7,3(,5tan ππ∈=x x 中的角x 解:1?∵23π5)sin(-=-πx ∴)65arcsin(-=-πx ∴)6 5a r c s i n (--π=x 2?∵273π30π∴5arctan 3=π-x ∴5a r c t a n

3+π=x 例二、已知2 1)32cos(-=π+x ,求角x 的集合。解:∵21)32cos(-=π+x ∴)(3 2232Z k k x ∈π±π=π+ 由32232π+π=π+k x 得)(3 24Z k k x ∈π+π= 由3 2232π-π=π+k x 得)(24Z k k x ∈π-π= 故角x 的集合为},243 24|{Z k k x k x x ∈π-π=π+π=或例三、求3arctan 2arctan 1arctan ++的值。 解:arctan2 = α, arctan3 = β则tan α= 2,tan β= 3 且24π4π2132t a n t a n 1t a n t a n )t a n (-=?-+=βα-β+α=β+α而π3π 又arctan1 = 4 π∴3arctan 2arctan 1arctan ++= π例四、求y = arccos(sin x ), (3 23π≤≤π-x )的值域解:设u = sin x ∵3 23π≤≤π-x ∴123≤≤-u ∴65)a r c c o s (s i n 0π≤≤x ∴所求函数的值域为]6

三角函数求值

考纲要求: 在三角函数的解答题中,经常要解决求未知角的三角函数值,此类问题的解决方法大体上有两个,一是从角本身出发,利用三角函数关系列出方程求解,二是向已知角(即三角函数值已知)靠拢,利用已知角将所求角表示出来,再利用三角函数运算公式展开并整体代换求解,这里着力介绍第二种方法的使用和技巧. 基础知识回顾: 与三角函数计算相关的公式: (1)两角和差的正余弦,正切公式: ①()sin sin cos sin cos αβαββα+=+②()sin sin cos sin cos αβαββα-=- ③()cos cos cos sin sin αβαβαβ+=-④()cos cos cos sin sin αβαβαβ-=+ ⑤()tan tan tan 1tan tan αβαβαβ++= -⑥()tan tan tan 1tan tan αβ αβαβ --=+ (2)倍半角公式: ①sin 22sin cos ααα= ②2 2 2 2 cos2cos sin 2cos 112sin ααααα=-=-=- ③2 2tan tan 21tan α αα = - (3)辅助角公式:()22sin cos sin a b a b ααα?+=++,其中tan b a ?= 应用举例: 类型一、利用两角和差正余弦公式求值 【例1】【名校联盟2018年高考第二次适应与模拟】已知,,则 的值是 A . B . C . D . 【答案】B

【点睛】 三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角. 【例2】【黑龙江省2018届高三高考仿真模拟(三)】已知,,则 A. B. C. D. 【答案】D

相关文档
最新文档