溶剂对有机化学反应的影响

溶剂对有机化学反应的影响
溶剂对有机化学反应的影响

溶剂对有机化学反应的影Ⅱ向

摘要介绍1溶剂对反应速率反应历程竞争反应产物比例和选择性的影

在有机化学中,大多数反应是在溶剂中进行的,溶剂在有机化学反应中的作用越来越受到重视,特别是在合成中如何有效的使用溶剂,己成为一个很重要的问题。一般可以把溶剂分为

质子溶剂、极性非质子溶剂非极性非质子溶剂三种。同一反应使用不同的溶剂,反应效果相差

甚大。例如,1一溴辛烷和氰化铺可以发生取代反应,但是如果简单地把1 溴辛烷和氰化铺的水溶液混在一起,既使于100 C回流两个星期也不反应。这是因为溴代烷不溶于水,底钧不能

接触试剂,因而不发生反应}如果用醇类做溶剂,反应虽可以进行,但反应速率很慢,产率低;若

改用DMF作溶剂.其反应速度比以醇作溶剂时快10 倍。可见溶剂,对反应速率有很大影响。

不仅如此,溶剂对反应历程、竞争反应产物比例立体化学选择性也有很大的影响。

l 溶剂对反应速率的影响

1.1 溶剂对离解反应的影响

当化合物在溶剂中溶解时,溶剂和溶质之间就会产生持殊的作用力,这些作用力包括:库

仑引力、色散力感应力、氢键和电荷的传递作用等。不同的溶剂知溶质之间产生的作用力也有

区别,由于这些作用力的存在,使溶质改变原来的状态成为溶液对于在溶剂中进行的反应,溶剂的改变,必然强烈地影响反应物和过渡态的稳定性,强烈地影响反应过程和反应速度.影响反应的活化能。

在所有涉及离子的反应中,极性溶剂对参与反应的离子都有很大的稳定化作用。溶剂的离

子化能力主要决定于质子溶剂的给质子能力和极性非质溶剂的给电子能力。在气相中没有溶

剂的离子反应是高度活泼的,反应一般按自由基历程进行。例如:在气相中,HC1离解为自由基只需要430.95kJ/tool,离解为离子需要1393.27kJ/tool,而HC1在极性溶剂中极易离解。又如

叔丁基溴在溶液中离子化疑需要83.68kJ/tool的能量.而在气相中离子化则需要836.8kJ/

mol的能量,二者相差10倍。由于极性溶剂如水和乙醇能有效地溶剂化和稳定化离子,因此能

降低离解反应的活化能,促进离解反应的进行。而在非极性溶剂如苯和环已烷中离子不能很好的溶剂化,因此离解反应需要较大的活化能。因而阻碍离解反应的进行。

1.2 溶剂对取代反应速率的影响

溶剂的极性效应对反应速率的影响.可根据溶剂效应理论概述如下:①对过渡态涉及电荷

的产生与集中的反应,提高溶剂的极性将促进反应的进行;②对过渡态涉及电荷的消失与分散

的反应,提高溶剂极性将压抑反应的进行。

对于按s l历程进行的反应,增加溶剂的极性和离子化能力(如使用质子溶剂)反应速度

显著增大。因为溶剂的极性有利于碳正离子的形成,溶剂极性越大,电离作用越大,对反应越有利。

在极性非质子溶剂中进行的s l反应,反应速度较慢.因为反应中的碳正离子形成时,需

要吸电子溶剂的“帮助”才能使c—x键异裂,而极性非质子溶剂是给电子的,无助于反应物的价键的异裂,因而影响s 1反应的反应速率。

对于按s 2历程进行的反应有三种情况:在第l类中.反应物和产物的电荷相等,但在过

渡态时有电荷分散.溶剂极性对反应速度有微小的影响,降低溶剂极性对反应略微有利。在第

类中,由中性反应物变为离子型产物.过渡态中有电荷产生.溶剂极性有利于反应的进行,极

性越强,对反应越有利。在第1V类中,电荷变化情况与第1I类相反,溶剂的极性使反应速度减

小,极性越大.对反应越不利

对于亲电取代反应.s 1历程为离子型历程,中间体为负离子。溶剂的极性有利于碳负离子

的形成,所以增加溶剂极性或离子化强度能使反应加速。二级历程不涉及离子.溶剂对se2(前

边或背后)和s i之间的影响可以通过两个方面进行:①溶剂极性增大,se2历程的反应速度提

高,对S i历程的影响则小得多;@在极性溶剂中,由于z被溶剂化,使之比较不容易进攻x.

因而降低s 诈s 2历程和S 2(环的)历程]历程而提高s 2历程的反应速度。

1.3 溶剂对亲核试剂反应性的影响

溶剂极性对反应速度的影响,质子溶剂与极性非质子溶剂也有差异。质子溶剂既能与正、

负离子络台,也能与亲核试剂形成氢键.这在某种程度上束缚了亲核试剂的进攻能力而对于

极性非质子溶剂如DMF、DMSO、TMS,CEG、HMPA等,其负极位于溶剂分子中C=O s一

O,P—O的氧上,氧的周围没有空间阻碍,露在分子外面,发生溶剂化作用时,负极部分(氧)就

与溶质的正离子发生离子——偶极相互作用,而溶剂分子的正极部分空间阻碍较大且正电荷

又较分散,故难以与负离子发生溶剂化作用,也不舍与负电性的亲核试剂发生作用,使作为负

离子的亲核试剂有较高的活性所以以负离子为亲核试剂的脂肪或芳香的双分子亲核取代反

应(Ss2 SN2Ar)在极性非质子溶剂中进行时比在质子溶剂中进行时反应速度大例如

CH3I+ NaN 3 CH3N3+Nal

溶刘K2/L·tool ·S

CH OH 3×10一

而且若向以质子溶剂为介质的反应液中加入少量非质子溶剂如二氧六环、DMSO或HM.

PA、也能使反应速度加快例如,碘甲烷与甲醇钠反应以甲醇为溶剂时,向反应液中^ 20—

6O 的二氧六环,可使反应速度比在甲醇中快2—5倍因甲醇能与甲醇钠的烷氧负离子生成

氢键,降低了烷氧负离子的亲核性,加入二氧六环后二氧六环与甲醇络台,使烷氧负离子成为

“自由”的负离子或提高了“自由”烷氧负离子的浓度,因而对反应有利。

1.4 溶剂对消除和加成反应速率的影响

溶剂的极性对于消除反应也有很大的影响,因为溶剂极性大能提高具有离子中间体历程

的反应速度,E1历程中间体为碳正离子,E1cB历程中间体为负离子.所以增加溶剂的极性能提高按E1和ElcB历程进行的消除反应速度

对于加成反应.增强溶剂的极性和离子化能力,能促进反应物的极化和电荷的传递作用

(如动态诱导效应)。亲核(或亲电)加成是先由负(或正)离子进攻底物.生成负(或正)碳离子中

间体,且加成试剂进攻前的极化或离子化也需极性溶剂的促进,所以溶剂的极性和离子化能力

增大时无论是对亲核加成,还是对亲电加成都有促进作用而对电中性的自由基型加成反应

则影响不大

2 溶剂对反应历程的影响

2.1 溶}f《i对取代反应历程的影响

如前所述溶剂的极性升高使S 1反应速率上升使大多数的2反应速率下降,那么对

于同一亲核取代反应在一种溶剂(如极性溶剂)中按S 1历程进行,在另一种溶剂(如非极性溶

剂)中接s 2历程进行是完全可能的。二级反应不涉及离子,而溶剂极性升高.能提高离子中间

体历程的可能性。在极性大的溶剂中,离子由于溶剂化而被稳定。极性大的溶剂具有较大的介

电能力.也可以使某些中性分子解离为离子,盈而易使反应物如RX离子化的溶剂有利于反应

按sN1历程进行.而不利于s 2历程倒如C H CH CI的水解反应,在水中按SN1历程进行,

而在丙酮中则按s 2历程进行

溶剂也可以影响亲电取代反应的历程,sE1历程为离子型历程,反应的第一步是慢步骤,

决定反应的速度.为底物解离碳负离子和另一个正离子,所以溶剂的极性升高,有利于反应按

se1历程进行se1历程最常见的例子是各种酸性碳氢化合物的碱催化反应特别是含有羰基

的碳氢化合物的碱催化反应.如:的碳氢化合物的碱催化反应.如:

溶剂对2历程和Sei历程之间的影响要复杂些,总的来说溶剂的极性升高有利于s 2历程,

而对i历程影响较小或稍微不利。

2.2 溶剂对消除反应历程的影响

溶剂对消除反应历程的影响,可从反应电性情况进行分析;El历程中间体为正离子,ElcB

历程中间体为负离子,而Ez过渡态中有电荷分散。因为溶剂极性升高,能够提高具有离子中

间体历程的反应速度;因此,溶剂极性和离子化强度增大时.有利于反应按单分子历程进行.不

利于反应按双分子历程进行。对于不带电的反应物,增加溶剂的极性和离子化强度,将有利于

EI和EIcB历程。

3 溶剂对选择性的影响

3.1 溶剂对立体选择性的影响

3.1.1 溶剂对取代反应立体选择性的影响

对于溶剂对取代反应立体选择性的影响,光学活性化合物2一苯基一2~重氢丁烷的重氢

与氢交换反应可以说是最典型的例子。这个化台物在进行重氢氢交换时,溶剂不同,反应产物

也不同。

反应在不同溶剂中进行,分别得到构型转化产物、构型保持产物和外消旋产物。

产物构型决定于反应历程,而溶剂不同,反应历程不同反应如果在介电常数高的强质子

溶剂甲醇中进行时,得到构型转化产物甲醇酸性较强,离子化能力也较强,首先醇的烷氧负离

子作为碱夺取重氢质子,与此同时,醇羟基上的氢从重氢背面进攻中心碳原子,并与之形成氢键.其过渡态与S z历程有些相似,且c—D键的断裂与c—H键的形成同时进行,生成构型

转化产物:

反应在极性非质子溶剂DMSO中进行时,得到补消旋化合物。醇钠先离解,盒属正离子与

DMSO溶剂化,降低了它和负离子之间的吸引力.

难以被极性非质子溶剂DMSO溶剂化的负离子成为强碱,很容易的从底物夺取重氢,生成不

和溶剂发生溶剂化作用的“自由”碳负离子,质子可以从碳负离子的左右两个方向等机会的进攻,因而生成外消旋产物:

常见的溶剂极性表有机溶剂表

常见的溶剂极性表有机溶剂表一般有机溶剂根据“相似相溶”的原理来进行选择 化合物名称极性粘度沸点吸收波长 i-pentane(异戊烷) 0 - 30 - n-pentane(正戊烷) 0 0.23 36 210 Petroleum ether(石油醚) 0.01 0.3 30~60 210 Hexane(己烷) 0.06 0.33 69 210 Cyclohexane(环己烷) 0.1 1 81 210 Isooctane(异辛烷) 0.1 0.53 99 210 Trifluoroacetic acid(三氟乙酸) 0.1 - 72 - Trimethylpentane(三甲基戊烷) 0.1 0.47 99 215 Cyclopentane(环戊烷) 0.2 0.47 49 210 n-heptane(庚烷) 0.2 0.41 98 200 Butyl chloride(丁基氯; 丁酰氯) 1 0.46 78 220 Trichloroethylene(三氯乙烯; 乙炔化三氯) 1 0.57 87 273 Carbon tetrachloride(四氯化碳) 1.6 0.97 77 265 Trichlorotrifluoroethane(三氯三氟代乙烷) 1.9 0.71 48 231 i-propyl ether(丙基醚; 丙醚) 2.4 0.37 68 220 Toluene(甲苯) 2.4 0.59 111 285 p-xylene(对二甲苯) 2.5 0.65 138 290 Chlorobenzene(氯苯) 2.7 0.8 132 - o-dichlorobenzene(邻二氯苯) 2.7 1.33 180 295 Ethyl ether(二乙醚; 醚) 2.9 0.23 35 220 Benzene(苯) 3 0.65 80 280 Isobutyl alcohol(异丁醇) 3 4.7 108 220 Methylene chloride(二氯甲烷) 3.4 0.44 240 245 Ethylene dichloride(二氯化乙烯) 3.5 0.78 84 228 n-butanol(正丁醇) 3.7 2.95 117 210 n-butyl acetate(醋酸丁酯;乙酸丁酯) 4 - 126 254 n-propanol(丙醇) 4 2.27 98 210 Methyl isobutyl ketone(甲基异丁酮) 4.2 - 119 330 Tetrahydrofuran(四氢呋喃) 4.2 0.55 66 220 Ethyl acetate(乙酸乙酯) 4.30 0.45 77 260 i-propanol(异丙醇) 4.3 2.37 82 210 Chloroform(氯仿) 4.4 0.57 61 245

电子效应及位阻效应在有机化学中的应用

电子效应及位阻效应在有机化学中的应用 刘晓 (西北大学化学系06级材料化学专业 西安 710069) 摘要:电子效应及位阻效应贯穿着整个有机化学的学习,故其在有机化学中有着广泛的应用。但由于所掌握的知识有限,我仅将所学的具有代表性的知识进行整理小结,为以后的学习奠定基础。 关键词:电子效应 诱导效应 共轭效应 位阻效应 一.引言 在有机化学的学习中我们应该都碰到了这样或那样的问题,有些问题的答案需要我们死记硬背,但有些问题的解答则有章可循.比如亲电加成的方向性,芳香族化合物的酸性,消去反应的方向性等,只要我们掌握了电子效应和位阻效应在这些反应中所起的作用,那么这类问题便迎刃而解了.那么电子效应,位阻效应到底在有机化学中扮演着一个怎样的角色呢? 二.电子效应与位阻效应的简介 电子效应是指电子密度分布的改变对物质性质的影响。电子效应可以根据作用方式分为诱导效应和共轭效应两种类型。 诱导效应 1.诱导效应的定义 一般以氢为比较标准,如果电子偏向取代基,这个取代基是吸电子的,具有吸电子的诱导效应,用-I (Inductive effect )表示; CR 3 X Y H 3 CR 3 -I 效应 标准 +I 效应 2.诱导效应的特点 诱导效应是沿σ键传递的,离吸(或斥)电子基团越远,效应越弱。大致隔三个单键后,诱 导效应就很弱,可忽略不计了。例如C H 3CH 2 CH 2CH 2 CH 2 Cl δ δ δ δ δ δ + ++, 其中δ表示微 小,δδ表示更微小,依此类推。 诱导效应有叠加性,当两个基团都能对某一键产生诱导效应时,这一键所受的诱导效应是这几个基团诱导效应的总和。方向相同时叠加,方向相反时互减。 诱导效应只改变键的电子云密度分布,不改变键的本质。无论所受诱导效应的大小和方向如何,σ键仍是σ键,π键仍是π键。 3.诱导效应的强弱,取决于基团吸电子能力或斥电子能力的大小。 下列是一些能产生诱导效应的基团 吸电子基团:带正电荷的基团,如:-OR2+、-NR3+ ;卤素原子,如:-F 、-Cl 、-Br 、-I ;带氧原子或氮原子的基团,如:-NO2、>C =O 、-COOH 、-OR 、-OH 、-NR2;芳香族或不饱和烃基,如: -C 6H 5、-C ≡R 、-CR =CR 2 斥电子基团:带负电荷的基团,如:-O-、-S-、-COO-;饱和脂肪族烃基,如: -CR 3、-CHR 2、-CH 2R 、-CH 3

最全的常用有机溶剂参数表

溶剂危害性分类 一类溶剂:应避免 致癌物;备受怀疑的致癌物;环境危害物 二类溶剂:设定残余量,限量使用 非基因性动物致癌物;可能导致不可逆中毒,比如神经性中毒,畸形;可能导致其他可逆性中毒 三类溶剂: 低毒 对人体有潜在毒性,可以接触,但不超过50mg/day。 Solvent Other Names Structure Class Acetic acid Ethanoic acid CH3COOH三类溶剂 2-Propanone Acetone CH3COCH3三类溶剂 Propan-2-one Acetonitrile CH3CN二类溶剂 Anisole Methoxybenzene三类溶剂 Benzene Benzol一类溶剂 n-Butyl alcohol 1-Butanol CH3(CH2)3OH三类溶剂 Butan-1-ol sec-Butyl alcohol 2-Butanol CH3CH2CH(OH)CH3三类溶剂 Butan-2-ol Butyl acetate Acetic acid butyl ester CH3COO(CH2)3CH3三类溶剂 tert-Butylmethyl ether2-Methoxy-2-methyl- propane(CH3)3COCH3三类溶剂Carbon tetrachloride Tetrachloromethane CCl4一类溶剂 Chlorobenzene二类溶剂Chloroform Trichloromethane CHCl3二类溶剂 Isopropylbenzene Cumene 三类溶剂 (1-Methyl)ethylbenzene Cyclohexane Hexamethylene二类溶剂 1,2-Dichloroethane sym-Dichloroethane CH2ClCH2Cl一类溶剂

化学反应中有机溶剂的选择原则和经验教学文稿

化学反应中有机溶剂的选择原则和经验

一、溶剂的选择原则和经验 1、常用溶剂: DMF、氯苯、二甲苯、甲苯、乙腈、乙醇、THF、氯仿、乙酸乙酯、环己烷、丁酮、丙酮、石油醚。 2、比较常用溶剂:DMSO、六甲基磷酰胺、N-甲基吡咯烷酮、苯、环己酮、丁酮、环己酮、二氯苯、吡啶、乙酸、二氧六环、乙二醇单甲醚、1,2-二氯乙烷、乙醚、正辛烷。 3、一个好的溶剂在沸点附近对待结晶物质溶解度高而在低温下溶解度又很小。DMF、苯、二氧六环、环己烷在低温下接近凝固点,溶解能力很差,是理想溶剂。乙腈、氯苯、二甲苯、甲苯、丁酮、乙醇也是理想溶剂。 4、溶剂的沸点最好比被结晶物质的熔点低50℃。否则易产生溶质液化分层现象。 4、溶剂的沸点越高,沸腾时溶解力越强,对于高熔点物质,最好选高沸点溶剂。 5、含有羟基、氨基而且熔点不太高的物质尽量不选择含氧溶剂。因为溶质与溶剂形成分子间氢键后很难析出。 6、含有氧、氮的物质尽量不选择醇做溶剂,原因同上。 7、溶质和溶剂极性不要相差太悬殊。水>甲酸>甲醇>乙酸>乙醇>异丙醇>乙腈>DMSO>DMF>丙酮>HMPA>CH2Cl2>吡啶>氯仿>氯苯>THF>二氧六环>乙醚>苯>甲苯>CCl4>正辛烷>环己烷>石油醚。 二、重结晶操作

1、筛选溶剂:在试管中加入少量(麦粒大小)待结晶物,加入0.5 mL根据上述规律所选择溶剂,加热沸腾几分钟,看溶质是否溶解。若溶解,用自来水冲试管外测,看是否有晶体析出。初学者常把不溶杂质当成待结晶物!如果长时间加热仍有不溶物,可以静置试管片刻并用冷水冷却试管(勿摇动)。如果有物质在上层清液中析出,表示还可以增加一些溶解。若稍微浑浊,表示溶剂溶解度太小;若没有任何变化,说明不溶的固体是一种东西,已溶物质又非常易溶,不易析出。 2、常规操作:在锥形瓶或圆底烧瓶中加入溶质和一定溶剂,装上球冷,加热10分钟,若仍有不溶物,继续从冷凝管上口补加溶剂至完全溶解再补加过量30%溶剂。用折叠滤纸(折叠滤纸和三角漏斗要提前预热)趁热过滤入锥形瓶。滤液自然冷却后用布氏漏斗抽滤(用滤液反过来冲洗锥形瓶!)。如果物质在室温溶解度很小,滤饼可以用少量冷的溶剂淋洗(先撤掉减压,加少量溶剂润湿滤饼,再减压抽干。注意:用玻璃塞把滤饼压实有助于除掉更多溶剂!)。如果所用溶剂不易挥发,可以在常压下加入少量易挥发溶剂淋洗滤饼,如DMF可用乙醇洗,二氯苯、氯苯、二甲苯、环己酮可以用甲苯洗。初学者常遇到问题:大量结晶在滤纸上析出,原因是漏斗和滤纸预热不好、溶剂过量太少、过滤时间太长。如产品贵重,可将三角漏斗和滤纸置于锥形瓶上用蒸气预热,边过滤边用已经过滤的滤液蒸气保温,但上述操作比较危险,甲苯、醚类、石

溶剂概述和溶剂效应

溶剂概述和溶剂效应 摘要:对化学反应中溶剂的种类和作用做概述,以及溶剂效应在紫外,荧光,红外,核磁波谱和液相色谱中的作用。 关键词:溶剂溶剂效应吸收光谱液相色谱 1,溶剂 1.1溶剂的定义 溶剂是一种可以溶化固体,液体或气体溶质的液体,继而成为溶液,最常用的溶剂是水。 1.2溶剂的分类 溶剂按化学组成分为有机溶剂和无机溶剂 有机溶剂是一大类在生活和生产中广泛应用的有机化合物,分子量不大,常温下呈液态。有机溶剂包括多类物质,如链烷烃、烯烃、醇、醛、胺、酯、醚、酮、芳香烃、氢化烃、萜烯烃、卤代烃、杂环化物、含氮化合物及含硫化合物等等,多数对人体有一定毒性。(本文主要概述有机溶剂在化学反应以及波谱中的应用) 2,溶剂效应 2.1溶剂效应的定义 溶剂效应是指溶剂对于反应速率,平衡甚至反应机理的影响。溶剂对化学反应速率常数 的影响依赖于溶剂化反应分子和相应溶剂化过渡态的相对稳定性。 2.2溶剂效应在紫外,荧光,红外,核磁中的应用 2.2.1溶剂效应在紫外吸收光谱中的应用[5] 有机化合物紫外吸收光谱的吸收带波长和吸收强度,与所采用的溶剂有密切关系。通常,溶 剂的极性可以引起谱带形状的变化。一般在气态或者非极性溶剂(如正己烷)中,尚能观察 到振动跃迁的精细结构。但是改为极性溶剂后,由于溶剂与溶质分子的相互作用增强,使谱 带的精细结构变得模糊,以至完全消失成为平滑的吸收谱带。这一现象称为溶剂效应。例如, 苯酚在正庚烷溶液中显示振动跃迁的精细结构,而在乙醇溶液中,苯酚的吸收带几乎变得平 滑的曲线,如图所示

2.2.1.1溶剂极性对n→π*跃迁谱带的影响[2] n→π*跃迁的吸收谱带随溶剂的极性的增大而向蓝移。一般来说,从以环己烷为溶剂改为以乙醇为溶剂,会使该谱带蓝移7nm:如改为以极性更大的水为溶剂,则将蓝移8nm。增大溶剂的极性会使n→π*跃迁吸收谱带蓝移的原因如下: 会发生n→π*跃迁的分子,都含有非键电子。例如C=O在基态时碳氧键极化成Cδ+=Oδ-,当n电子跃迁到π*分子轨道时,氧的电子转移到碳上,使得羰基的激发态的极性减小,即Cδ+=Oδ-(基态)→C=O (激发态)。所以,与极性溶剂的偶极偶极相互作用强度基态大于激发态。被极性溶剂稳定而下降的能量也是基态大于激发态。跃迁能量增加而发生吸收峰蓝移,如图2所示;溶剂对n→π*跃迁的另一个影响是形成氢键,例如羰基与极性溶剂发生氢键缔合的作用程度,极性强的基态大于极性弱的激发态,致使基态的能级的能量下降较大,而激发态能级的能量下降较小,使吸收峰蓝移。 2.2.1.2溶剂极性对π→π*跃迁谱带的影响[2] π→π*跃迁的吸收谱带随溶剂极性的增大而向红移。一般来说,从以环烷烃为溶剂改为以乙醇为溶剂,会使该谱带红移10 20nm.增大溶剂的极性引起π→π*跃迁的吸收谱带红移的原因如下。大多数会发生π→π*跃迁的分子,其激发态的极性总是比基态的极性大,因而激发态与极性溶剂之间发生相互作用从而降低其能量的强度,要比极性小的基态与极性溶剂发生作用降低的能量大。也就是说,在极性溶剂的作用下,基态与激发态之间的能量差别变小了,因而要实现这一跃迁所需要的能量相应地小了,故引起吸收峰红移,2图可以加以说明。

常见有机溶剂极性表

有机溶剂是能溶解一些不溶于水的物质的一类有机化合物,其特点是在常温常压下呈液态,具有较大的挥发性,在溶解过程中,溶质与溶剂的性质均无改变。 有机溶剂的种类较多,按其化学结构可分为10大类:①芳香烃类:苯、甲苯、二甲苯等; ②脂肪烃类:戊烷、己烷、辛烷等;③脂环烃类:环己烷、环己酮、甲苯环己酮等;④卤化烃类:氯苯、二氯苯、二氯甲烷等;⑤醇类:甲醇、乙醇、异丙醇等;⑥醚类:乙醚、环氧丙烷等;⑦酯类:醋酸甲酯、醋酸乙酯、醋酸丙酯等;⑧酮类:丙酮、甲基丁酮、甲基异丁酮等;⑨二醇衍生物:乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚等;⑩其他:乙腈、吡啶、苯酚等。 有机溶剂具有脂溶性,因此除经呼吸道和消化道进入机体内外,尚可经完整的皮肤迅速吸收,有机溶剂吸收入人体后,将作用于富含脂类物质的神经、血液系统,以及肝肾等实质脏器,同时对皮肤和粘膜也有一定的刺激性。不同有机溶剂其作用的主要靶器官和作用的强弱也不同,这决定于每一种有机溶剂的化学结构、溶解度、接触浓度和时间,以及机体的敏感性。 常用溶剂的极性顺序: 水(极性最大) > 甲酰胺 > 乙腈 > 甲醇 > 乙醇 > 丙醇 > 丙酮 > 二氧六环 > 四氢呋喃 > 甲乙酮 > 正丁醇 > 醋酸乙酯 > 乙醚 > 异丙醚 > 二氯甲烷 > 氯仿 > 溴乙烷 > 苯 > 氯丙烷 > 甲苯 > 四氯化碳 > 二硫化碳 > 环己烷 > 己烷 > 庚 烷 > 煤油(极性最小) 有机溶剂的极性根据官能团和对称性可初步判断,具体的需参照极性参数,如下

表示有机溶剂的极性,关系到其物理化学性质、如介电常数、偶极矩或折射率。这种表示方法把所有的溶剂看作是连续作用的介质,而不是看作由各个分子组成的非连续统一体,并且未考虑到溶剂和溶质之间的特殊的相互作用。

常见有机溶剂的性质大全

溶剂的定义 溶剂(solvent)这个词广义指在均匀的混合物中含有的一种过量存在的组分。狭义地说,在化学组成上不发生任何变化并能溶解其他物质(一般指固体)的液体,或者与固体发生化学反应并将固体溶解的液体。溶解生成的均匀混合物体系称为溶液。在溶液中过量的成分叫溶剂;量少的成分叫溶质。 溶剂也称为溶媒,即含有溶解溶质的媒质之意。但是在工业上所说的溶剂一般是指能够溶解油脂、蜡、树脂(这一类物质多数在水中不溶解)而形成均匀溶液的单一化合物或者两种以上组成的混合物。这类除水之外的溶剂称为非水溶剂或有机溶剂,水、液氨、液态金属、无机气体等则称为无机溶剂。 溶解现象 溶解本来表示固体或气体物质与液体物质相混合,同时以分子状态均匀分散的一种过程。事实上在多数情况下是描述液体状态的一些物质之间的混合,金与铜、铜与镍等许多金属以原子状态相混合的所谓合金也应看成是一种溶解现象。所以严格地说,只要是两种以上的物质相混合组成一个相的过程就可以称为溶解,生成的相称为溶液。一般在一个相中应呈均匀状态,其构成成分的物质可以以分子状态或原子状态相互混合。 溶解过程比较复杂,有的物质在溶剂中可以以任何比例进行溶解,有的部分溶解,有的则不溶。这些现象是怎样发生的,其影响的因素很多,一般认为与溶解过程有关的因素大致有以下几个方面: ⑴相同分子或原子间的引力与不同分子或原子间的引力的相互关系(主要是范德华引力); ⑵分子的极性引起的分子缔合程度; ⑶分子复合物的生成; ⑷溶剂化作用; ⑸溶剂、溶质的相对分子质量; ⑹溶解活性基团的种类和数目。 化学组成类似的物质相互容易溶解,极性溶剂容易溶解极性物质,非极性溶剂容易溶解非极性物质。例如,水、甲醇和乙醇彼此之间可以互溶;苯、甲苯和乙醚之间也容易互溶,但水与苯,甲醇与苯则不能自由混溶。而且在水或甲醇中易溶的物质难溶于苯或乙醚;反之在苯或乙醚中易溶的却难溶于水或甲醇。这些现象可以用分子的极性或者分子缔合程度大小进行判断。纤维素衍生物易溶于酮、有机酸、酯、醚类等溶剂,这是由于分子中的活性基团与这类溶剂中氧原子相互作用的结果。有的纤维素衍生物在纯溶剂中不溶,但可溶于混合溶剂。例如硝化纤维素能溶于醇、醚混合溶剂;三乙酸纤维素溶于二氯乙烷、甲醇混合溶剂。这可能是由于在溶剂之间,溶质与溶剂之间生成分子复合物,或者发生溶剂化作用的结果。总之,溶解过程能够发生,其物质分子间的内聚力应低于物质分子与溶剂分子之间的吸引力才有可能实现。 溶液浓度的表示方法 溶质在溶剂中溶解的多少,彼此间存在着相对量的关系,通常用以下几种方法表示:⑴质量分数 即混合物中某一物质的质量与混合物的质量之比,符号为ω。 物质B的质量分数(ωB)=物质B的质量(mB)/溶液的质量(m) 例如:氯化钠的质量分数ω(NaCl)=15%,即表示100g该溶液中含有NaCl 15g。 ⑵体积分数 通常用于表示溶质为液体的溶液浓度(略) ⑶物质的量的浓度

常用有机溶剂按毒性大小分类表

常用有机溶剂按毒性大小分类表 一、第一类有机溶剂: 1、三氯甲烷 2、1,1,2,2,-四氯乙烷 3、四氯化碳 4、1,2二氯乙烯 5、1,2二氯乙烷 6、二硫化碳 7、三氯乙烯 8、苯 9、由以上溶剂组成的混合物 二、第二类有机溶剂: 1、丙酮 2、异戊醇 3、异丁醇 4、异丙醇 5、乙醚 6、乙二醇乙醚 7、乙二醇乙醚乙酸酯 8、乙二醇丁醚 9、乙二醇甲醚 10、邻—二氯苯 11、二甲苯 12、甲酚 13、氯苯 14、乙酸戊酯 15、乙酸异戊酯

16、乙酸异丁酯 17、乙酸异丙酯 18、乙酸乙酯 19、乙酸丙酯 20、乙酸丁酯 21、乙酸甲酯 22、苯乙烯 23、1,4—二氧杂环己烷 24、四氯乙烯 25、环己醇 26、环己酮 27、1—丁醇 28、2—丁醇 29、甲苯 30、二氯甲烷 31、甲醇 32、甲基异丁基甲酮 33、甲基环己醇 34、甲基环己酮 35、甲丁酮 36、1,1,1—三氯乙烷 37、1,1,2—三氯乙烷 38、丁酮 39、二甲基甲酰胺 40、四氢呋喃 41、正己烷 42、由以上溶剂组成的混合物

三、第三类有机溶剂 1、汽油 2、煤焦油精 3、石油醚 4、石油精 5、轻油精 6、松节油 7、矿油精 8、由以上溶剂组成的混合物 四、有机溶剂按其化学结构可分为10大类: 1、芳香烃类:苯、甲苯、二甲苯等; 2、脂肪烃类:戊烷、己烷、辛烷等; 3、脂环烃类:环己烷、环己酮、甲苯环己酮等; 4、卤化烃类:氯苯、二氯苯、二氯甲烷等; 5、醇类:甲醇、乙醇、异丙醇等; 6、醚类:乙醚、环氧丙烷等; 7、酯类:醋酸甲酯、醋酸乙酯、醋酸丙酯等; 8、酮类:丙酮、甲基丁酮、甲基异丁酮等; 9、二醇衍生物:乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚等; 10、其他:乙腈、吡啶、苯酚等。 经常使用有机溶剂,如,乙醇、苯乙烯、全氯乙烯、三氯乙烯、乙烯乙二醇醚和三乙醇胺。 五、常用有机溶剂对人体的危害 1、液氨:剧毒性、腐蚀性 2、液态二氧化硫:剧毒

学习参考:有机化学中的电子效应

有机化学中的电子效应 电子效应是影响有机化合物反应活性和反应规律的重要因素之一,深入理解有机化学中的电子效应,可以对有机化学的认识由感性向理性方向发展。 电子效应包括诱导效应、共轭效应和超共轭效应;有时三种效应同时存在,表现共同作用的综合结果。 一、诱导效应(Inductive effect ) 诱导效应是电子效应的一种,是由路易斯(Lewis )首先提出。路易斯认为,对于有机化合物,诱导效应是由一个电负性较强的原子X 取代了碳原子上的氢原子后,在C -X 键上产生一个极性分布,这个极性分布通过电性诱导作用,在分子中其它键上引起一系列的极性变化,结果在整个分子中产生一个向着X 原子方向的较大范围的电子运动,这种电子运动称为诱导效应: C δ- 电负性比碳弱的元素原子也可以在分子中引起一系列的极性变化,只是所产生的诱导效应的方向刚好相反。 诱导效应是指在有机化合物分子中引入一个基团或原子后,由于原子的电负性差异,导致σ键电子的移动,使分子中的电子云密度分布发生变化,而这种变化不但发生在直接相连的部分,也可以影响到不直接相连的部分。这种因某一原子或基团的极性而引起电子沿碳链向某一方向移动的效应,称为诱导效应。 如氯丙烷分子中,取代在碳上的氯原子的电负性较强, C -Cl 键产生偶极,使与氯原子连接的第一个碳原子(α-碳原子)产生部分正电荷(δ+),也使第二个碳原子带有部分正电荷,第三个碳原子带有更少的正电荷,依次影响下去。这种影响的特征是沿着碳链传递,并随着碳链的增长而迅速减弱或消失,一般传递到第三个碳原子就可忽略不计。诱导效应是一种静电作用,共用电子并不能完全转移到另一原子,只是电子云密度分布发生变化,亦即键的极性发生变化。 δ + δ+ δ+ δ- CH 3—CH 2—CH 2→Cl 1.静态诱导效应(I s ) 诱导效应分为静态诱导效应和动态诱导效应。静态诱导效应是由分子本身结构决定的,是分子本身所固有的极化效应,与由极性溶剂或反应试剂等产生的外电场无关。 ⑴ –I 效应和+I 效应 静态诱导效应通常采用烷烃H -CR 3上的氢作为比较标准,规定其为0。如果用电负性较碳原子大的X 取代了H -CR 3中的氢原子后,化合物X -CR 3中-CR 3部分的电子云密度比在H -CR 3中小,X 叫做吸电子基团。由吸电子基团引起的诱导效应,叫做吸电子诱导效应,用-I 表示。如果用电负性较碳原子小的Y 取代了H -CR 3中的氢原子,化合物Y -CR 3中-CR 3部分的电子云密度比在H -CR 3中大,Y 叫做给电子基团。由给电子基团引起的诱导效应,叫做给电子诱导效应,用+I 表示。

有机合成注意事项

有机合成中常见郁闷操作 1. 爬板时,忘记取出TLC板,直到溶剂爬到头。 2. 忘记称量瓶重。 3. 分液时忘记及时关闭分液漏斗的旋塞,回头一看什么都没了。 4. 过柱子的时候把产物给弄没了。 5. 柱子走干了。 6. 旋蒸的时候,含产物的烧瓶一头扎进水浴锅。 7. 旋蒸的时候忘开真空…..。 8. 旋蒸时不停的暴沸。 9. 把反应液倒进旋开塞子的分液漏斗。 10. 搅拌子连同反应液一起到进分液漏斗,结果搅拌子搞破分液漏斗。 11. 做NMR时,仅有氘代溶剂,忘加…。 12. 相信自己的记忆力很好,多个样品不写标签,第二天后悔莫及。 13. 忘记开循环水。 14. 相信溶剂绝对纯净绝对无水。 15. 直道要处理反应时,发现少加一底物。 16. 投料时,加错原料。 17. 投料前不确认原料。 18. 投料的过程中,发现反应瓶小了。 19. 淬灭反应时,发现反应瓶太小了。 20. 取样时,搞破瓶子。 21. 计算投料配比时,没有考虑原料的含量。 22. 计算投料配比时,搞错一个小数点。

23. 相信一个不可靠的反应能发生奇迹。 24. 分液时,把产物层丢弃。 25. 搅拌子打破瓶子。 26. 为取出产物,惟有搞破瓶子。 27. 反应瓶滑进油浴锅。 28. 多组分平行试验,混乱了批号。 29. 过夜反应时,循环水管从冷凝器上脱落。 30. 洗瓶子时打破瓶子。 31. 在封闭的体系中进行有气体释放的反应。 32. 萃取时,死活不分层。 33. 切钠块时,打了一个喷嚏。 34. 打开冰箱,忘记关;从冰箱取出试剂,忘记归。 35. 别人拿走你称量好的瓶子。 36. 温控失灵。 37. 冲料。 38. 减压蒸馏暴沸。 39. 使用乙醚,老打瞌睡。 40. 爬板时,别人偷偷的把你的板掉个头。 41. 做减压蒸馏,突然跳闸,倒吸了

常用用有机溶剂的相对极性

常用用有机溶剂的相对极性 常用用有机溶剂的相对极性 solvent polarity Viscosity(cp20℃) Boiling point(℃) UV cutoff(nm) i-pentane戊烷 0.00 -- 30 -- n-pentane 0.00 0.23 36 210 Petroleum ether石油醚0.01 0.30 30-60 210 Hexane己烷0.06 0.33 69 210 Cyclohexane环己烷 0.10 1.00 81 210 Isooctane异辛烷 0.10 0.53 99 210 Trifluoroacetic acid三氟乙酸 0.10 -- 72 -- Trimethylpentane三甲基戊烷0.10 0.47 99 215 Cyclopentane(环戊烷) 0.20 0.47 49 210 n-heptane(庚烷) 0.20 0.41 98 200 Butyl chloride (丁基氯; 丁酰氯) 1.00 0.46 78 220 Trichloroethylene (三氯乙烯; 乙炔化三氯) 1.00 0.57 87 273 Carbon tetrachloride (四氯化碳) 1.60 0.97 77 265 Trichlorotrifluoroethane (三氯三氟代乙烷) 1.90 0.71 48 231 i-propyl ether (丙基醚; 丙醚) 2.40 0.37 68 220 T oluene(甲苯) 2.40 0.59 111 285 p-xylene(对二甲苯) 2.50 0.65 138 290 Chlorobenzene(氯苯) 2.70 0.80 132 -- o-dichlorobenzene (领二氯苯) 2.70 1.33 180 295 Ethyl ether(二乙醚; 醚) 2.90 0.23 35 220 Benzene(苯) 3.00 0.65 80 280 Isobutyl alcohol(异丁醇) 3.00 4.70 108 220 Methylene chloride(二氯甲烷) 3.40 0.44 40 245 Ethylene dichloride(二氯化乙烯)3.50 0.79 84 228 n-butanol(丁醇) 3.90 2.95 117 210 n-butyl acetate(醋酸丁酯; 乙酸丁酯)4.00 --- 126 254 n-propanol(丙醇) 4.00 2.27 98 210 Methyl isobutyl ketone 4.20 -- 119 330 T etrahydrofuran( 四氢呋喃)4.20 0.55 66 220 ethanol 4.30 1.20 79 210 Ethyl acetate 4.30 0.45 77 260 i-propanol(丙醇) 4.30 2.37 82 210 Chloroform(氯仿) 4.40 0.57 61 245 Methyl ethyl ketone(甲基乙基酮)4.50 0.43 80 330

常用有机溶剂

一、乙醇(ethyl alcohol,ethanol) 1.理化性质: (1)分子式C2H6O (2)相对分子质量46.07 (3)结构式CH3CH2OH (4)外观与性状:无色液体,有酒香。 (5)熔点(℃):-114.1 (6)沸点(℃):78.3 (7)相对密度(水=1):0.79 (8)相对密度(空气=1):1.59 (9)溶解性:与水混溶,可混溶于醚、氯仿、甘油等多数有机溶剂。(10)禁忌物:强氧化剂、酸类、酸酐、碱金属、胺类。 危险类别: (1)燃烧性:易燃 (2)闪点(℃):12 (3)引燃温度(℃):363 (4)爆炸下限(%):3.3 (5)爆炸上限(%):19.0 二、甲醇(methyl alcohol,Methanol) 1. 理化性质: (1)分子式CH4O (2)相对分子质量32 (3)结构式CH3OH (4)外观与性状:无色澄清液体,有刺激性气味。 (5)熔点(℃):-97.8 (6)沸点(℃):64.8 (7)相对密度(水=1):0.79 (8)相对密度(空气=1):1.11 (9)溶解性:与水混溶,可混溶于醇、醚等多数有机溶剂。 (10)禁忌物:强氧化剂、酸类、酸酐、碱金属。 危险类别: (1)燃烧性:易燃 (2)闪点(℃):11 (3)引燃温度(℃):385 (4)爆炸下限(%):5.5 (5)爆炸上限(%):44.0

乙酸乙酯,醋酸乙酯(ethyl acetate,acetic ester) 1.理化性质: (1)分子式:C4H8O2 (2)相对分子质量88.10 (3)结构式 CH3-C-OCH2CH3 (4)外观与性状:无色澄清液体,有芳香气味,易挥发。 (5)熔点(℃):-83.6 (6)沸点(℃):77.2 (7)相对密度(水=1):0.90 (8)相对密度(空气=1):3.04 (9)溶解性:微溶于水,可混溶于醇、酮、醚、氯仿等多数有机溶剂。(10)禁忌物:强氧化剂、酸类、碱类。 危险类别: (1)燃烧性:易燃 (2)闪点(℃):-4 (3)引燃温度(℃):426 (4)爆炸下限(%):2.0 (5)爆炸上限(%):11.5 二氯甲烷(dichloromethane) 1.理化性质: (1)分子式:CH2Cl2 (2)相对分子质量84.94 (3)结构式H2CCl2 (4)外观与性状:无色透明液体,有芳香气味。 (5)熔点(℃):-96.7 (6)沸点(℃):39.8 (7)相对密度(水=1):1.33 (8)相对密度(空气=1):2.93 (9)溶解性:微溶于水,溶于乙醇、乙醚。 (10)禁忌物:碱金属、铝。 危险类别: (1)燃烧性:可燃 (2)闪点(℃): (3)引燃温度(℃):615 (4)爆炸下限(%):12 (5)爆炸上限(%):19

有机推断与合成知识点总结和习题

有机合成和推断题常用信息 一.有机合成常用的有机信息 1.烷基取代苯R可以被KMnO4的酸性溶液氧化生成COOH,但若烷基R中直接与苯环连接的碳原 子上没有C一H键,则不容易被氧化得到COOH。 【解析】此反应可缩短碳链,在苯环侧链引进羧基。 2.烯烃复分解反应 【解析】该反应又有有机“交谊舞”反应之称。相当于双键两端分别是两个在跳舞的舞伴,遇到另一对的时候,交换一下舞伴。(2005年诺贝尔化学奖研究成果) 3.已知溴乙烷跟氰化钠反应再水解可以得到丙酸 CH3CH2Br? ?→ ?NaCN CH3CH2CN? ?→ ?O H2CH 3CH2COOH,产物分子比原化合物分子多了一个碳原子,增长了碳链。 【解析】卤代烃与氰化物取代反应后,再水解得到羧酸,这是增长一个碳的常用方法。 4.已知两个羧基之间在浓硫酸作用下脱去一分子水生成酸酐,如: +H2O 【解析】这是制备酸酐的一种办法。 5.烯烃通过臭氧化并经锌和水处理得到醛或酮。例如: === CH CH CH 2 3C CH 3 CH 3 ①O3 ②Zn/H2O === CH CH CH 2 3 === +O O C CH 3 CH 3 RCH=CHR’与碱性KMnO4溶液共热后酸化,发生双键断裂生成羧酸: 常利用该反应的产物反推含碳碳双键化合物的结构。 【解析】这都属于烯烃的氧化反应。其中,臭氧化还原水解一般得到醛和酮,而用酸性高锰酸钾得到羧酸。通过分析氧化后的产物,可以推知碳碳双键的位置。 7.环己烯可以通过丁二烯与乙烯发生环化加成反应得到: (也可表示为:+║→) 【解析】这是著名的双烯合成,是合成六元环的首选方法。 8.马氏规则与反马氏规则 R1 R1R2 R2R1 R1R2 R2 + R1 R1R1 R1R2 R2R2 R2 + 催化剂

溶剂对有机化学反应的影响

溶剂对有机化学反应的影Ⅱ向 摘要介绍1溶剂对反应速率反应历程竞争反应产物比例和选择性的影 在有机化学中,大多数反应是在溶剂中进行的,溶剂在有机化学反应中的作用越来越受到重视,特别是在合成中如何有效的使用溶剂,己成为一个很重要的问题。一般可以把溶剂分为 质子溶剂、极性非质子溶剂非极性非质子溶剂三种。同一反应使用不同的溶剂,反应效果相差 甚大。例如,1一溴辛烷和氰化铺可以发生取代反应,但是如果简单地把1 溴辛烷和氰化铺的水溶液混在一起,既使于100 C回流两个星期也不反应。这是因为溴代烷不溶于水,底钧不能 接触试剂,因而不发生反应}如果用醇类做溶剂,反应虽可以进行,但反应速率很慢,产率低;若 改用DMF作溶剂.其反应速度比以醇作溶剂时快10 倍。可见溶剂,对反应速率有很大影响。 不仅如此,溶剂对反应历程、竞争反应产物比例立体化学选择性也有很大的影响。 l 溶剂对反应速率的影响 1.1 溶剂对离解反应的影响 当化合物在溶剂中溶解时,溶剂和溶质之间就会产生持殊的作用力,这些作用力包括:库 仑引力、色散力感应力、氢键和电荷的传递作用等。不同的溶剂知溶质之间产生的作用力也有 区别,由于这些作用力的存在,使溶质改变原来的状态成为溶液对于在溶剂中进行的反应,溶剂的改变,必然强烈地影响反应物和过渡态的稳定性,强烈地影响反应过程和反应速度.影响反应的活化能。 在所有涉及离子的反应中,极性溶剂对参与反应的离子都有很大的稳定化作用。溶剂的离 子化能力主要决定于质子溶剂的给质子能力和极性非质溶剂的给电子能力。在气相中没有溶 剂的离子反应是高度活泼的,反应一般按自由基历程进行。例如:在气相中,HC1离解为自由基只需要430.95kJ/tool,离解为离子需要1393.27kJ/tool,而HC1在极性溶剂中极易离解。又如 叔丁基溴在溶液中离子化疑需要83.68kJ/tool的能量.而在气相中离子化则需要836.8kJ/ mol的能量,二者相差10倍。由于极性溶剂如水和乙醇能有效地溶剂化和稳定化离子,因此能 降低离解反应的活化能,促进离解反应的进行。而在非极性溶剂如苯和环已烷中离子不能很好的溶剂化,因此离解反应需要较大的活化能。因而阻碍离解反应的进行。 1.2 溶剂对取代反应速率的影响 溶剂的极性效应对反应速率的影响.可根据溶剂效应理论概述如下:①对过渡态涉及电荷 的产生与集中的反应,提高溶剂的极性将促进反应的进行;②对过渡态涉及电荷的消失与分散 的反应,提高溶剂极性将压抑反应的进行。 对于按s l历程进行的反应,增加溶剂的极性和离子化能力(如使用质子溶剂)反应速度 显著增大。因为溶剂的极性有利于碳正离子的形成,溶剂极性越大,电离作用越大,对反应越有利。 在极性非质子溶剂中进行的s l反应,反应速度较慢.因为反应中的碳正离子形成时,需 要吸电子溶剂的“帮助”才能使c—x键异裂,而极性非质子溶剂是给电子的,无助于反应物的价键的异裂,因而影响s 1反应的反应速率。 对于按s 2历程进行的反应有三种情况:在第l类中.反应物和产物的电荷相等,但在过 渡态时有电荷分散.溶剂极性对反应速度有微小的影响,降低溶剂极性对反应略微有利。在第 类中,由中性反应物变为离子型产物.过渡态中有电荷产生.溶剂极性有利于反应的进行,极 性越强,对反应越有利。在第1V类中,电荷变化情况与第1I类相反,溶剂的极性使反应速度减 小,极性越大.对反应越不利 对于亲电取代反应.s 1历程为离子型历程,中间体为负离子。溶剂的极性有利于碳负离子 的形成,所以增加溶剂极性或离子化强度能使反应加速。二级历程不涉及离子.溶剂对se2(前

物性参数表

物性参数表

常用溶剂 一、乙醇(ethyl alcohol,ethanol)CAS No.:64-17-5 (1)分子式 C2H6O (2)相对分子质量 46.07 (3)结构式 CH3CH2OH , (4)外观与性状:无色液体,有酒香。(5)熔点(℃):-114.1 (6)沸点(℃):78.3 溶解性:与水混溶,可混溶于醚、氯仿、甘油等多数有机溶剂; 密度:相对密度(水=1)0.79;相对密度(空气=1)1.59; 稳定性:稳定;危险标记7(易燃液体); 主要用途:用于制酒工业、有机合成、消毒以用作溶剂

二、甲醇(methyl alcohol,Methanol)CAS No.:67-56-1 (1)分子式 CH4O (2)相对分子质量32.04 (3)结构式 CH3O, (4)外观与性状:无色澄清液体,有刺激性气味。 (5)熔点(℃):-97.8,凝固点 -97.49℃,沸点64.5℃.闪点(开口)16℃,燃点470℃,折射率1. 3285,表面张力22.55×10-3N/m (6)相对密度(20 ℃/4℃)0.7914 溶解度参数δ=14.8,能与水、乙醇、乙醚、丙酮、苯、氯仿等有机溶剂混溶,甲醇对金属特别是黄铜有轻微的腐蚀性。易燃,燃烧时有无光的谈蓝色火焰。蒸气能与空气形成爆炸混合物.爆炸极限6.0%-36.5%(vol)。纯品略带乙醇味,粗品刺鼻难闻。有毒可直接侵害人的肢体细胞组织.特别是侵害视觉神经网膜,致使失明。正常人一次饮用4一10g纯甲醉可产生严重中毒。饮用7-8g可导致失明,饮用

30-100g就会死亡。空气中甲酵蒸气最高容许浓度5mg/m3。

常用橡胶性能一览表

常用橡胶性能一览表

由于具有优异的耐老化性能耐冲击性也较好,所以常用做胎侧。 EPDM三元乙丙胶三元乙丙橡胶是一种在乙烯和丙烯共聚物中引入了第三单体的高分子聚合物,产品性能及优点:超高分子量,高乙烯含量,可高度填充填充剂和油,易碎的性能缩短了混炼的时间. 分子结构和特性 三元乙丙是乙烯、丙烯和非共轭二烯烃的三元共聚物。二烯烃具有特殊的结构,只有两键之一的才能共聚,不饱和的双键主要是作为交链处。另一个不饱和的不会成为聚合物主链,只会成为边侧链。三元乙丙的主要聚合物链是完全饱和的。这个特性使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧。三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。

在三元乙丙生产过程中,通过改变三单体的数量,乙烯丙烯比,分子量及其分布以及硫化的方法可以调整其特性。 热塑性弹性体 (TPE) 高刚性耐高温且保有低温的弯曲性,优异的耐化学品性,应用于管材、静音齿轮、电线被覆、发卷、自动收缩管线. TPE热塑性弹性体特性: 1、材料有半透、高透明、白色、黑色供选择。 2、已通过ROHS、PAHs、FDA测试,等级测试。 3、材料环保无卤无毒无味,不含塑胶软化剂、磷苯二甲酸盐、重金属等化合物。 4、良好的减震性和防滑耐磨。 5、良好的抗紫外线及耐化学药品性。 6、广阔的硬度范围选择(邵氏0度-110度)。可根据需求任意调整。 7、在—60度至135度的长期使用温度 8、压缩变形及永久变形小 9、卓越的抗动态疲劳性能 10、极优的耐臭氧及耐候性能 11、亮面、雾面均可,光滑的外观和舒适的橡胶柔软质感。 12、材料不含水分,无须干燥可直接使用,节约能源。 13、易于加工,着色。水口料即边角料可百分百回收再利用,降低产品,且不影响产品物性。 14、它可以通过二次注塑成型,与PP、PE、PS、ABS、PC、PA等基体材料包覆粘合,也可单独成形。替代软质PVC部分硅橡胶。 TPE/TPR 之应用领 域运动器材: 手把类(高尔夫球、各种球拍、脚踏车、滑雪器材、滑水器材等), 潜水器材(蛙鞋、蛙镜、呼吸管、手电筒等)、刹车块、运动护垫。日常用品:

50、有机反应类型与有机合成

考点 1.由2-溴丙烷为主要原料制取 ) A.加成―消去―取代 B.消去―加成―取代 C.取代―消去―加成 D.取代―加成―消去 2.扑热息痛(HO - -NH -C -CH 3)是一种优良的解热镇痛剂.据其结构简式可推测, 可能具有的性质是( ) ① 与烧碱溶液反应 ② 能与浓溴水发生取代反应 ③ 与FeCl 3溶液发生显色反应 ④能被O 2氧化 A.只有①② B.只有①②④ C.只有②③④ D.①②③④都是 3.有机物①CH 2OH(CHOH)4CHO ②CH 3CH 2CH 2OH ③CH 2=CH-CH 2OH ④CH 2=CH-COOCH 3 ⑤CH 2=CH-COOH 中,既能发生加成反应、酯化反应,又能发生 氧化反应的是( ) A.③④ B.①③⑤ C.②④ D.① 4.聚合物 是( ) A .同分异构体 B .同系物 C .由不同的单体组成 D .均由加聚反应生成 5.电子仪表和飞机等某些部件中要用到一种称为DAP 的塑料,,它的结构简式如下图。 则合成它的单体可能是①邻二苯甲酸②丙烯酸③乙烯醇④丙烯醇 ( ) A .①② B .②④ C .①③ D .①④ 6.氯普鲁卡因盐酸是一种局部麻醉剂,麻醉作用较快,毒性较低,其合成路线如下: 7.已知溴乙烷跟氰化钠反应后再水解可以得到丙酸CH 3CH 2Br →CH 3CH 2CN →CH 3CH 2COOH ,产物分子比原化合物分子多了一个碳原子,增长了碳链.请根据以下框图回答问题: O

F ⑴反应①②③中属于取代反应的是 。 ⑵写出结构简式:E ,F 。 8.有机物F 商品名称“敌稗(Propanil )”,是一种优良的水稻除草剂,现通过下列合成 路线制备: 已知: Ⅰ. (X 表示卤素原子,下同) Ⅱ. Ⅲ.当一取代苯继续发生取代反应时,新引进的取代基受到原取代基的影响而取代邻位、对位或间位。使新的取代基进入它的邻位、对位的取代基:-CH 3、-NH 2、-X ;使新的取代基进入它的间位的取代基有:-COOH 、-NO 2等。 请结合上述所给信息,回答问题: ⑴反应②条件 。 ⑵有人认为:若将②、③两步反应顺序颠倒,也可以得到C ,实际上是不妥的。请你指出不妥之处 。 ⑶反应⑤的化学反应方程式: 。 ⑷请你设计D →E (C 3H 6O 2)的合成路线。 要求:①合成过程中无机试剂任选、有机原料碳原子不超过2个;②合成反应流程图表示方法示例如下: 参 考 答 案 1.B2.D3.B4.C5.C 6.①硝化 ②氯代 ③氧化 ④酯化 ⑥还原 RX RCN RCOOH NaCN H 2O 反应物 反应条件 A B C 反应物 反应条件 …… D 呈酸性 ……

常用有机溶剂分类

有机溶剂分类 一、烃类溶剂 1.烃 只含有碳氢两种元素的有机化合物叫烃。根据结构将烃类分为脂肪烃和芳香烃。脂肪烃包括脂肪链烃和脂环烃。开链结构的脂肪烃根据结构的饱和程度分为饱和链烃(烷烃)和不饱和链烃(烯烃和炔烃)。芳香烃是含有苯环特殊结构的烃类。根据具体结构分为单环芳烃、多环芳烃和稠环芳烃。 烃类溶剂根据来源分为两类:由石油分馏得到的烃类混合物溶剂叫石油溶剂油,简称溶剂油;由化工原料合成或精制得到的成分单一烃类溶剂是烃的纯溶剂。纯溶剂价格较高,通常只用于一些特殊用途中。 2.溶剂油 石油是由多种烃类组成的混合物,经过分馏处理得到不同沸点范围的产品。根据沸,抿范围通常把石油产品分为石油醚、汽油、煤油、柴油、润滑油、石蜡和沥青。其中沸点范围在30~90℃以戊烷和己烷为主要成分的石油醚和沸点范围在40~200℃烃分子含碳数在4~12的汽油,有很好的溶解性能。在工业生产中常做溶剂使用,称为溶剂油或溶剂汽油。近年来还开发出相当于煤油乃至轻柴油馏分做高沸点溶剂油,拓宽了溶剂油的概念。煤油是石油分馏时,沸点在175~325℃范围的馏分,由于馏程长所包含的烃类成分复杂。在一定情况下也可以做溶剂使用,如美国干洗业使用的干洗溶剂汽油(stoddard solvent)实际上是一种不易燃的煤油溶剂。因此广义上溶剂油包括多种沸程范围的烃类混合物以及己烷、苯、甲苯、二甲苯纯烃类溶剂。为了叙述上的方便,本书介绍的溶剂油是指由石油分馏得到的烃类混合物溶剂。 (1)溶剂油按沸程分类根据分馏过程的沸程,溶剂油大致分为三类:把沸程在100℃凋以下的称为低沸点溶剂油,如工业上的6号抽提溶剂油,沸程为60~90℃;把沸程在100~150℃的称为中沸点溶剂油,如橡胶溶剂油,沸程在80~120℃;把沸程高于150℃的称为高调沸点溶剂油,如油漆溶剂油,沸程为140—200℃,油墨溶剂油干点达360℃都属于高沸点溶剂油。从沸程范围看,溶剂油大多数属于汽油馏分。 (2)溶剂油的化学成分溶剂油是各种烃类的混合物,主要成分有开链烷烃、烯烃、环烷烃和芳香烃。由于烯烃化学性质活泼、安定性差,不适合作溶剂使用,所以一般溶剂油中含烯烃很少,成分以其他三类烃为主。 低沸程溶剂油,如6号抽提溶剂油,120号橡胶溶剂油,200号油漆溶剂油中主要成分是烷烃和环烷烃。有时称为脂肪烃类溶剂,脂肪烃溶剂油成分有直链烷烃、支链烷烃、环烷烃。由于不同结构烷烃的溶解性能不同,所以又可以根据其主要成分进一步分类,如以支链烷烃为主要成分的溶剂油,称为异构烷烃溶剂油,它的溶解性能优于一般脂肪烃溶剂油而高沸程溶剂油中甲苯、二甲苯等芳烃含量较大称为芳烃类溶剂油,如近年兴起的高沸点芳烃溶剂油主要成分就是分子中含9个碳原子的芳烃。 溶剂油的性能与其化学成分有密切关系,由于烃类的溶解能力顺序为:芳烃>环烷烃> 链烷烃。所以相同沸程的溶剂油中含链烷烃、环烷烃多的比含芳烃较多的溶剂油苯胺点高、贝壳松脂丁醇值低,溶解能力差。 纯芳香烃溶剂油虽然溶解能力强,但毒性也大,因此目前工业上出现用高芳香烃溶剂油和低芳香烃溶剂油来代替苯、甲苯、二甲苯等纯芳香烃溶剂使用的趋势。这样虽然溶解能力稍有降低,但降低了溶剂油的毒性,也降低了生产成本。而且为降低溶剂油的毒性,各国对溶剂油中的芳香

相关文档
最新文档