森林土壤氮素有效性的野外估测方法

森林土壤氮素有效性的野外估测方法
森林土壤氮素有效性的野外估测方法

第43卷增刊1

2007年10月林业科学SCIE NT IA SILVAE SINICAE Vol 143,Sp.1Oct.,2007

森林土壤氮素有效性的野外估测方法

陈伏生 曾德慧 范志平 赵 琼

(中国科学院沈阳应用生态研究所大青沟沙地生态实验站 沈阳110016)

摘 要: 介绍野外估测森林土壤N 有效性的常用方法,包括埋袋法、PVC 顶盖埋管法、离子交换树脂袋法、树脂芯

法、15N 同位素法和生态系统N 收支估算法。同时指出,传统的以土壤N 矿化为N 循环核心的理论受到挑战,新的

理论体系中,把解聚合、植物-微生物竞争、微环境的作用作为N 有效性估测的关键,为此,以上研究方法均存在局

限性,N 有效性的研究方法还有待进一步改进。

关键词: 森林土壤;氮素有效性;估测方法

中图分类号:S71412 文献标识码:A 文章编号:1001-7488(2007)增1-0083-06

收稿日期:2006-04-25。

基金项目:国家自然科学基金项目(30471377&30600473)和国家科技支撑计划项目(2006BAD03A05-2)。Advances in in situ Assessment Methods of Forest Soil Nitrogen Availability

Chen Fusheng Zeng Dehui Fan Zhiping Zhao Qiong

(Da qin ggou Ecolog ic al Station ,In stitu te o f Applie d Ecology ,Ch ine se Aca demy o f Sc ien ces Shen ya n g 110016)

Abstract : Evaluation methods for soil N availability are i mportant to assess forest N cycling a nd its rela ted issues.This paper re viewed the soil N availability in situ evaluation methods,which included buried -bag incubation,PVC closed -top tube incubations,ion exchange resin bags,resin cores,15N methods and ecosyste m N budgets.As a result of the challenges to the classical soil N c ycling paradigm,N mineralization being the perc eived cente r point of the soil N cycle,ecologists provided the new paradigm,depolyme riza t ion,plan-t microbe competition and microsite processes being the three key problems to assess soil N a vailability.Thus,all methods above were limited,and new method needed to be provided and developed as an urgent task in the future.

Key words : forest soil;nitrogen availability;evaluation methodology

N 是植物生长和发育所需的大量营养元素之一。在许多森林生态系统中,土壤N 有效性通常是限制林木生长的主要因素(Vitousek et al .,1982;Attiwill et al .,1993)。在传统的土壤N 循环范式中,基于植物只吸收无机N 和植物同微生物竞争N 源能力极弱的2条关键性假设(Schimel et al .,2004),土壤N 有效性通常指的是无机N(NH 4+和NO 3-

)的供应速率和限制性(Chapin et al .,1986),主要由N 矿化-固持过程控制,通常以N 净矿化速率来作为评价指标。一直到20世纪90年代,正是基于对N 净矿化重要性的认可,以及养分有效性和植物吸收是生态系统结构、功能及其过程最重要表征指标的重视,建立和发展一种衡量生态系统有效N 水平的净矿化速率的方法成为研究的焦点(Binkley et al .,1989;Schimel et al .,2004)。然而,事实上要找到一种可以准确测定土壤N 有效性的方法相当困难。无奈之下,埋袋法(Eno,1960)、顶盖埋管法(Lemee,1967)、离子交换树脂法(Binkley et al .,1983)、树脂芯法(Di Stefano,1984)等相继被研究者认为是较理想的,并广泛应用于作为估测土壤有效N 的指标。

20世纪90年代以后,随着对净矿化速率测定技术的限制性和矿化-固持过程复杂性的认识,特别一些生态系统中出现了N 的净固持(Giblin et al .,1991;Chapin et al .,1993;Kielland,1994),或者净矿化量明显低于植物吸收N 源所积累的量(Schimel et al .,1996;Kielland,1997),导致使用净矿化速率来衡量生态系统土壤N 有效性的理论受到质疑(Schimel et al .,2004)。相关的科学家开始重新思考N 矿化过程是否仍是N 循环的核心,并提出新的观点,认为至少在N 含量低的生态系统中,植物可以直接吸收利用有机N 作为重要的N 源,有机N 吸收是N 循环的快速通道(Chapin,1995);植物能够有效地同微生物竞争来吸收N 源,从而限制微生物的生长和繁殖。此外,研究者对森林生态系统林地表层空间异质性和根系分布的不均匀性对植物吸收有效N 影响进行了重新认识,Schimel 等(2004)提出生态系统N 循环新的研究范式(图1),并指出解聚合、植物-微生物竞争、微环境的作用是今后开展N 有效性研究的3个关键突破口,解聚合是整个过程的核

心。为此,土壤N 有效性估测方法成为一项新的而急待解决的研究课题。

在传统N 循环模式受到挑战,新的N 循环模式刚刚提出,新的研究方法尚待形成之际,目前来看,净矿化速率仍然是一个衡量N 有效性的重要指标(Reich et al .,1997;Hooper et al .,1999;Chen et al .,2006)。鉴于此,本文对野外估测森林土壤N 净矿化速率的几种方法做逐一介绍,以期能够在新的N 循环模式的研究中有所发展和完善,

从而为提出新的方法提供思路和借鉴。

图1 土壤N 循环新模式简图Fig.1 New paradi gm of s oil nitrogen cycli ng (1)解聚合过程,新的N 循环模式的核心Depolymerization,regulates overall N cycli ng in new paradigm;(2)氨化过程A mmonificati on;(3)硝化过程Ni trificati on;(2)+(3)矿化过程M i neralization;(4)固持过程Immobilization;(2)+(3)+(4)矿化-固持过程,是传统N 循环模式的关键Mineralization -immobilization,dominant proces s in traditional N cycling paradigm;(5)植物吸收,与微生物竞争N 源Plant abs orption,competes N wi th microbes;(6)微生物死亡M icrobe death;(7)植物死亡Plant death.

1 埋袋法

埋袋法形成于20世纪50年代

后期,20世纪60)70年代在欧洲

得到了广泛的应用(Kovaes,1978),

也一度成为北美应用最广泛的N

有效性测定方法。即:用土钻取出

土样,尽量不破坏其原状,装入塑

料袋中进行培养。袋子允许O 2和

CO 2交换,但阻止液体水分的交换

(Gordon et al .,1987)。把装有土

壤的袋子埋在林地表层以下培养

1~2个月。培养期过后,NH 4+和

NO 3-用2mol #L -1的KCl 浸提,用

化学比色法或相应的仪器设备(如连续流动养分分析仪)测定。培养期前后浸提液中NH 4+和NO 3-的差异为净矿化量。这种方法的关键在于

如何确定温度、湿度、培养期以及土壤干扰等因素对N 矿化过程及其有效性的影响。

利用这种方法,Nadelhoffer 等(1983)研究了美国威斯康辛大学植物园内9种森林N 矿化和植物吸收规律,发现埋袋法测定的矿化率与土壤全N 、有机C 和C P N 没有相关性,但与树木吸收N 的量(r 2=019)和凋落物N 量(r 2=016)有很好的相关性;Vitousek 等(1986)通过研究采伐和整地对火炬松(Pinus taeda )林地N 矿化速率的影响,发现其矿化速率提高了5倍,其中硝化速率从占总净矿化速率的10%增加到100%;B oone (1992)对美国麻萨诸塞州松树(Pinus strobus )和糖槭(Acer saccharum )林地表层0~15c m 土壤N 矿化速率研究时,发现埋袋法与实验室厌氧培养法所估测的值均表现出明显的季节动态,但两者变化的格局并一致;Redding 等(2004)利用埋袋培养法研究了加拿大不列颠哥仑比亚中南部的英国针叶林和亚高山冷杉混交林采伐对N 矿化过程的边缘效应,发现对硝化速率的边缘效应明显,为2~6m,而对氨化速率不明显。2 顶盖埋管培养法

20世纪60年代,Lemee(1967)提出了在铝罐中培养土壤样品测定土壤N 矿化速率的技术,在铝罐两边打孔,且顶部关闭底部开放。这一设计能够保持罐中与罐外的土壤湿度相似,且能阻止根系的直接吸收,并阻止下雨而导致的直接淋溶。此后,Ada ms 等(1986a;1986b)应用带盖的PVC 管改进了这一方法,并发现在培养期间盖子能阻止一小部分NO 3-

的流失,且由于在野外没有最适宜的温度和湿度,其所估测的矿化速率要低于实验室标准条件的矿化速率。同埋袋法相比,这种方法,具有更多的优点,特别适应于在预备试验中证实硝酸盐从管芯的底部淋溶出来的量不大的研究区采用。因此,在温带、寒带地区具有很好的适用性。

此方法的典型案例有:Rapp 等(1979)应用Le mee 的技术评估靠近地中海的意大利石松林(Pinus pinea )N 矿化,发现森林地表加上A 1层每年的矿化大约为1115kg #hm -2,这与凋落物回归的N 量基本吻合。Raison 等(1987)通过一系列的试验来确定影响PVC 顶盖埋管法测定矿化速率的影响因素,发现培养前过筛土壤能增加2~10倍的矿化速率,其中硝化速率增加比例较大;早期已施过200kg #hm -2N 土壤的矿化速率比未施肥处理的矿化速率提高了4倍还多;而过筛后培养测定结果却表明不存在差异,同时发现金属管不会改变土壤温度,同PVC 管测定的矿化速率一致;矿化速率对于培养期的长短不敏感,打管过程的干扰对土壤N 84林业科学43卷

矿化过程基本没有影响;PVC 管打入40c m 的深度测定2个林分矿化速率,发现25%N 矿化量发生在15~40c m 。Knoepp 等(1998)利用PVC 顶盖埋管法研究了美国阿巴拉契亚地区不同海拔和植被梯度土壤N 矿化速率的变化,发现N 净矿化速率和硝化速率均表现随植被类型而存在显著的变化。Chen 等(2006)也利用此法研究了不同经营措施对章古台沙地樟子松(Pinus sylvestris var.mongolica )土壤N 矿化过程的影响,发现围栏集约经营的林地明显高于非围栏自由放牧的林地,但硝化速率所占净矿化速率的比例是前者低于后者。3 离子交换树脂袋法

离子交换树脂最早是应用于P 有效性的测定,到20世纪80年代才被应用来测定野外条件下的森林土壤养分有效性(Binkley et al .,1983)。具体操作包括将已知质量或体积的树脂装入尼龙网袋中,放在土壤中培养1个月至1年,然后用盐溶液浸提树脂吸收的离子量。实验室研究表明,树脂袋上离子的吸附量主要取决于N 矿化速率、离子形态、含水量以及同微生物和植物吸收养分的竞争能力(Binkley,1984)。离子交换树脂袋法容易使用,而且对环境因子比较敏感,被认为是分析N 有效性的空间和时间格局最有效的方法。树脂袋法测定出的不同生态系统和不同处理间N 有效性的差异通常是显著的,但引起差异的原因比较复杂,既包括矿化速率引起的差异,也包含植物吸收和微生物固持的差异,还与离子的移动性密切相关,为此,如何合理地解释树脂袋的测定结果存在困难。

在森林土壤中,Binkley(1984)利用离子交换树脂袋法和厌氧培养法测定了英属哥伦比亚省的范库弗峰岛3个不同海拔林地皆伐对N 有效性的影响。厌氧培养法测定结果表明,采伐后N 有效性没有变化,而离子交换树脂袋测定结果表明砍伐后N 有效性提高了7~20倍。Binkley 等(1986)利用树脂袋法测定已经用埋袋法测定过的13个不同系列的生态系统的N 有效性,表明经过一个生长季节后,树脂袋上N 的积累与其他

的测定方法有很好的相关性。不过,有2个林地测出了极高的NO 3-,而正是这2个林地在较早的研究中发

现有较高的NO 3-的淋溶。同时发现树脂袋测定有NH 4+

的林地,而埋袋法测定结果却为100%的硝化。这些发现再次说明N 有效性组成与测定方法选择的差异。Waring 等(1987)利用树脂袋法测定了山地铁杉(Tsuga mertensiana )生态系统不同树木死亡率下林地土壤N 有效性的变化,发现无林地和更新后幼林树脂吸附的无机N 比成熟林高4倍多。Hart 等(1989)利用离子交换树脂法、埋袋法和树脂芯法对美国加利福尼亚州东部内华达山脉2块林地的表层矿质土壤的N 有效性进行研究时发现,3种方法均表明幼林地土壤N 有效性低于成熟林地,但相关系数均不显著。研究者认为离子交换树脂法与环境条件如土壤水分等影响很大,树脂芯法对土壤水分的变化反映迟钝,而埋袋法不能反映土壤水分的变化,为此,需根据不同的研究对象和目标进行选择。Mo 等(2003)利用离子交换树脂袋法研究了中国华南鼎湖山保护区3块不同演替阶段的热带典型林分,发现恢复的松阔混交林地树脂吸附离子最高,成熟的常绿阔叶林地次之,而受到干扰的马尾松(Pinus massoniana )林地最低。陈伏生等(2006)利用此法,研究了科尔沁沙地章古台地区不同人工林土壤有效性的状况,发现赤松(Pinus densi f lora )林>樟子松林>杨树(Po pulus simonii )林(P <0105),同PVC 顶盖埋管法测定的结果赤松林低于樟子松林和杨树林(P <0105),作者在分析时指出季节间土壤N 矿化速率动态变化主要受温度和水分的影响,顶盖埋管法测定结果与此有较好的相关性,说明顶盖埋管法能够较好地反映土壤N 的实际矿化速率。而离子交换树脂袋法由于受植物根系对N 的吸收影响较大,所以在植物旺盛生长期,其测定值较低。此外,离子交换树脂袋法可能受土壤水分影响较大,通常在春、秋季易发生N 移动,而易被树脂吸附,从而导致测定值偏高,趋向于反映土壤有效N 与植物吸收N 的差值。仅从测定土壤N 矿化速率的准确性来说,顶盖埋管法优于离子交换树脂袋法。但从评价土壤N 有效性以及植物利用来说,两者的结合会更加有说服力。4 树脂芯法

Di Stefano (1984)把树脂袋法和PVC 管顶盖埋管法相结合,形成目前被认为测定N 矿化速率最优的树脂芯法,该法把上下两端均开放的管埋入土壤中,同时管子顶部和底端均放上离子交换树脂袋。管子顶部的树脂袋可以防止其他土壤的离子而进入到管中,底端的树脂袋可吸附从管芯淋溶出来离子。在培养期过后,如

果不考虑输入的问题,顶端的树脂袋可丢弃,土壤和底端的树脂袋用KCl 浸提,利用浸提出来的NH 4+和NO 3-来评估培养期间N 的矿化速率。此法明显优于埋袋法,因为培养期间它允许土壤湿度的波动。而优于85 增刊1陈伏生等:森林土壤氮素有效性的野外估测方法

86林业科学43卷

埋袋法和顶盖埋管法的原因在于允许矿化的产物在管芯中移出,这样就会减少因NH4-和NO3-的积累而抑制进一步的矿化或固持。

Strader等(1988)应用树脂芯法研究了南部阿帕拉契亚山脉高海拔的红云杉(Picea rubens)和弗雷泽冷杉(Abies fraseri)林地的矿化特征,通过连续4个培养期对19块林地每年的矿化作了测定,发现年矿化速率为26~180kg#hm-2。NO3-占被矿化N的1%~60%。同时发现大部分被矿化的N均被吸附在树脂上,表明允许矿化产物从树脂芯中移走具有潜在的重要性。Hart等(1989)用离子交换树脂袋、树脂芯和埋袋法比较分析了加利福尼亚地区幼龄和成熟混交针叶林地N有效性的季节变化格局,树脂芯法测定结果表明幼龄林净矿化速率比成熟林高2倍,且硝化作用尤其突出;埋袋法同树脂芯法测定结果类似。同时发现树脂芯法测定过程管内土壤含水量高于周围土壤;埋袋法出现了相反的问题,即袋里土壤含水量低于袋外,缘于袋中水分被蒸发却不能通过降雨来补充。Zou等(1992)采用树脂芯和埋袋法对哥斯达黎加的热带雨林不同演替阶段的林地土壤N转化速率进行研究时,两者方法没有明显的差异,但用树脂芯法测定的NH4+比埋袋法要高一些。认为是埋袋法中微生物易发生固持而树脂芯不易发生所致。

尽管树脂芯培养法包含了埋袋法和顶盖埋管法的优点,但是其工作量要大的多。

5同位素15N技术

Kirkham等(1954)首先提出用数学模型分析同位素15N库稀释法测定的数据,从而估算土壤N矿化速率。目前,同位素15N库稀释技术已经比较普遍。一般通过添加少量15N到一个库,观测其瞬间在被标记库的迁移来估测N转化速率。研究者假设即培养期标记库的输入和输出速率是恒定的;N通量速率与供试库的大小是成比例的。为此,把土壤看成有效和无效N两部分,15NH4+添加到土壤中后,总NH4+和15NH4+用KCl浸提来度量。输入和输出NH4+库的总速率的计算只需要知道最初和最后的总的NH4+和15NH4+库的大小即可估算,而15NO3-的添加可估算总的硝化作用和NO3-消耗。

Van Cleve等(1980)首先在森林生态系统中应用N库稀释法,研究美国阿拉斯加州60年生的白桦林地表层NH4+、NO3-以及可溶和不可溶的有机N库的动态变化。分析了不同库间的通量及其周转时间,发现北部森林可溶性有机N库的能量很大,达到014~017kg#hm-2d-1。Binkley等(1985)利用此法,发现在2个林地针叶中和土壤中NH4+和NO3-的15N相吻合,而另外2个林地叶片15N比土壤有效N中的要高。Binkley等(1992)在美国华盛顿和俄勒冈州的试验林地采用好氧、厌氧、埋袋、树脂芯、15N库稀释法和生态系统N预算法同时估测了土壤N转化及其有效性时,发现各种方法间既存在一定的相关性,又反映了各自的特点。如,从反映林地间的差异程度看,15N库稀释法>埋袋法>树脂芯法。Billings等(2002)利用15N同位素研究美国莫哈韦沙漠落叶灌木(Lycium spp.)土壤N的有效性的变化时,发现CO2浓度升高时,有效N有下降的趋势。此方法的主要缺点在于对标记库最初的大小非常敏感。而森林土壤中NH4+-N和NO3--N库大小的空间变异性通常较大,因此,在野外应用时此法的精度受到了严格的限制。

不过,15N示踪为N有效性各个组分的评估提供了很好的机会。目前来看,它是最具潜力和发展空间的一种方法。

6生态系统N收支

评估生态系统N素供应能力最精确的方法就是估算每年N循环的主要组成部分,即输入、植物吸收、输出等。这些过程包含所有控制N有效性的因子。不同生态系统N收支的组成具有差异,这种差异导致不同N组分的重要性也将有所不同,但最重要的一些组分应包括凋落物N含量、细根周转和生物体N量等。Aber 等(1985)计算了13种林地地上部分N吸收,并把N的吸收速率与埋袋法培养所获得的矿化速率进行比较,发现埋袋法所获得的有效N要高于生态系统N收支所测定的有效N。此后,用其差异来计算细根产量,进而说明2种N有效性测定方法的差异。为此,认为生态系统N收支法评价N矿化是准确的,不过任何偏差都会显著地改变细根产量的估测。Finzi等(2002)预算CO2浓度升高条件下火炬松幼林生态系统N收支时,发现随着苗木的生长,土壤N将成为生态系统生产力的限制性因子。

生态系统N收支包含若干部分,要对其进行全面地测定费时费力费钱,所以研究者往往根据研究目的

只测定其中某一部分来作为衡量指标。生态系统N 收支法的定量研究为评价N 有效性的动态变化提供了一个很好的框架。不过,生态系统N 收支还没有一个统一的标准。

7 小结

目前,还没有一种方法能够对土壤N 有效性提供一个详细而精确的评估。一般根据不同的研究目标和所强调的N 循环过程的组成成分来选择相应的方法。不过,鉴于新的N 循环研究范式的提出,以上研究方法的局限性已经毋容质疑。

在新的N 循环研究范式中,土壤N 有效性该如何估测?Schimel 等(2004)在提出新的研究范式时,在方法论上就有过较为详细的讨论。首先,在有效N 高的生态系统中,N 矿化仍可作为是衡量土壤N 有效性的重要指标;而在有效N 低的生态系统中,N 矿化只可作为一个辅助指标,而解聚合、植物与微生物的竞争过

程显得非常重要。其次,同位素15N 技术是解决生态系统N 有效性测定方法的最佳途径之一,但鉴于微环境

对N 转化的重要性,如何量化植物可吸收到15

N 标定的N 源显得非常困难。第三,解聚合速率可考虑通过测定解聚合酶活性来表征,但植物与微生物的竞争过程还需要利用同位素法来解决。第四,衡量生态系统N 有效性的方法也可以通过测定植物真正吸收的有效N 量,但是这存在两方面的问题,一方面默认了植物同微生物竞争N 源的能力很弱,另一方面在森林生态系统中,植物生物量的测定非常困难。尽管面临着如此多的问题,但时隔不到2年,Hobbie 等(2006)就成为新的研究范式的响应者,利用15N 同位素技术,以解聚合过程为突破口,剖析了苔原地区N 循环过程。不过,笔者认为今后N 有效性研究方法上的探索仍是一项任重而道远的工作。

参考文献陈伏生,曾德慧,范志平,等.2006.沙地不同树种人工林土壤氮素矿化过程及其有效性研究.生态学报,26(2):341-348

Aber J,M elillo J M,Nadelhoffer K,et al .19851Fi ne root turnover in fores t ec os ys te ms i n relation to quantity and form of ni trogen availabi li ty:A comparis on

of two methods.Oecologia,66:317-321

Adams M ,Atti w ill P.1986a.Nutrient cycling and nitrogen mi neralization in eucalypt forests of s outh -eas tern Aus tralia:I.Nutrient c ycling and ni trogen turnover.

Plant Soil,92:319-339

Adams M ,Attiwill P.1986b.Nutrient cycling and nitrogen mi neralization i n eucalypt forests of s outh -eastern Aus tralia:II.Indices of nitrogen mineraliz ati on.

Plant Soil,92:341-362

Atti will P M,Adamas M A.19931Nutrient cycli ng in forests.Ne w Phytol,124:561-582

Billings S A,Schaeffer S M ,Zi tz er S,et al .20021Al terati ons of ni trogen dynamics under elevated carbon di oxide in an intact Moj ave Desert ec os ys tem:evi dence

from ni trogen-15natural abundance.Oecologia,131:463-467

Binkley D,Aber J,Pas tor J,et al .19861Nitrogen availabili ty i n s ome Wisconsi n fores ts:Comparis ons of resin bags and on -site incubations.Bi ol Fertil Soils,

2:77-82

Binkley D,Bell R,Sollins P.19921Comparis on of methods for es ti mating s oil nitrogen transformations in adjacent conifer and alder -conifer forests.Can J For

Res,22:858-863

Binkley D,Hart S C.19891The co mponents of ni trogen availabi li ty as sess ments in fores t soils.Adv Soil Sci,10:57-111

Binkley D,M ats on P.19831Ion e xchange resin bag method for as sessing forest s oil nitrogen availability.Soil Sci Soc Am J,47:1050-1052

Binkley D,Sollins P,M c Gill W B.19851Natural abundance of nitrogen-15as a tool for tracing alder -fixed nitrogen.Soil Sci Soc A m J,49:444-447Binkley D.19841Does forest removal increas e rates of decomposition and nitrogen avai lability?For Ecol Manage,8:229-233

Boone R D.19921Influence of sampling date and substrate on ni trogen mineraliz ati on:comparis on of laboratory -incubati on and buried -bag methods for two

Massachusetts fores t soils.Can J For Res,22:12,1895-1900

Chapin F S III,Vitous ek P M ,Van Cleve K.19861The nature of nutrient li mitation in plant communi ties.Am Nat,127:48-58

Chapin F S III,Moilanen L,Kielland K.19931Preferential use of organic ni trogen for growth by a non -myc orrhizal arctic sedge.Nature,361:150-153Chapin F S III.19951New cog in the nitrogen c ycle.Nature,377:199-200

Chen F S,Zeng D H,Zhou B,et al .20061Seasonal variati on in soil ni trogen availability under Mongolian pine plantations at the Keerqin Sand Lands,Chi na.

J Arid Environ,67:226-239

Di Stefano J.19841Nitrogen mineralization and non -symbiotic nitrogen fi xation in an age sequence of slas h pine plantations in north Florida.Ph.D.Dissertati on.

Universi ty of Fl orida

Eno C.19601Nitrate producti on in the fi eld by incubating the soil in polye thylene bags.Soil Sci Soc A m Proc,24:277-279

Fi nzi A C,DeLuci a E H,Hamilton J G,e t al .20021The nitrogen budget of a pine fores t under free ai r CO 2enrichment.Oecologia,132:567-578Giblin A E,Nadelhoffer K J,Shaver G R,e t al .19911Bi ogeochemical diversity along a ri verside topos equence in arctic Alaska.Ecol Monogr,61:415-43587 增刊1陈伏生等:森林土壤氮素有效性的野外估测方法

88林业科学43卷

Gordon A,Tallas M,Van Cleve K.19871Soil i ncubations in polyethylene bags:Effects of bags thickness and temperature on nitrogen trans formati ons and CO2 permeability.Can J Soil Sci,67:65-75

Hart S C,Firestone M K.19891Eval uation of three in situ soil ni trogen availabi li ty as says.Can J For Res,19:185-191

Hobbie J E,Hobbie E A.2006115N in symbiotic fungi and plants estimates ni trogen and carbon flux rates i n arctic tundra.Ecology,87:816-822 Hooper D U,Johnson L.19991Ni trogen li mitation in dryl and ec os ys te ms:respons es to geographical and temporal variati on in precipitation.Biogeochemis try,46: 247-293

Kielland K.19941A mino acid absorption by arctic plants:i mplications for plant nutri ti on and nitrogen c ycling.Ecology,75:2373-2383

Kielland K.19971Role of free amino acids i n the nitrogen economy of arctic cryptogams.Ecoscience,4:75-79

Kirkham D,Bartholo mew W V.19541Equations for following nutrient trans formations in soi l,utilizing tracer data.Soil Sci Soc Am Proc,18:33-34 Knoepp J D,Swank W T.19981Rates of nitrogen mineralization across an elevation and vegetation gradient i n the southern Appal achi ans.Plant Soil,204:235 -241

Kovaes M.19781Stickstoffverhaltni sse i m Boden des Eichen-Zerreichen-Walkokosystems.Oecol Plant,13:75-82

Lemee G.19671Inves ti gations sur la minerali zati on de lazote et son evoluti on annuelle dans des humus forestiers in sit u.Oecol Plant,2:285-324

Mo J M,Brown S,Peng S L,e t al.20031Nitrogen availability in dis turbed,rehabili tated and mature forests of tropical China.For Ecol M anage,175:573-583

Nadelhoffer K,Aber J,Melillo J.19831Lea-f li tter produc tion and soil organic matter dynamics along a ni trogen-availabili ty gradient in Southern Wiscons in(U.

S.A.).Can J For Res,13:12-215

Rai son R,Connell M,Khanna P.19871M ethodol ogy for studyi ng fluxes of s oil minera-l N in situ.Soil Biol Bioc hem,19:521-530

Rapp M,Leclere M,Los saint P.19791The nitrogen economy in a Pinus pinea L.s tand.For Ecol Manage,2:221-231

Redding T E,Hope G D,Schmidt M G,et al.20041Analytical methods for defi ning s tand-clearcut edge effects demonstrated for N mineralization.Can J For Res,34:1019-1025

Reich P B,Gri gal D F,Aber J D,et al.19971Nitrogen mineralization and producti vity in50hardwood and conifer stands on diverse soi ls.Ecology,78:335 -347

Schi mel J P,Bennett J.20041Nitrogen minerali zati on:Challenges of a changing paradi gm.Ecology,85:591-602

Schi mel J P,Clein J S.19961M icrobial res ponse to freez e-thaw c ycles in tundra and taiga soils.Soil Biol Bi ochem,28:1061-1066

Strader R,Binkley D,Wells C.19881Ni trogen mineraliz ation in high elevati on fores ts of the Appalachians:I.Regi onal patterns in southern spruce-fir fores ts.

Biogeoche mis try,7:131-145

Van Cleve K,Whi te R.19801Fores-t floor ni trogen dynamics i n a60-year-old paper birch ecosystem in i nterior Alaska.Plant Soil,54:359-381

Vitousek P M,Gos z J R,Grier C C,et al.19821A comparative analys is of potential nitrification and nitrate mobili ty i n fores t ecosys tems.Ecol Monogr,52: 155-177

Vitousek P M,Sanford R L.19861Nutrient cycli ng in mois t tropical fores t.Annu Rev Ec ol Syst,17:137-167

Wari ng R H,Cromack K,Matson P,et al.19871Responses to pathogen-induced di sturbance:Decomposition,nutrient availability and tree vigour.Fores try, 60:219-227

Zou X M,Valentine D W,Sanford R L,e t al.19921Resi n-core and buried-bag es ti mates of ni trogen transformations in Costa Rican lowland rainforests.Pl ant Soil,139:275-283

(责任编辑郭广荣)

土壤速效氮磷钾、有机质测定方法

土壤水解性氮的测定(碱解扩散法) 土壤水解性氮,包括矿质态氮和有机态氮中比较易于分解的部分。其测定结果与作物氮素吸收有较好的相关性。测定土壤中水解性氮的变化动态,能及时了解土壤肥力,指导施肥。 测定原理 在密封的扩散皿中,用1.8mol/L氢氧化钠(NaOH)溶液水解土壤样品,在恒温条件下使有效氮碱解转化为氨气状态,并不断地扩散逸出,由硼酸(H3BO3)吸收,再用标准盐酸滴定,计算出土壤水解性氮的含量。旱地土壤硝态氮含量较高,需加硫酸亚铁使之还原成铵态氮。由于硫酸亚铁本身会中和部分氢氧化钠,故需提高碱的浓度(1.8mol/L,使碱保持1.2mol/L的浓度)。水稻土壤中硝态氮含量极微,可以省去加硫酸亚铁,直接用1.2mol/L氢氧化钠水解。 操作步骤 1.称取通过18号筛(孔径1mm)风干样品2g(精确到0.001g)和1g硫酸亚铁粉剂,均匀铺在扩散皿外室内,水平地轻轻旋转扩散皿,使样品铺平。(水稻土样品则不必加硫酸亚铁。) 2.用吸管吸取2%硼酸溶液2ml,加入扩散皿内室,并滴加1滴定氮混合指示剂,然后在皿的外室边缘涂上特制胶水,盖上毛玻璃,并旋转数次,以便毛玻璃与皿边完全粘合,再慢慢转开毛玻璃的一边,使扩散皿露出一条狭缝,迅速用移液管加入10ml1.8mol/L氢氧化钠于皿的外室(水稻土样品则加入10ml1.2mol/L氢氧化钠),立即用毛玻璃盖严。 3.水平轻轻旋转扩散皿,使碱溶液与土壤充分混合均匀,用橡皮筋固定,贴上标签,随后放入40℃恒温箱中。24小时后取出,再以0.01mol/LHCl标准溶液用微量滴定管滴定内室所吸收的氮量,溶液由蓝色滴至微红色为终点,记下盐酸用量毫升数V。同时要做空白试验,滴定所用盐酸量为V0。 结果计算 水解性氮(mg/100g土)= N×(V-V0)×14/样品重×100 式中: N—标准盐酸的摩尔浓度; V—滴定样品时所用去的盐酸的毫升数; V0—空白试验所消耗的标准盐酸的毫升数;

土壤理化性质分析方法

测定土壤理化指标有很多标准文件,部分指标有国家标准,部分用农业行业标准,由于指标太多,故列出土壤测定的一些方法,通过方法可以搜索到行业标准或国家标准的具体内容,供参考: 土壤质地国际制;指测法或密度计法(粒度分布仪法)测定 土壤容重环刀法测定 土壤水分烘干法测定 土壤田间持水量环刀法测定 土壤pH土液比1:2.5,电位法测定 土壤交换酸氯化钾交换——中和滴定法测定 石灰需要量氯化钙交换——中和滴定法测定 土壤阳离子交换量EDTA-乙酸铵盐交换法测定 土壤水溶性盐分总量电导率法或重量法测定 碳酸根和重碳酸根电位滴定法或双指示剂中和法测定 氯离子硝酸银滴定法测定 硫酸根离子硫酸钡比浊法或EDTA间接滴定法测定 钙、镁离子原子吸收分光光度计法测定 钾、钠离子火焰光度法或原子吸收分光光度计法测定 土壤氧化还原电位电位法测定。 土壤有机质油浴加热重铬酸钾氧化容量法测定 土壤全氮凯氏蒸馏法测定 土壤水解性氮碱解扩散法测定 土壤铵态氮氯化钾浸提——靛酚蓝比色法(分光光度法)测定 土壤硝态氮氯化钙浸提——紫外分光光度计法或酚二磺酸比色法(分光光度法)测定 土壤有效磷碳酸氢钠或氟化铵-盐酸浸提——钼锑抗比色法(分光光度法)测定 土壤缓效钾硝酸提取——火焰光度计、原子吸收分光光度计法或ICP法测定 土壤速效钾乙酸铵浸提——火焰光度计、原子吸收分光光度计法或ICP法测定 土壤交换性钙镁乙酸铵交换——原子吸收分光光度计法或ICP法测定 土壤有效硫磷酸盐-乙酸或氯化钙浸提——硫酸钡比浊法测定 土壤有效硅柠檬酸或乙酸缓冲液浸提-硅钼蓝比色法(分光光度法)测定 土壤有效铜、锌、铁、锰DTPA浸提-原子吸收分光光度计法或ICP法测定 土壤有效硼沸水浸提——甲亚胺-H比色法(分光光度法)或姜黄素比色法(分光光度法)或ICP法测定 土壤有效钼草酸-草酸铵浸提——极谱法测定 全量铅、镉、铬干灰化法处理——原子吸收分光光度计法或ICP法测定 全量汞湿灰化处理——冷原子吸收(或荧光)光度计法 全量砷干灰化处理——共价氢化物原子荧光光度法或ICP法测定

土壤检测标准

土壤检测标准标准化管理部编码-[99968T-6889628-J68568-1689N]

土壤检测标准 NY/T 1121-2006 土壤检测系列标准: NY/T 1121.1-2006 土壤检测第1部分:土壤样品的采集、处理和贮存NY/T 1121.2-2006 土壤检测第2部分:土壤pH的测定 NY/T 1121.3-2006 土壤检测第3部分:土壤机械组成的测定 NY/T 1121.4-2006 土壤检测第4部分:土壤容重的测定 NY/T 1121.5-2006 土壤检测第5部分:石灰性土壤阳离子交换量的测定NY/T 1121.6-2006 土壤检测第6部分:土壤有机质的测定 NY/T1121.7-2006土壤检测第7部分:酸性土壤有效磷的测定 NY/T1121.8-2006土壤检测第8部分:土壤有效硼的测定 NY/T1121.9-2006土壤检测第9部分:土壤有效钼的测定 NY/T 1121.10-2006 土壤检测第10部分:土壤总汞的测定 NY/T 1121.11-2006 土壤检测第11部分:土壤总砷的测定 NY/T 1121.12-2006 土壤检测第12部分:土壤总铬的测定 NY/T 1121.13-2006 土壤检测第13部分:土壤交换性钙和镁的测定 NY/T 1121.14-2006 土壤检测第14部分:土壤有效硫的测定 NY/T 1121.15-2006 土壤检测第15部分:土壤有效硅的测定 NY/T 1121.16-2006 土壤检测第16部分:土壤水溶性盐总量的测定 NY/T 1121.17-2006 土壤检测第17部分:土壤氯离子含量的测定 NY/T 1121.18-2006 土壤检测第18部分:土壤硫酸根离子含量的测定

土壤氮素的形态及其转化过程

土壤氮素的形态及其转化 过程 This model paper was revised by the Standardization Office on December 10, 2020

土壤氮素的形态及其转化过程 摘要:氮是植物生长发育所必需的大量元素,对植物的产量和品质影响很大。土壤中氮素的形态及其转化过程和结果则直接决定了氮对植物生长的有效性的大小,了解土壤中氮素存在的形态和其转化过程,对于科学合理经济的肥料施用具有现实的启示作用。 关键词:氮素;形态;转化过程 土壤中氮素的含量受自然因素和人为因素的双重影响,较高的氮素含量表明土壤肥力也较高。自然条件下,土壤没有受到人为因素的影响,有机质日积月累,土壤中氮的含量也较高。耕地土壤氮素含量及转化过程则更强烈的受到人为耕作、施肥、不同作物等因素的影响,因而相对表现的复杂一些。 一、土壤中氮素的形态 1.无机态氮 无机态氮包括固定态NH4+、交换性NH4+、土壤溶液中的NH4+、硝态氮(NO3-)、亚硝态氮等,这其中以NH4+离子和NO3-离子最容易被植物吸收利用,农业生产中常常用到的碱解氮,也叫水解氮或速效氮,就属于无机态氮中的一部分。无机态氮并不是全部都能被植物所直接吸收利用,它们中的大部分是被粘土矿物晶层所固定了的固定态铵,不能作为速效氮存在。固定态铵只有在土壤中经过相

应的转化,转化为铵离子或硝酸离子、硝酸盐类的含氮物,才能为作物利用。 2.有机态氮 有机态氮构成了土壤全氮的绝大部分。它们与有机质或粘土矿物相结合,或与多价阳离子形成复合体。有机态氮大都难以分解,并不能为作物所直接吸收利用。但有机态氮的含量高低依然是衡量土壤肥力高低的重要指标,有机态氮的含量高,可被转化的氮素水平也相应的高,其作为植物氮素营养‘库’的存在是有很大的作用的。 二、土壤中氮素的转化过程 1.氮素的矿化与生物固持作用 氮素的矿化作用,简单的说就是有机态的、不易分解的氮素及含氮化合物在土壤中微生物的参与下分解转化为无机态氮的过程,是一个氮的速效化的过程,也是一个可利用氮素增加的过程。氮的固持作用,就是土壤中的无机态氮在土壤微生物的作用下转化为细胞体中有机态氮的过程,其对于农业生产上的实质就是可利用的速效氮的减少过程。 2.铵离子的固定与释放 铵离子的固定,其实质就是土壤溶液中的能自由移动的、可交换的铵离子被土壤胶体所吸附,变成不可交换的铵离子的过程,固定了的铵离子不能再被交换到土壤溶液

土壤各种氮的测定

土壤铵态氮的测定 2 mol·L-1KCl浸提—蒸馏法 1方法原理用2mol·L-1KCl浸提土壤,把吸附在土壤胶体上的NH4+及水溶性NH4+浸提出来。取一份浸出液在半微量定氮蒸馏器中加MgO(MgO是弱碱,有防止浸出液中酰铵有机氮水解的可能)蒸馏。蒸出的氨以H3BO3吸收,用标准酸溶液滴定,计算土壤中的NH4+—N含量。 2主要仪器振荡器、半微量定氮蒸馏器、半微量滴定管(5mL)。 3试剂 (1)20g·L -1硼酸—指示剂。20gH3BO3(化学纯)溶于1L水中,每升H3BO3 溶液中加入甲基红—溴甲酚绿混合指示剂5mL并用稀酸或稀 碱调节至微紫红色,此时该溶液的pH为4.8。指示剂用前与硼酸混 合,此试剂宜现配,不宜放。 (2)0.005 mol·L-11/2H2SO4标准液。量取H2SO4(化学纯)2.83mL,加蒸馏水稀释至5000mL,然后用标准碱或硼酸标定之,此为 0.0200 mol·L-1 (1/2H2SO4)标准溶液,再将此标准液准确地稀释4倍, 即得0.005mol·L-11/2H2SO4标准液(注1)。 (3)2 mol·L-1KCl溶液称KCl(化学纯)14901g溶解于1L水中。 (4)120g·L–1MgO悬浊液 MgO12g经500~600℃灼烧2h,冷却,放入100mL水中摇匀。 4操作步骤

取新鲜土样10.0g(注2),放入100mL三角瓶中,加入2mol·L-1KCl 溶液50.0mL。用橡皮塞塞紧,振荡30min,立即过滤于50mL三角瓶中(如果土壤NH4+—N含量低,可将液土比改为2.5:1)。 吸取滤液25.0mL(含NH4+—N25μg以上)放入半微量定氮蒸馏器中,用少量水冲洗,先把盛有20g·L–1硼酸溶液5mL的三角瓶放在冷凝管下,然后再加120g·L–1 MgO悬浊液10mL于蒸馏室蒸馏,待蒸出液达30~40mL 时(约10min)停止蒸馏,用少量水冲洗冷凝管,取下三角瓶,用 0.005mol·L-11/2H2SO4标准液滴至紫红色为终点,同时做空白试验。 5结果计算 土壤中铵态氮NH4+—(N)含量(mg·kg-1) = 式中:c——0.005mol·L-11/2H2SO4标准溶液浓度; V——样品滴定硫酸标准溶液体积(mL); V0——空白滴定硫酸标准溶液体积(mL); 14.0——氮的原子摩尔质量(g·mol-1); ts——分取倍数;

土壤中的氮素及其转化

土壤中的氮素及其转化 1.土壤中氮素的来源和含量 1.1 来源 ①施入土壤中的化学氮肥和有机肥料;②动植物残体的归还;③生物固氮; ④雷电降雨带来的NO3—N。 1.2 含量 我国耕地土壤全氮含量为0.04%~0.35%之间,与土壤有机质含量呈正相关。 2. 土壤中氮素的形态 3. 土壤中氮素的转化 3.1 有机氮的矿化作用 定义:在微生物作用下,土壤中的含氮有机质分解形成氨的过程。 过程:有机氮氨基酸NH4+-N+有机酸 结果:生成NH4+-N(使土壤中有机态的氮有效化)

3.2 土壤粘土矿物对NH4+的固定 定义:①吸附固定(土壤胶体吸附):由于土壤粘土矿物表面所带负电荷而引起的对NH4+的吸附作用 ②晶格固定(粘土矿物固定):NH4+进入2:1型膨胀性粘土矿物的晶层间而被固定的作用 过程: 结果:减缓NH4+的供应程度(优点?缺点?) 3.3氨的挥发 定义:在中性或碱性条件下,土壤中的NH4+转化为NH3而挥发的过程 过程: 结果:造成氮素损失 3.4硝化作用 定义:通气良好条件下,土壤中的NH4+在微生物的作用下氧化成硝酸盐的现象 过程: 结果:形成NO3--N 利:为喜硝植物提供氮素 弊:易随水流失和发生反硝化作用 3.5无机氮的生物固定 定义:土壤中的铵态氮和硝态氮被植物体或者微生物同化为其躯体的组成成分而被暂时固定的现象。 过程: 结果:减缓氮的供应,可减少氮素的损失 3.6反硝化作用

定义:嫌气条件下,土壤中的硝态氮在反硝化细菌作用下还原为气态氮从土壤中逸失的现象 过程: 结果:造成氮素的气态挥发损失,并污染大气 3.7硝酸盐的淋洗损失 NO3-不能被土壤胶体吸附,过多的硝态氮容易随降水或灌溉水流失。 结果:氮素损失,并污染水体 4. 小结:土壤有效氮增加和减少的途径 增加途径:①施肥(有机肥、化肥);②氨化作用;③硝化作用(喜硝作物);④生物固氮;⑤雷电降雨 降低途径:①植物吸收带走;②氨的挥发损失;③硝化作用(喜铵作物);④反硝化作用;⑤硝酸盐淋失;⑥生物和吸附固定(暂时) 氮肥的种类、性质和施用 氮肥的种类很多,根据氮肥中氮素的形态,常用的氮肥一般可分为三大类。 ①铵态氮肥,如氨水、硫酸铵、碳酸氢铵、氯化铵等;②硝态氮肥,如硝酸钠、硝酸钙、硝酸钾等;③酰胺态氮肥,如尿素。另外还有一类不同于以上的是长效氮肥(缓释/控释氮肥),如合成有机肥料(脲甲醛,脲乙醛等)和包膜肥料等。 1.铵态氮肥 共同性质:①易溶于水,易被作物吸收;②易被土壤胶体吸附和固定;③可发生硝化作用;④碱性环境中氨易挥发。

土壤检测标准

土壤检测标准 NY/T 1121-2006 土壤检测系列标准: NY/T 1121.1-2006 土壤检测第1部分:土壤样品的采集、处理和贮存NY/T 1121.2-2006 土壤检测第2部分:土壤pH的测定 NY/T 1121.3-2006 土壤检测第3部分:土壤机械组成的测定 NY/T 1121.4-2006 土壤检测第4部分:土壤容重的测定 NY/T 1121.5-2006 土壤检测第5部分:石灰性土壤阳离子交换量的测定NY/T 1121.6-2006 土壤检测第6部分:土壤有机质的测定 NY/T1121.7-2006土壤检测第7部分:酸性土壤有效磷的测定 NY/T1121.8-2006土壤检测第8部分:土壤有效硼的测定 NY/T1121.9-2006土壤检测第9部分:土壤有效钼的测定 NY/T 1121.10-2006 土壤检测第10部分:土壤总汞的测定 NY/T 1121.11-2006 土壤检测第11部分:土壤总砷的测定 NY/T 1121.12-2006 土壤检测第12部分:土壤总铬的测定 NY/T 1121.13-2006 土壤检测第13部分:土壤交换性钙和镁的测定 NY/T 1121.14-2006 土壤检测第14部分:土壤有效硫的测定 NY/T 1121.15-2006 土壤检测第15部分:土壤有效硅的测定 NY/T 1121.16-2006 土壤检测第16部分:土壤水溶性盐总量的测定 NY/T 1121.17-2006 土壤检测第17部分:土壤氯离子含量的测定 NY/T 1121.18-2006 土壤检测第18部分:土壤硫酸根离子含量的测定 NY/T 1119-2006 土壤监测规程 NY/T 52-1987 土壤水分测定法 NY/T 53-1987 土壤全氮测定法(半微量开氏法) NY/T 88-1988 土壤全磷测定法 NY/T 87-1988 土壤全钾测定法 NY/T 86-1988 土壤碳酸盐测定法 NY/T 1104-2006 土壤中全硒的测定 NY/T 296-1995 土壤全量钙、镁、钠的测定 NY/T 295-1995 中性土壤阳离子交换量和交换性盐基的测定 NY/T 889-2004 土壤速效钾和缓效钾

土壤铵态氮的测定

土壤铵态氮的测定 A 纳氏试剂比色法 1方法提要 土壤样品中的NH4+用氯化钾溶液提取,在碱性条件下与纳氏试剂络合生成黄色络合物,进行比色测定。 2适用范围 本方法适用于各类土壤铵态氮含量的测定。 3主要仪器设备 3.1 分光光度计; 3.2 往复式或旋转式振荡机,满足180r/min±20r/min的振荡频率或达到相同效果; 3.3 塑料瓶,200mL。 4试剂 4.1氯化钾提取液[c(KCl)=2mol·L-1]:称取149.1g氯化钾溶于水,稀释至1L; 4.2酒石酸钠溶液[ρ(Na2C4H4O4·2H2O)=250g·L-1]:称取25g酒石酸钠(Na2C4H4O4·2H2O)溶于水,稀释至100mL; 4.3 纳氏试剂:称取10.0g碘化钾溶于5mL水中,另称取3.5g二氯化汞溶于20mL水中(加热溶解),将二氯化汞溶液慢慢地倒入碘化钾溶液中,边加边搅拌,直至出现微红色的少量沉淀为止。然后加70mL 300g·L-1氢氧化钾溶液,并搅拌均匀,再滴加二氯化汞溶液至出现红色沉淀为止。搅匀,静置过夜,倾出清液贮于棕色瓶中,放置暗处保存; 4.4 阿拉伯胶溶液[10g·L-1]:称取1g阿拉伯胶溶于100mL沸水中,加入2滴氯仿作为防腐剂(混浊时使其澄清后,倾出上部清液),备用; 4.5 铵态氮标准贮备溶液[ρ(N)=500μg·mL-1]:称取1.910g氯化铵(优级纯,经90℃干燥2h),溶于水中,加入氯仿1mL,定容至1L; 4.6 铵态氮标准溶液[ρ(N)=10μg·mL-1]:测定当天吸取铵态氮标准贮备溶液10.00mL,加水定容至500mL。 5分析步骤: 称取10.0g土壤样品放入200mL塑料瓶中,加入50.0mL 2mol·L-1氯化钾提取液,盖紧瓶盖,摇匀,在振荡机上于20℃~25℃振荡30min(振荡频率:180r/min±20r/min),立

《全国土壤污染状况详查土壤样品分析测试方法技术规定》(送审稿修改版)

全国土壤污染状况详查 土壤样品分析测试方法技术规定(送审稿修改版) 二〇一七年二月

目录 第一部分土壤样品无机项目分析测试方法 .......................................................................................... - 1 -1干物质和水分 (1) 1-1重量法......................................................................................................................................... - 1 -2总铅 . (3) 2-1 电感耦合等离子体质谱法(ICP-MS)................................................................................... - 3 -2-2 电感耦合等离子体原子发射光谱法(ICP-AES) ................................................................. - 8 -2-3 石墨炉原子吸收分光光度法.................................................................................................. - 14 -3总砷 .. (17) 3-1 原子荧光法.............................................................................................................................. - 17 -4总镉 .. (20) 4-1 石墨炉原子吸收分光光度法.................................................................................................. - 20 -4-2 电感耦合等离子体质谱法(ICP-MS)................................................................................. - 20 -5总汞 (20) 5-1 原子荧光法.............................................................................................................................. - 20 -6总铜 .. (23) 6-1 电感耦合等离子体原子发射光谱法(ICP-AES) ............................................................... - 23 -6-2 电感耦合等离子体质谱法(ICP-MS)................................................................................. - 23 -6-3 火焰原子吸收分光光度法...................................................................................................... - 23 -7总锌 .. (26) 7-1 电感耦合等离子体发射光谱法(ICP-AES) ....................................................................... - 26 -7-2 电感耦合等离子体质谱法(ICP-MS)................................................................................. - 26 -7-3 火焰原子吸收分光光度法...................................................................................................... - 26 -8总镍 .. (26) 8-1 电感耦合等离子体发射光谱法(ICP-AES) ....................................................................... - 26 -8-2 电感耦合等离子体质谱法(ICP-MS)................................................................................. - 26 -8-3 火焰原子吸收分光光度法...................................................................................................... - 26 -9总铬 .. (29) 9-1 电感耦合等离子体发射光谱法(ICP-AES) ....................................................................... - 29 -9-2 电感耦合等离子体质谱法(ICP-MS)................................................................................. - 29 -9-3 火焰原子吸收分光光度法...................................................................................................... - 29 -10总钴 (32) 10-1 电感耦合等离子体发射光谱法(ICP-AES) ..................................................................... - 32 -10-2 电感耦合等离子体质谱法(ICP-MS)............................................................................... - 32 -

森林土壤氮素养分研究进展

森林土壤氮素研究进展 摘要氮素是林木生长所必需的大量营养元素之一,也是林木生长最重要的养分限制因子。土壤氮素是林木吸取氮素的主要来源。文章从氮素的化学结构、空间变异特征、氮沉降以及氮素矿化特征等方面土对土壤氮素的研究进展进行了综述。并展望了今后土壤氮素的研究方向。 关键词化学机构;有机氮;变异特征;矿化;氮沉降 1土壤中氮的含量和氮的形态 土壤中氮的含量范围为0.02%—0.05%,表层土壤和心底土壤的含氮量相差很大。心底土含氮量一般在0.1%以下,甚至只有0.02%;而表土的含氮量比较高,耕地土壤表层含氮量一般为0.05—0.3%,少数肥沃的耕地、草原、林地的表层土壤甚至可以达到0.5—0.6%以上,而冲刷严重、贫瘠的荒地表层土则可低至0.05%以下。有机质土壤的含氮量较矿质土高,如腐泥土、泥炭土等的含氮量可以高达1—3.5%,当然,也有一些高位泥炭土含氮量在1%以下。但是总的情况是含有机质高的土壤,其含氮量也比较高,两者有着密切的关系[1]。 在陆地生态系统中的氮以不同的形态存在于大气圈、岩石圈、生物圈、和水圈,并在各圈层之间相互转换,大气中氮以分子态氮(N2)和各种氮氧化物(NO2、N2O、NO等)形式存在。其中生物不能吸收利用的惰性氮气(N2)占大气体积的78%,它们在微生物作用下通过同化作用或物理、化学作用进入土壤,转换为土壤和水体的生物有效氮—铵态氮(NH4-N)和硝态氮(NO3-N)[2]。 氮在土壤中以无机氮和有机氮形态存在,有机氮是土壤氮素的主要组成成分,占土壤总氮的90%左右[3]。氮素的化学机构与供氮能力有关,我国研究学者通过先进化学仪器,初步查明,腐殖物质中氮素约70%以上以酰胺态氮存在,脂肪和杂环态氮均各占15%以下,杂环态氮主要是吲哚和吡咯类,吡啶类没有或者数量甚少。非酸解氮中,部分可能为抗酸解的酰胺[4—5]。 传统上,人们一直认为植物只能吸收无机态氮素,而不能吸收有机态氮,土壤中的有机态氮必须经土壤微生物矿化为无机态氮后才能被植物吸收。然而研究发现,在高寒苔原及北方森林生态系统中,无机氮含量少,既植物氮摄取量远高于土壤无机氮,这表明其他氮源为植物营养也很重要[20]。报道称生长在苔草的莎草科(Cyperaceae)植物白毛羊胡子草(Eriophorum vaginatum)可以迅速吸收游离氨基酸,它吸收的氮至少60%来自氨基酸[3]。 2土壤中氮的空间变异特征 森林生态系统中,在垂直尺度上,全氮和碱解氮在不同层次土壤中,存在明显差异性。一般而言,自表层至下层,含量依次下降。就碱解氮,A层土壤变异系数明显高于B、C层[6-7]。 由于森林演替和植被类型植被干扰程度及地形等多重因素的影响,森林土壤全氮及碳氮比在空间的分布有着明显的变异特征。演替过程中,有机氮,全氮其平均值随生态系统由人工林、次生演替早起林、次生演替中后期林顺向演替,平均值先增加后减少[8]。 人工林土壤全氮异质性相对较低,空间分布较次生林更趋于均匀化。次生林则表现出较强的空间自相关变异性[8]。 不同森林类型土壤全氮,有效氮质量分数均表现出阔叶林中明显高于针叶林。土壤全氮在针阔混交林中变异强度最大,但变异的空间相关性较差,而在阔叶和针叶纯林中变异强度有所下降,但是变异的空间相关性较好[9]。土壤氮素空间异质性的产生受多个环境因子的影响[10]。当然土壤资源的异质性特征也可导致森林空间分布异质性及格局产生,同时,树木的

土壤硝态氮及铵态氮的取样测定

土壤硝态氮和铵态氮的取样测定 1.田间取样与保存 根据小区面积,随机选2~3个样点,采样地点应避开边行以及头尾。在行间取样,以30cm为一层,取样深度可以是0-90cm或0-210cm或更深,分层取样,等层混合。新鲜土样须田间将土壤样品立即放入冰盒,没有冰盒者应将土样放置阴凉处,避免阳光直接照射,并尽快带回室内处理。 2.土样的处理 在田间采样后,立即将土样放置在冰盒中,低温保存。返回实验室后,如果样品数量较多,则放置于冰箱中4℃保存。也可以直接进行土样处理:土壤过3-5cm筛,测定土壤的水分含量,同时作浸提。 3.土样的浸提 称取混匀好的新鲜土壤样品24.00g,放入振荡瓶,加100 ml 1mol/L 优级纯KCl浸提液,充分混匀后放入振荡机振荡1个小时,用定性滤纸过滤(注意:国内好多滤纸含有铵态氮,需选择那些无铵滤纸)到小烧杯或胶卷盒中,留滤液约20ml备用,每批样做3个空白。若样品不能及时测定,应放入贮藏瓶中冷冻保存。 同时称取20-30 g鲜土放入铝盒中105℃下烘干测定土壤水分。剩余土样自然风干后保存。 4.土壤硝态氮、铵态氮测定 测定前先解冻贮藏瓶盒中的滤液,并保持滤液均匀(注意:解冻后的样品有时有KCl 析出,必须等KCl溶解后,液体完全均匀后再测定),上流动分析测定溶液中的铵态氮和硝态氮含量(专门的试验人员负责)。所用标准溶液必须是用1mol/L KCl浸提液配制。 有时样品浓度超出了机器的测定范围,需对样品进行稀释(注意:应以最低稀释倍数把样品测定出来,且不可放大稀释倍数,这样会引起很大误差)。 流动分析测定的是溶液中的铵态氮和硝态氮浓度,单位是mg/L,必须根据土壤样品含水量和土壤干重换算成mg N/kg。如果要换算成kg N/ha,可以通过下列公式:土壤硝态氮或铵态氮(kg N/ha)=土壤硝态氮或铵态氮(mg N/kg)* 采样层次(30cm 或20cm)* 土壤容重/ 10

土壤分析样品的采集和处理方法

土壤分析样品的采集和 处理方法 标准化管理部编码-[99968T-6889628-J68568-1689N]

Ⅰ-土壤分析样品的采集和处理方法配方施肥是一种以最少的肥料投入得到农作物最高产量的农业新技术,这一技术的基础是测出土壤中已有的养分含量,然后根据种植作物的品种、目标产量决定该施什么肥、施多少肥。 土壤样品采集是决定分析结果是否准确的重要环节,因此请严格按下列方法采集土样。 对作物根系较浅的种植地只需取耕层20厘米深的土壤,对作物根系较深的种植地如小麦应适当增加深度,果园土壤样品在耕层40厘米深处采集,采样点的多少可根据试验区耕地面积大小和地形而定,地块面积较小的要采5个点以上,地块面积较大的应采20个点以上。取样点的分布最好采用S型采样法或十字交叉法。(见图一) 采来的样品数量太多可用四分法弃去一部分保留1斤土样即可(见图二)。其方法是:把采来的土样倒在干净的木板或塑料布上,用手将土块捏碎,用镊子夹去土样中的作物根系、昆虫、石块等杂物,放于室内阴凉通风处风干,注意不能在阳光下曝晒及火烤,以免发生氧化反应。把风干后的土样用木棍或玻璃瓶碾碎(不可用金属制品),然后用1—2毫米筛子筛一遍。把筛过的土样平铺成四方形,如数量仍然很多,可再用四分法处理,直至所需数量为止,一般用50克土样即可,完成土样处理后,请填写土壤登记表。 注:如一户有几个土样或几户各有一个土样可将土壤登记表分别填好,并在土样包装上做上与登记表同样内容的标记,以免搞错。 避免在粪堆底上和同一垄上以及田边,路边,沟边和特殊地形部位采样。 采样时在确定的采样点上用小土铲向下切取一片片的土样样品,每个样品点采取的土壤厚、薄、深、浅、宽、狭应大体一致,集中起来混合均匀。 有机肥分析样品的采集和处理方法:堆肥、厩肥、沤肥、草塘肥、沼气肥、牲畜粪尿以及人粪尿等都是有机肥,这些肥料大都是很不均匀的,采样时应注意多点取样,一般应在翻堆混匀后,选择10—20个采样点,大块和散碎的肥料比例相近,把采到的若干样品放在一块干净的塑料布上,送入室中风干,摊开晾干,再把样品弄碎、剪细、混匀,再用四分法缩分至500克左右,磨细并全部通过1毫米孔径筛子,装入样品瓶中。 如果有机肥样品中夹有较多石块,应捡出另外称重,并计算其占原有样品的百分数,如需测定有机肥料中的NH4和NO3,则需用新鲜样品,即不经风干立即进行测定。 粪尿和沼气肥是液体和固体混合肥,可先混匀在未分层前取出500毫升左右放入密闭容器中,用玻璃棒将固体充分捣碎,在分析称样前应反复振摇容器充分混匀。 四分法: Ⅱ-土壤养份测试方法

稻田土壤氮素流失机制研究

稻田土壤氮素流失机制研究 摘要:本文通过查阅大量文献,总结了稻田土壤中氮素流失的过程机制和影响因素,并进一步探究了抑制或减缓稻田土壤氮素流失的方法,为稻田氮素流失的相关研究提供基础资料。 关键词:稻田;氮素流失;机制 Study on the mechanism of soil nitrogen losing in paddy field Abstract:Through consulting a large number of documents, this article summarizes the process of soil nitrogen losing mechanism and the influencing factors in the paddy fields, then explore the methods to inhibit or slow the nitrogen losing in the paddy fields; the goal is to providing a basic material for related research. Key words: paddy field; nitrogen losing; mechanism 氮素是动植物生长所需的主要元素。土壤中氮素的丰缺及供给状况直接影响着农作物的生长水平[1]。随着世界人口的日益增加, 对粮食的需求量也越来越大, 该元素在维持农业系统的可持续性和经济活力中扮演着重要的角色。由于其易于以气体形式挥发, 易于淋失和迁移, 因此氮素会大量流失, 进而影响水和空气的质量[2]。 为提高土壤的氮素水平,人们在农业生产中广泛使用大量的氮素化肥。目前中国已成为世界上氮肥年用量最多的国家之一[3],单位面积的施用量也高于世界平均水平。由于施肥方法或农业管理措施不当,导致氮素损失加剧[4],严重影响了氮肥利用率,中国氮肥利用率仅为30% ~50%[5]。研究表明,农田中氮素损失的途径主要包括:氨的挥发、反硝化脱氮、铵的固定、径流冲刷和硝态氮的淋失等。其中,硝态氮的淋失是损失的重要方面[6],淋失量可达5%~41.9%[7]。 水稻是我国南方的主要粮食作物之一, 同时也是消耗氮素较多, 流失

常规土壤检测项目及方法 土壤检测机构

常规土壤检测项目及方法土壤检测机构 1.水解性氮(碱解氮)LY/T1229-1999《森林土壤水解性氮的测定》。碱解-扩散法。如果测定值>200mg/kg,允许绝对偏差<10mg/kg;测定值200mg/kg~50mg/kg,允许绝对偏差10mg/kg~ 2.5mg/kg;测定值<50mg/kg,允许绝对偏差<2.5mg/kg。用1.8mol/L氢氧化钠处理土壤,土壤于碱性条件下水解,使易水解态氮转化为氨态氮,由硼酸吸收,用标准酸滴定计算碱解氮的含量。 2.全氮NY/T53-1987《土壤全氮测定法》。半微量凯氏法。平行测定结果的允许差:土壤含氮量>0.1%时,不得>0.005%,含氮0.1-0.06%时,不得>0.004%,含氮<0.06%时,不得>0.003%。土壤中的全氮在硫酸铜、硫酸钾与硒粉的存在下,用浓硫酸消煮,各种含氮有机化合物经过高温分解转化为铵态氮,然后用氢氧化钠碱化,加热蒸馏出氨,经硼酸吸收,用标准酸滴定其含量。 3.全磷LY/T1232-1999《森林土壤全磷的测定》。酸溶-钼锑抗比色法。测定值>2g/kg,绝对偏差>1016g/kg;测定值2g/kg~1g/kg,绝对偏差0.06~0.03g/kg;测定值<1,绝对偏差<0.03。以硫酸-高氯酸溶解土壤中的磷,用钼锑抗比色法测定。 4.有效磷L Y/T1233-1999《森林土壤有效磷的测定》。 4.1盐酸-硫酸浸提法。测定值>25mg/kg,绝对偏差>2.5mg/kg;测定值25mg/kg~10mg/kg,绝对偏差2.5mg/kg~1.0mg/kg;测定值<10mg/kg~2.5mg/kg,绝对偏差 1.0mg/kg~0.5mg/kg,测定值<2.5mg/kg,绝对偏差<0.5mg/kg。盐酸和硫酸溶液浸提法:用盐酸和硫酸的混合溶液浸提溶解出土壤中的磷酸铁、铝盐,再用钼锑抗比色法可以测定出浸提液中的磷。 4.20.5mol/L碳酸氢钠浸提法。测定值>25mg/kg,绝对偏差>2.5mg/kg;测定值25mg/kg~10mg/kg,绝对偏差2.5mg/kg~1.0mg/kg;测定值<10mg/kg~2.5mg/kg,绝对偏差1.0mg/kg~0.5mg/kg,测定值<2.5mg/kg,绝对偏差<0.5mg/kg。碳酸氢钠浸提土壤,可以抑制溶液中的钙离子活度,使某些活性较大的碳酸钙被浸提出来,同时也可使活性磷酸铁、铝盐水解被浸出,浸出液中的磷不会次生沉淀,可用钼锑抗比色法定量。 5.有效磷NY/T149-1990《石灰性土壤有效磷测定方法》。碳酸氢钠浸提-钼锑抗比色法。平行测定结果的允许差:测定值<10mg/kg P时,绝对差值<0.5mg/kg P;测定值为10-20mg/kg P时,绝对差值<1.0mg/kg P;测定值>20mg/kg P时,相对差<5%。用0.5mol/L碳酸氢钠浸提土壤有效磷。碳酸氢钠可以抑制溶液中Ca2+离子的活度,使某些活性较大的磷酸钙盐被浸提出来;同时液可以使活性磷酸铁、铝盐水解二被浸出。浸出液中的磷不致次生沉淀;可

土壤中氮含量的测定分析(精)

土壤中氮含量的测定分析 核心提示:摘要:概述了土壤中氮元素的存在形式、土壤全氮、无机氮(包括铵态氮、硝态氮)水解氮、酰胺态氮的测定方法。关键词:土壤;全氮;测定方法土壤是作物氮素营养的主要来源,土壤中的氮素包括无机态氮和有机态... 摘要:概述了土壤中氮元素的存在形式、土壤全氮、无机氮(包括铵态氮、硝态氮)水解氮、酰胺态氮的测定方法。 关键词:土壤;全氮;测定方法 土壤是作物氮素营养的主要来源,土壤中的氮素包括无机态氮和有机态氮两大类,其中95%以上为有机态氮,主要包括腐殖质、蛋白质、氨基酸等。小分子的氨基酸可直接被植物吸收,有机态氮必须经过矿化作用转化为铵,才能被作物吸收,属于缓效氮。 土壤全氮中无机态氮含量不到 5%,主要是铵和硝酸盐,亚硝酸盐、氨、氮气和氮氧化物等很少。大部分铵态氮和硝态氮容易被作物直接吸收利用,属于速效氮。无机态氮包括存在于土壤溶液中的硝酸根和吸附在土壤颗粒上的铵离子,作物都能直接吸收。土壤对硝酸根的吸附很弱,所以硝酸根非常容易随水流失。在还原条件下,硝酸根在微生物的作用下可以还原为气态氮而逸出土壤,即反硝化脱氮。部分铵离子可以被粘土矿物固定而难以被作物吸收,而在碱性土壤中非常容易以氨的形式挥发掉。土壤腐殖质的合成过程中,也会利用大量无机氮素,由于腐殖质分解很慢,这些氮素的有效性很低。 土壤中的氮素主要来自施肥、生物固氮、雨水和灌溉水,后二者对土壤氮贡献很小,施肥是耕作土壤氮素的主要来源,而自然土壤的氮素主要来自生物固氮。 土壤含氮量受植被、温度、耕作、施肥等影响,一般耕地表层含氮量为0.05%~0.30%,少数肥沃的耕地、草原、林地的表层土壤含氮量在 0.50%~0.60%以上。我国土壤的含氮量,从东向西、从北向南逐渐减少。进入土壤中的各种形态的氮素,无论是化学肥料,还是有机肥料,都可以在物理、化学和生物因素的作用下进行相互转化。 1 土壤全氮的测定 1.1 开氏法 近百年来,许多科学工作者对全氮的测定方法不断改进,提出了许多新方法,主要有重铬酸钾-硫酸消化法、高氯酸-硫酸消化法、硒粉-硫酸铜-硫酸消化法。但开氏法目前仍作为一个统一的标准方法,此法容易掌握,测定结果稳定,准确率较高。 开氏法测氮的原理为:在盐类和催化剂的参与下,用浓硫酸消煮,使有机氮分解为铵态氮。碱化后蒸馏出来的氨用硼酸吸收,以酸标准溶液滴定,求出土壤全氮含量(不包括硝态氮)。含有硝态和亚硝态氮的全氮测定,在样品消

土壤氮素循环及其模拟研究进展

土壤氮素循环模型及其模拟研究进展 * 唐国勇 1,2 黄道友1 童成立 1** 张文菊 1,3 吴金水 1 (1中国科学院亚热带农业生态研究所亚热带农业生态重点实验室,长沙410125;2中国科学院研究生院,北京100039;3 华中农业大学资源环境学院,武汉430070) 摘要 N 既是植物必需的营养元素,又是造成环境污染的重要元素.正确模拟土壤中N 循环已经成为科学家共同关注的热点问题.简述了土壤N 循环的基本过程,重点介绍了13种土壤N 循环模型和6个土壤N 循环过程的模拟,并讨论了模拟中存在的参数化问题. 关键词 土壤N N 循环 模型 模拟 文章编号 1001-9332(2005)11-2208-05 中图分类号 S153.6 文献标识码 A Research advances in soil nitrogen cycling models and their simulation.T AN G Guo yong 1,2,HU AN G Daoyou 1,T ON G Cheng li 1,ZHA NG Wenju 1,3,WU Jinshui 1(1Key L abor ator y of S ubtr op ical A gro ecology ,I nstitute of Subtrop ical A gr icultur e,Chinese A cademy of Sciences,Changsha 410125,China;2Gr aduate School of Chinese A cademy of Sciences ,Beij ing 100039,China;3College of Resources and Env ironment,H uaz hong A gricultural Univer sity ,W uhan 430070,China). Chin.J.A p pl.Ecol .,2005,16(11):2208~2212. N itrogen is one of the necessary nutrients for plant,and also a pr imar y element leading to environmental pollu tion.M any researches hav e been concerned about t he contr ibution of agr icultur al act ivities to env ironmental pollu tion by nitrogenous compounds,and the focus is how to simulate soil nitrog en cycling pr ocesses correctly.In this paper,the pr imary soil nitro gen cycling processes were rev iewed in brief,w ith 13cycling models and 6simulated cycling processes introduced,and t he parameterization o f models discussed.Key words Soil nitro gen,Nitro gen cycle,M odel,Simulation. *中国科学院知识创新工程重要方向项目(KZCX3 S W 426)、国家 自然科学基金重点项目(40235057)和国家重点基础研究发展资助项目(2002CB412503).**通讯联系人. 2005-01-10收稿,2005-05-08接受. 1 引 言 N 是植物必需的营养元素,也是评价土壤质量和土地生产力的重要指标.为了获得高产,需要施用大量的氮肥.据统计[32],仅1996年全世界氮肥(折纯N)使用总量就高达8 50!107t,但N 累积利用率不高.据估计,施入土壤中的N 大约有35%通过各种途径损失掉[6,32].此外,氮肥的使用还可能造成环境污染,诸如温室气体(主要是氮氧化物)和致酸雨气体(氨气)的排放、地下水硝酸盐超标、水体富营养化等[20].如2000年,比利时80%的饮用水中硝酸盐含量超标[10].目前,土壤N 循环的研究已经成为土壤学家、环境学家、农学家等共同关注的热点问题之一. 土壤N 循环是N 生物地球化学循环中的重要环节,其模拟是作物估产、环境评价、农田管理、决策制定和长期预测的重要依据,对提高氮肥利用率、防止或减轻环境污染具有重要的理论和实践意义.20世纪60年代,就有基于单个过程的土壤N 循环方面的报道[25,28].40多年来,北美和欧洲一些国家建立了大量的土壤N 循环模型.我国在这方面研究还比较薄弱[3,15,24].本文拟通过简要概述土壤N 循环过程,重点介绍13种土壤N 循环模型和6个土壤N 循环过程的模拟,并讨论模型模拟中的参数化问题,以期为深入研究土壤N 循环及其模拟提供一定的参考和借鉴. 2 土壤N 循环的基本过程 土壤中含N 化合物种类多,理化、生物学性质各异.一般可将土壤中N 划分为有机氮和无机氮,以有机氮为主.在土壤微生物等因子的作用下,N 在土壤中发生一系列复杂的循环.主要循环过程有:有机氮矿化、腐殖化、硝化、反硝化、氨挥发、N 沉降、硝酸盐淋失、生物固氮、铵离子晶格固定和释放、土壤粘粒吸附和解吸、植物吸收等过程.土壤N 循环过程的研究是建立土壤N 循环模型以及N 生物地球化学循环模型的基础. 3 土壤N 循环模型的研究概况 目前,农业中数学模型并无统一的分类,可从不同角度进行划分.根据建模的方法可分为经验模型和机理模型;从土壤有机氮角度可分为单组分和多组分模型;从模拟循环过程的数目方面可分为单过程和多过程模型;此外,根据模型模拟的元素也可分为独立N 模型和综合模型的N 子模型. 经验模型通常依据实验测定或调查的N 循环分量与气 应用生态学报 2005年11月 第16卷 第11期 CHIN ESE JO UR NAL OF A PPL IED ECOLO GY,Nov.2005,16(11)?2208~2212

相关文档
最新文档