用Mathematica计算椭圆形电流的磁场分布

用Mathematica计算椭圆形电流的磁场分布
用Mathematica计算椭圆形电流的磁场分布

分类号UDC单位代码10642

密级公开学号2002466040

重庆文理学院

学士学位论文

论文题目:用Mathematica计算椭圆形电流的磁场分布

论文作者:王伯超

指导教师:石东平教授

专业:物理学

提交论文日期:2006年06月日

论文答辩日期:2006年06月日

学位授予单位:重庆文理学院

中国 重庆

2006年06月

Graduate Thesis of Chongqing University of Arts and sciences

Calculation on the Magnetic Field Distribution of the Ellipse Current with Mathematica

Candidate: Wang Bo-chao

Supervisor: Shi Dong-ping

Major: Physics

Department of Physics & Information Engineering Chongqing University of Arts and Sciences

June 2006

2002级物理学专业毕业论文目录

目录

摘要 ......................................................................................................................................... I Abstract ...................................................................................................................................... II 1 引言 . (1)

1.1 问题的提出及研究意义 (1)

1.1.1 问题的提出 (1)

1.1.2 研究的意义 (1)

1.2 国内外研究现状 (1)

1.2.1 圆形电流磁场分布研究现状 (1)

1.2.2 椭圆形电流磁场分布研究现状 (1)

2 基本原理 (1)

3 椭圆形电流的磁场分布 (2)

3.1 物理模型的建立 (2)

3.2 运用Mathematica进行计算 (3)

4 讨论 (3)

4.1 椭圆电流垂直轴上的磁场 (3)

4.2 椭圆电流焦点的磁场 (4)

4.3 圆形电流的磁场 (4)

5 结语 (5)

参考文献 (5)

致谢 (7)

用Mathematica计算椭圆形电流的磁场分布

物理学专业1班王伯超指导教师石东平

摘要:环形电流的磁场分布是电磁理论的典型问题,对它的研究一直都倍受关注。关于环形电流的磁场分布问题,中外许多文献都做了一定的计算、探讨。圆电流是一个经典的物理模型,对圆电流磁场分布特性的研究有助于进一步研究磁介质的磁性特征;而椭圆形电流又是环形电流中一个典型的物理模型,对椭圆形电流磁场分布情况的研究,将让我们进一步认识环形电流的磁场问题。鉴于此,本文将在前人的研究基础之上,通过合理利用数学计算软件Mathematica对椭圆形电流磁场分布情况做进一步的探讨。

关键词:磁场;椭圆形电流;椭圆积分

Abstract

The ring-like electric current magnetic field distribution is the typical problem of electromagnetic theory. The researches on it have been paid much attention. Many Chinese and foreign scholars have done calculation and discussion on the circular electric current magnetic field distribution. Circular electric current is a classical physical model. The researches on the magnetic field distribution characteristics of the circular current are helpful for the further study on magnetic characteristics of magnetic dielectric. The ellipse electric current is a typical physical model of ring-like electric current. The researches on the magnetic field distribution of it make us obtain more understandings of magnetic problem of ring-like electric current. Based on former researches. In this paper, a further explorations and discussions on ellipse electric current field distribution would be done with Mathematica.

Keywords:magnetic field; ellipse current; ellipse integral

2002级物理学专业毕业论文

1 引言

1.1 问题的提出及研究意义

1.1.1 问题的提出

圆形电流的磁场是电磁理论的典型问题,对它的研究一直都倍受关注。对它的研究从来都没有间断过,当然关于这方面的文献也层出不穷。从这些文献看,圆形电流的磁场分布情况已经研究的非常的透彻,已经得到了全空间的磁场分布表达式[1]

。可是,对于椭圆形电流这一典型物理模型的磁场分布情况,没能得到全空间的磁场分布表达式,还有待进一步研究。 1.1.2 研究的意义

椭圆形电流是续圆形电流后的又一典型的物理模型,对它的进一步研究,不仅可以进一步认识椭圆型电流的磁场分布情况,而且在结合数学软件Mathematica [2]

后,减少了大量异常烦琐的计算工作,会使得到的结果更加精确,将对电磁理论的进一步发展起到一定的促进作用。同时也在计算机科学与物理学的研究的有机结合方面起到一定的促进作用。 1.2 国内外研究现状

1.2.1 圆形电流磁场分布研究现状

圆形电流的磁场分布是电磁理论的典型问题,有许多学者对其进行过研究[1][3] [4],成果也比较显著。现在已经可以从不同角度出发对圆形电流的磁场分布情况进行推导。文献[1]是从矢势的计算出发,然后再经旋度运算求得圆形磁场的普遍表达式,而且还对圆电流平面内、中心轴上和远区的场作了特例讨论;也可以根据毕—萨定律,运用磁场叠加原来和第一、第二类完全椭圆积分求得圆形磁场的普遍表达式,而且还找到了其在不同坐标系中的表示[3]

。 1.2.2 椭圆形电流磁场分布研究现状

椭圆形电流是圆形电流的普遍化,对其进行研究更为困难。进展比较慢。不过现在已经可以根据毕—萨定律,利用矢量的方法,来分析椭圆形电流焦点处的磁场[5]

。文献[6]应用毕—萨定律、磁场的叠加原理及第二类完全椭圆积分,得到了椭圆形电流垂直轴上磁场的解析表达式。也曾有学者通过数学上的保角变换得出了椭圆形电流的磁场在变换空间分布的柱坐标表示,对椭圆型电流的磁场在空间中极端位置的直角坐标进行了求解,并得到了在圆外区域无穷远处的磁场极限值[7]。

本文将在前人研究成果的基础之上,结合数学软件Mathematica 对椭圆形电流的磁场分布问题做进一步探讨。寻求椭圆形电流的空间表达式。让大家进一步认识椭圆型电流的磁场分布情况,促进电磁学理论的进一步发展。 2 基本原理

毕奥—萨伐尔定律[8] 实验测出两个电流之间有作用力。和静电作用一样,这种作用力也需要通过一种物质作为媒介来传递,这种特殊物质称为磁场。电流激发磁场,另一个电流处于该磁场中,就受到磁场对它的作用力。对电流有作用力是磁场的特征性质,我们就利用这一特性来描述磁场。实验指出,一个电流元在磁场中所受到的力可以表为

d F I d l B = r r r (1) 矢量B 描述电流元所在点上磁场的性质,称为磁感应强度。恒定电流激发磁场的规律由毕奥—萨 尔定律给出。设、()J x ? 为源点、x 上的电流密度,r ?

为由、x 点到场点x 的距离,则场点上的磁感

应强度为

用Mathematica 计算椭圆形电流的磁场分布

3()()4J x r B x d V r m p ¢′¢=òr r r

(2)

式中0m 为真空中磁导率,积分遍及电流分布区域。如果电流集中于细线上,以d l r 表示闭合回路L

上的线元,n d S 为导线横截面元,则电流元N J d V J d S d l =r r r ,对导线截面积分后得I d l r 。因此,

细导线上恒定电流激发磁场的毕奥—萨伐尔定律写为 0

3()4I d l r

B x r m p ′=òr r r

? (3)

3 椭圆形电流的磁场分布

3.1 物理模型的建立

如图1,建立直角坐标系,椭圆方程,c o s x a f =,sin y a f =(其中a 和b (a b > )分别为椭圆的长半轴和短半轴)载有电流I ;在椭圆上任意一点(,,)Q x y o 处取电流元I d l ,(,,)P p q z 为空间任意一点。则有:

(sin co s )d l d x i d y j a i b j d f f f =+=-+r r r r r

()()(c o s )(s in )r p x i q y j z k

p a i q b j z k

f f =-+-+=-+-+r r r r r r r

r =

=(4) 又 222a b c -= (为焦距c )则:

r =所以:c o s s in [s in (s in )c o s (c o s )]c o s s in [s in c o s ]d l r z b d i z a d j a q b b p a d k

z b d i z a d j a q bp a b k

f f f f f f f f f f f f f f f ?+--+-=+-+-r r r r r r r

由:0

3()4I d l r B x r m p ′=òr r r ? (毕奥—萨伐尔定律)得:

y

2002级物理学专业毕业论文

222000333000c o s s in s in c o s 444i j k I z b I z a I a b a q bp B d i d j d k r r r B i B j B k p p p m f m f m f f f f f p p p --=++=++蝌 r r r r r r r

(5)

其中i B 、j B 、k B 分别表示B 在x 、y 、z 的分量,

20302030222000333000

cos 4sin 41sin cos 444i j k I zb B d r I za B d r I a b I a q I bp B d d d r r r p p p p p m f f p m f f p m m f m f f f f p p p =

=

=

--òò蝌 (6)0 3.2 运用Mathematica 进行计算

由于(6)式积分异常复杂,而且积分式为非解析式。运用Mathematica 软件进行计算也很难得到一个明确的表达式。作为特例,以下将从椭圆电流垂直轴上的磁场、椭圆电流焦点的磁场和圆形电流的磁场三个方面做一定探讨。

4 讨论

4.1 椭圆电流垂直轴上的磁场

当(6)式中的0p =, 0q =时,P 点也就成为椭圆形电流垂直轴上的点。因而可得椭圆电流垂直轴上的磁场为:

2200322223/2002200322223/2002200322223/200c o s s in 44(s in )s in c o s 44(c o s )1144(s in )i j k I z b I z b d B d r a z c I z a

I z a d B d r b z c I a b

I a b B d d r a z c p p p p p p m f m f f p p f m f m f f p

p f m m f f p p

f =

=+-==-++==+-蝌蝌蝌 用Mathematica 进行计算很容易得到0i j B B

==,所以:k B B = 2200222223/2223/20023/222114(s in )4()(1s in )I a b

I a b B d d c

a z c a z a z

p p m m f f p f p f ==+-+-+蝌 令 2222c

k a z =+,、2222221z b k k

a z +=-=+

得 20223/222

3/2014()(1s i n )I a b

B d a z k p m f p f =+-ò 令 s i n t f =得:

10223/221/2223/2

01()(1)(1)I a b

B d t a z t k t m p =+--ò 由文献[9]得:

用Mathematica 计算椭圆形电流的磁场分布

、1/22

221121/2223/22001()(1)(1)1k k t d t d t E k t k t t 骣-÷?=

=÷?÷÷?---桫蝌

式中()E k 为第二类完全椭圆积分。

所以:

、0223/221()()()I a b

B E k k a z k m p =?+ (7)

4.2 椭圆电流焦点的磁场

当P 点坐标为(,0,0)P c 时,由(6)式可以得到椭圆电流焦点的磁场为:

2220003330001co s co s 444k I a b I bc I b a c B B d d d r r r p p p m m f m f f f f p p p -==-=蝌

r ==所以: 220032

00c o s 144(c o s )k I b

a c I

b B B d d r a

c p p m f m f f p p f -===-蝌 因为此时电流的分布以x 轴对称,由上式可得: 020

1

24(c o s )I b

B d a c p m f p f = -ò 上式与文献[5]达到很好的吻合。根据文献[5]中的计算和运用Mathematica 计算可以得到椭圆电流焦点的磁场为: 0223/23()I ba

B a c m =- (8)

4.3 圆形电流的磁场

当a b =

,即0c =

=时,椭圆电流也就随之退化成圆形电流,又由于圆形电流I 关于Z 轴旋转对称,我们可以令(,0,)P p z 而不失一般性。这样根据(6)式可以得到圆形电流在全空间的分布表达式为:

220032223/200c o s c o s 44(2c o s )i I z a I z a B d d r a p z p a p p m f m f f f p

p f ==++-蝌 220032223/200s in s in 44(2c o s )j I z a

I z a B d d r a p z p a p p m f m f f f p

p f ==++-蝌 2222000332223/20001c o s c o s 444(2c o s )k I a

I a p I a a p B d d d r r a p z p a p p p m m f m f f f f p

p p f -=-=++-蝌 很容易得到0j B =,所以:i k B B i B k ?

?=+,其中i B ,k B 两式可化为椭圆积分,运用第三类完全椭圆积分得到[10]:

(,,)(,)]122(,,)(

,)]122i k I z N B P K F K N a N p B P K p F K N m p p p p =-+-=++?? (9)

2002级物理学专业毕业论文

其中(,,)2P K p

?为第三类完全椭圆积分,222

12p a z N a p +=>,,0p z >,取定空间的P 点后,

通过查椭圆积分表就可算出 P 点的i B 和j B 值。

5 结语

椭圆形电流是继圆形电流后的又一典型的物理模型。其磁场的分布情况比圆形电流的分布情况更为复杂。本文尝试借助计算机软件Mathematica 对椭圆形电流的磁场分布做了探讨。在得到椭圆形电流的磁场在全空间分布的积分式后,着重分析了椭圆电流垂直轴上的磁场、椭圆电流焦点的磁场和椭圆退化成圆形电流的后的磁场分布,分析结果与其他相关文献得到了很好的自洽。但本文还不够,只是做了一些初步的尝试,要想更深入的了解椭圆形电流的磁场分布情况,还任重而道远,还有待于更多的物理工作者进行进一步的研究。

参考文献

[1] 向裕民 圆环电流磁场的普遍分布[J] 大学物理,1999年,第18卷第1期 14~17

[2] 嘉木工作室 Mathematica 应用实例教程[M] 机械工业出版社 2002年

[3] TIAN Ye(田野),KONG Xiang ~Yan (孔祥燕),WANG Hui ~Wu(王会武), ZHAO Shi ~Ping (赵

士平),CHEN Geng ~Hua (陈赓华),YANG Qian ~sheng(杨乾声),CAO Lie ~Zhao(曹烈兆) Current Density and Local Magnetic Field of spontaneous Magnetization States in One ~Dimensional Superconducting Corner Junction Arrays CHIN.PHYS.LETT 2004 1344~1347;Nikolal Nikolov. A Generalizaton of an Ineequality from IMO 2005. arXiv:math., 2005-12, 8: 1-6

[4] 李永平,张帆 圆环电流的磁场分布[J] 济南大学学报 1998年,第8卷第4期 61~64

[5] 李久会 椭圆电流焦点的磁场[J] 辽宁工学院学报 2002年4月,第22卷第2期 69~70

[6] 赵锡平,李永平 椭圆形电流环垂直轴上的磁场[J] 青岛建筑工程学院学报 1998年,第 20卷

第2期 102~104

[7] 胡跃辉 椭圆形电流的磁场分布[J] 江西师范大学学报(自然科学版) 2000年2月 第24卷第1

期 83~86

[8] 郭硕鸿 电动力学[M] 高等教育出版社 1997

[9] 王竹溪,郭敦仁 特殊函数概论[M] 北京大学出版社 2000

[10]张弢,孙建刚 利用椭圆积分法计算某些电磁场问题[J] 山东大学学报(工学版),2003年4月

第33卷第2期

用Mathematica 计算椭圆形电流的磁场分布

2002级物理学专业毕业论文

致谢

本文的研究工作是在我的导师石东平教授的精心指导和悉心关怀下完成的,在我的学业和论文的研究工作中无不倾注着导师辛勤的汗水和心血。导师的严谨治学态度、渊博的知识、无私的奉献精神使我深受的启迪。从尊敬的导师身上,我不仅学到了扎实、宽广的专业知识,也学到了做人的道理。在此我要向我的导师致以最衷心的感谢和深深的敬意。

在多年的学习生活中,还得到了许多领导和老师的热情关心和帮助,如吴强老师。

在日常学习和生活中,我的师兄、弟及校友给予了我很大帮助。

在此,向所有关心和帮助过我的领导、老师、同学和朋友表示由衷的谢意!

王伯超

2006年6月于重庆

电磁场HFSS实验报告

实验一? T形波导的内场分析 实验目的? 1、?熟悉并掌握HFSS的工作界面、操作步骤及工作流程。????? 2、?掌握T型波导功分器的设计方法、优化设计方法和工作原理。?实验仪器 1、装有windows 系统的PC 一台 2、或更高版本软件 3、截图软件 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 T形波导 实验步骤 1、新建工程设置: 运行HFSS并新建工程:打开 HFSS 软件后,自动创建一个新工程: Project1,由主菜单选 File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选 Project\ Insert HFSS Design,

在工程树中选择 HFSSModel1,点右键,选择 Rename项,将设计命名为 TeeModel。 选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项。 设置长度单位为in:由主菜单选 3D Modeler\Units ,在 Set Model Units 对话框中选中 in 项。。 2、创建T形波导模型: 创建长方形模型:在 Draw 菜单中,点击 Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为。Material(材料)保持为Vacuum。 设置波端口源励:选中长方体平行于 yz 面、x=2 的平面;单击右键,选择 Assign Excitation\Wave port项,弹出 Wave Port界面,输入名称WavePort1;点击积分线 (Integration Line) 下的 New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,处,作为端口终点。 复制长方体:展开绘图历史树的 Model\Vacuum\Tee节点,右键点击Tee项,选择 Edit\Duplicate\Around Axis,在弹出对话窗的Axis项选择Z,在Angel项输入90deg,在 Total Number 项输入2,点OK,则复制、添加一个长方体,默认名为TEE_1。重复以上步骤,在Angel项输入-90,则添加第3个长方体,默认名Tee_2.

利用MATLAB分析圆环电流的磁场分布解读

第 29卷第 1期 V ol 129 N o 11 长春师范学院学报 (自然科学版 Journal of Changchun N ormal University (Natural Science 2010年 2月 Feb. 2010 利用 MAT LAB 分析圆环电流的磁场分布 王玉梅 , 孙庆龙 (陕西理工学院物理系 , 陕西汉中 723003 [摘要 ]根据毕奥—萨伐尔定律推导出圆环电流磁场分布的积分表示 , 利用M AT LAB 的符号积分给 出计算结果 , 并绘制磁场分布的三维曲线。在数值结果中选取一些代表点讨论磁场的分布规律。 [关键词 ]圆环电流 ; 磁场 ; M AT LAB ; 符号积分 ; 三维绘图 [中图分类号 ]O4-39 [文献标识码 ]A []--04 [收稿日期 ]2009-08-18 [作者简介 ]王玉梅 (1975- , 女 , 山西芮城人 , 陕西理工学院物理系讲师 , 从事大学物理教学与研究。 毕奥— , 强度。 , 可以计算任意形状的电流所产生的磁场。 , 利用 MAT LAB 软件进行计算 , 并绘制磁场分布的三维曲线 , 最后对结果进行讨论 1圆环电流在空间任一点的磁场分布

图 1圆环电流磁场分析用图 如图 1所示 , 根据毕奥—萨伐尔定律 , 任一电流元 Id l _ 在 P 点产生 的磁感应强度 d B _ =μ4π_ ×e _ r 2 , [1]其中 r _和r _′ 分别为 P 点相对于坐标 原点和电流元 Id l _的位矢, r _″ 为电流元 Id l _ 相对于坐标原点的位矢。 r _′ =r _+r _ ″ , r _′ =x i _ +y j _ +z k _ , r _ ″ =R(cos θi _ +sin θj _ (其中 R 为圆环电流半径 ,

磁场的研究实验报告

实验题目: 磁场的研究 实验目的: 1、研究载流圆线圈轴线上各点的磁感应强度,把测量的磁感应强度与理论计算值比较, 加深对毕奥-萨伐尔 定律的理解; 2、在固定电流下,分别测量单个线圈(线圈a 和线圈b )在轴线上产生的磁感应强度B (a )和B(b),与亥姆 霍兹线圈产生的磁场B(a+b )进行比较, 3、测量亥姆霍兹线圈在间距d=R /2、 d=2R 和d=2R, (R 为线圈半径),轴线上的磁场的分布,并进行比较, 进一步证明磁场的叠加原理; 4、描绘载流圆线圈及亥姆霍兹线圈的磁场分布。 实验仪器: (1)圆线圈和亥姆霍兹线圈实验平台,台面上有等距离1.0cm 间隔的网格线; (2)高灵敏度三位半数字式毫特斯拉计、三位半数字式电流表及直流稳流电源组合仪一台; (3)传感器探头是由2只配对的95A 型集成霍尔传感器(传感器面积4mmx 3mmx 2mm)与探头盒(与台面接触面 实验原理: (1)根据毕奥一萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点的磁感应强度为: 232220)(2x R N R I B +=μ (5-1) 式中μ0为真空磁导率,R 为线圈的平均半径,x 为圆心O A 到该点的距离,N 为线圈匝数,I 为通过线圈的电流强度。因此,圆心处的磁感应强度B 0 为: R IN B 20μ= (5-2) 轴线外的磁场分布计算公式较为复杂,这里简略。 (2)亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,两线圈内的电流方向一致,大小相同,线圈之间的距离d 正好等于圆形线圈的半径R 。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,所以在生产和科研中有较大的使用价值,也常用于弱磁场的计量标准。 设:z 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任意一点的磁感应强度为: ????????????????????? ??-++??????????? ??++='--23222322202221z R R z R R NIR B μ(5-3) 而在亥姆霍兹线圈上中心O 处的磁感应强度B 0′为 .毫特斯拉计 .电流表 .直流电流源 .电流调节旋钮 .调零旋钮 .传感器插头 .固定架 .霍尔传感器 .大理石 .线圈 ABCD 为接线柱

20191118练习画直线电流等6种磁场分布图

20191118画图练习――画直线电流等6种几种典型磁场的分布图(后面附有答案) 一、知识补充:有5种情况的磁场分布情况相似等效 条形磁铁≈≈通电螺线管≈≈地磁场≈≈通电圆环≈≈小磁针 二、请按题目下面的要求画出磁场分布示意图(3种电流磁场、3种磁体磁场) 1、通电直线电流的磁场 (1)请在1图中画出图示平面内的 2-3条磁感线(要标出箭头方向)。(2)请在2图中画出电流左右两侧纸面内的磁场方向(用Ⅹ或?表示)。(3)请在上面第3个方框内画出针对1 图从上向下看的磁场情况。(4)请在上面第4个方框内画出针对 1图从下向上看的磁场情况。(5)请在上面第5个方框中标出电流的流向。 2、通电圆环的磁场 (1)请画出1、2两图中通电圆环内外的磁场方向(用Ⅹ或?表示)。(2)请在3、4、5图中画出通电圆环上电流流向。 3通电螺线管的磁场 请在上面画出它的磁 感线分布情况(至少3 条) 5 请用箭头表示各黑点所在处的磁场方向 通电螺线管的剖面图,内部磁场向右,在圆圈上用Ⅹ或?表示标出电流方向。 S N

4、条形磁铁 请在下面左图中画出条形磁铁的磁感线,并在右两图中标出过小黑点所在处的磁场方向。 5、蹄形磁铁的磁场 请在下面左图中画出经过6个小黑点的1条磁感线;在右面的两个图中标出经过小黑点所在处的磁场方向。 6地球磁场(说明:下面的图中,点1和点5所在连线为地轴,点3和点7所在线为赤道线。) (1)请在第1图中画出地磁场的磁感线。 (2)请在第2图中标出小黑点所在处的磁场方向。 (3)请在第3图中标出小黑点所在处的磁场方向(第3图为地球地面等效图,它将表明磁场与地面是否垂直)。 (4)北极圈小范围内地面的磁场方向是如何的? (5)南极圈小范围内地面的磁场方向是如何的? (6)南半球的磁场方向是如何的? (7)北半球的磁场方向是如何的? (8)什么地方磁场与地面几乎平行? (9)什么地方磁场与地面几乎垂直? (10)什么地方磁场与地面既不平行也不垂直?

实验3.09磁场分布

实验3.9 磁场分布测量 磁场的测量有许多方法,常用的有电磁感应法,半导体(霍耳效应)探测法和核磁共振法。本实验使用的是电磁感应法测量磁场,它是以简单的线圈作为测量元件,利用电磁感应原理直接测量亥姆霍兹(Helmholtz )线圈产生的磁场。值得一提的是本实验所使用的亥姆霍兹线圈在物理研究中有许多用处,如产生磁共振,消除地磁的影响等,获1997年诺贝尔物理奖的实验中,就有若干对这种线圈,因此熟悉这种线圈产生的磁场是很有意义的。 3.9.1实验目的 1.学习电磁感应法测磁场的原理; 2.学习用探测线圈测量载流线圈的磁场的方法; 3.验证矢量叠加的原理; 4.了解亥姆霍兹线圈磁场的特点。 3.9.2实验原理 3.9.2.1电磁感应法测磁场 当导线中通有变化电流时,其周围空间必然产生变化磁场。处在变化磁场中的闭合回路,由于通过它的磁通量发生变化,回路中将有感应电动势产生。通过测量此感应电动势的大小就可以计算出磁场的量值。这就是感应法测磁场的实质。 因为磁场是一矢量场,所以测量磁场的任务,就是要测出场中各点的磁感应强度的大小和方向。 为叙述简单起见,先假定有一个均匀的交变磁场,其量值随时间t 按正弦规律变化 t B B m i ωsin = 式中B m 为磁感应强度的峰值,其有效值记作B ,ω为角频率。再假设置于此磁场中的探测线圈T (线圈面积为S ,共有N 匝)的法线n 与B m 之间的夹角为θ,如图3.9.1所示,则通过T 的总磁通φi 为 θωφcos sin t NSB N m i i =?=B S 由于磁场是交变的,因此在线圈中会出现感 应电动势,其值为 θωωφ cos cos t B NS dt d e m i -=-= (3.9.1) 如果把T 的两条引线与一个交流数字电压表连接,交流数字电压表的读数U 表示被测量值的有效值(rms ),当其内阻远大于探测线圈的电阻时有 θωcos rms B NS e U == (3.9.2) 从(3.9.2)式可知,当N ,S ,ω,B 一定时,角θ越小,交流数字电压表读数越大。当θ =0时,交流数字电压表的示值达最大值U max ,(3.9.2)式成为 ω NS U B max = (3.9.3) 测量时,把探测线圈放在待测点,用手不断转动它的方位,直到数字电压表的示值达到最大为止。把所得读数U max 代入(3.9.3)式就可算出该点的磁场值。 图3.9.1感应法测磁场原理图

第十一章稳恒电流的磁场(一)作业解答

一、利用毕奥—萨法尔定律计算磁感应强度 毕奥—萨法尔定律:3 04r r l Id B d ?=πμ 1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a I B πμ20= 半无限长载流直导线a I B πμ40=,直导线延长线上0=B 2. 圆环电流的磁场2 32220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθ μ220?=R I B 电荷转动形成的电流:π ω ωπ22q q T q I = == 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8 【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上 均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B 的大小为 (A) ) (20b a I +πμ. (B) b b a a I +πln 20μ.(C) b b a b I +πln 20μ. (D) ) 2(0b a I +πμ. 解法: 【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感 强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:

载流圆线圈周围磁场分布

载流圆线圈周围磁场分布 孟雨 孟雨物理工程学院11级物理学类三班 Email:1240123245@https://www.360docs.net/doc/4e4708962.html, 摘要:本文第一次在直角坐标系中直接从磁感应强度的计算公式毕奥-萨伐尔定律出发,精确求解了圆电流空间任一点磁场分布。并通过数值模拟,给出了圆电流周围磁场的空间分布情况。 关键词:载流圆线圈、椭圆积分、磁感应强度、数值模拟 0.引言 圆电流的磁场分布是电磁学中一个重要而典型的问题,不少学者进行求解此方面问题时一般采用矢势方法,而即使采用最为基本的毕奥-萨伐尔定律求解时,求解的也是简化后的磁场在固定平面内的分布,而非整个三维空间内的分布。究其原因,在于积分的复杂性。即使求解磁场在平面内的分布,也涉及复杂的椭圆积分,因此对于磁场在三维空间任意处的分布,很多学者避而不答。本文仅采用最为基本的毕奥-萨伐尔定律,通过一系列变量替换直接在直角系给出了磁场分布的级数形式解。 本文与已发文章《闭合载流导线周围磁感应强度的空间分布》5【】(物理学刊27期)、《一个重要公式在电磁学中的应用》6【】(物理学刊29期)同属姊妹篇。第一篇文章提出了解决 该问题的一般方法,并推广到任意形状的闭合载流线圈,同时作为例子计算了过垂直载流圆线圈环面中心直线上的磁感应强度。第二篇文章是对第一篇文章的进一步探索,运用椭圆积分精确求解了载流圆线圈在其所在整个平面的强度分布情况。本文是前两篇文章的更深一步探索,最终精确求解了载流圆线圈在空间任意处的分布情况。通过这三篇文章,希望给大家带来的不仅仅是问题的答案,更为重要的是将作者一步步探索问题的过程呈献给大家,希望能给大家未来的学习和研究带来帮助。 1.载流圆线圈磁感应强度 这里直接引用文章【5】、【6】中的结果:

电磁场HFSS实验报告

实验一 T形波导的内场分析 实验目的 1、熟悉并掌握HFSS的工作界面、操作步骤及工作流程。 2、掌握T型波导功分器的设计方法、优化设计方法和工作原理。实验仪器 1、装有windows 系统的PC 一台 2、HFSS15.0 或更高版本软件 3、截图软件 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 T形波导

实验步骤 1、新建工程设置: 运行HFSS并新建工程:打开HFSS 软件后,自动创建一个新工程:Project1,由主菜单选File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选Project\ Insert HFSS Design,在工程树中选择HFSSModel1,点右键,选择Rename项,将设计命名为TeeModel。 选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项。 设置长度单位为in:由主菜单选3D Modeler\Units ,在Set Model Units 对话框中选中in 项。。 2、创建T形波导模型: 创建长方形模型:在Draw 菜单中,点击Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为0.8。Material(材料)保持为Vacuum。 设置波端口源励:选中长方体平行于yz 面、x=2 的平面;单击右键,选择Assign Excitation\Wave port项,弹出Wave Port界面,输入名称WavePort1;点击积分线(Integration Line) 下的New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,0.4)处,作为端口终点。 复制长方体:展开绘图历史树的Model\Vacuum\Tee节点,右键

用Mathematica计算椭圆形电流的磁场分布

分类号UDC单位代码10642 密级公开学号2002466040 重庆文理学院 学士学位论文 论文题目:用Mathematica计算椭圆形电流的磁场分布 论文作者:王伯超 指导教师:石东平教授 专业:物理学 提交论文日期:2006年06月日 论文答辩日期:2006年06月日 学位授予单位:重庆文理学院 中国 重庆 2006年06月

Graduate Thesis of Chongqing University of Arts and sciences Calculation on the Magnetic Field Distribution of the Ellipse Current with Mathematica Candidate: Wang Bo-chao Supervisor: Shi Dong-ping Major: Physics Department of Physics & Information Engineering Chongqing University of Arts and Sciences June 2006

2002级物理学专业毕业论文目录 目录 摘要 ......................................................................................................................................... I Abstract ...................................................................................................................................... II 1 引言 . (1) 1.1 问题的提出及研究意义 (1) 1.1.1 问题的提出 (1) 1.1.2 研究的意义 (1) 1.2 国内外研究现状 (1) 1.2.1 圆形电流磁场分布研究现状 (1) 1.2.2 椭圆形电流磁场分布研究现状 (1) 2 基本原理 (1) 3 椭圆形电流的磁场分布 (2) 3.1 物理模型的建立 (2) 3.2 运用Mathematica进行计算 (3) 4 讨论 (3) 4.1 椭圆电流垂直轴上的磁场 (3) 4.2 椭圆电流焦点的磁场 (4) 4.3 圆形电流的磁场 (4) 5 结语 (5) 参考文献 (5) 致谢 (7)

北京大学物理实验报告:霍尔效应测量磁场(pdf版)

霍尔效应测量磁场 【实验目的】 (1) 了解霍尔效应的基本原理 (2) 学习用霍尔效应测量磁场 【仪器用具】 仪器名参数 电阻箱? 霍尔元件? 导线? SXG-1B毫特斯拉仪±(1% +0.2mT) PF66B型数字多用表200 mV档±(0.03%+2) DH1718D-2型双路跟踪稳压稳流电源0~32V 0~2A Fluke 15B数字万用表电流档±(1.5%+3) Victor VC9806+数字万用表200 mA档±(0.5%+4) 【实验原理】 (1)霍尔效应法测量磁场原理 若将通有电流的导体至于磁场B之中,磁场B(沿着z轴)垂直于电流I S(沿着x轴)的方向,如图1所示则在导体中垂直于B和I S方向将出现一个横向电位差U H,这个现象称之为霍尔效应。 图 1 霍尔效应示意图 若在x方向通以电流I S,在z方向加磁场B,则在y方向A、A′两侧就开始聚积异号电荷而产生相应的附加电场.当载流子所受的横向电场力F E洛伦兹力F B相等时: q(v×B)=qE 此时电荷在样品中不再偏转,霍尔电势差就有这个电场建立起来。 N型样品和P型样品中建立起的电场相反,如图1所示,所以霍尔电势差有不同的符号,由此可以判断霍尔元件的导电类型。

设P型样品的载流子浓度为p,宽度为w,厚度为的d。通过样品电流I S=pqvwd,则空穴速率v=I S/pqwd,有 U H=Ew=I H B =R H I H B =K H I H B 其中R H=1/pq称为霍尔系数,K H=R H/d=1/pqd称为霍尔元件灵敏度。(2)霍尔元件的副效应及其消除方法 在实际测量过程中,会伴随一些热磁副效应,这些热磁效应有: 埃廷斯豪森效应:由于霍尔片两端的温度差形成的温差电动势U E 能斯特效应:热流通过霍尔片在其端会产生电动势U N 里吉—勒迪克效应:热流通过霍尔片时两侧会有温度差产生,从而又产生温差电动势U R 除此之外还有由于电极不在同一等势面上引起的不等位电势差U0 为了消除副效应,在操作时我们需要分别改变IH和B的方向,记录4组电势差的数据 当I H正向,B正向时:U1=U H+U0+U E+U N+U R 当I H负向,B正向时:U2=?U H?U0?U E+U N+U R 当I H负向,B负向时:U3=U H?U0+U E?U N?U R 当I H正向,B负向时:U4=?U H+U0?U E?U N?U R 取平均值有 1 (U1?U2+U3?U4)=U H+U E≈U H (3)测量电路 图 2 霍尔效应测量磁场电路图 霍尔效应的实验电路图如图所示。I M是励磁电流,由直流稳流电源E1提供电流,用数字万用表安培档测量I M。I S是霍尔电流,由直流稳压电源E2提供电流,用数字万用表毫安档测量I S,为了保证I S的稳定,电路中加入电阻箱R进行微调。U H是要测的霍尔电压,接入高精度的数字多用表进行测量。 根据原理(2)的说明,在实验中需要消除副效应。实际操作中,依次将I S、 I M的开关K1、K2置于(+,+)、(?,+)、(?,?)、(+,?)状态并记录U i即可,其 中+表示正向接入,?表示反向接入。

环形电流在空间一点产生的磁场强度

环形电流在空间一点产生的磁场强度 专业:工程力学 姓名:陈恩涛 学号:1153427 摘要:利用毕奥——萨法尔定律通过计算磁场的情况,得到环电流在整个空间的磁场分布表达式,其中运用了数学软件matlab 辅助求解! 关键词:环形电流 磁场 矢量叠加 毕奥——萨法尔定律 引言:了解书本上环形电流中心轴线上的磁场分布情况后,为了更深入了解环形电流在空间的磁场分布情况,现运用毕奥——萨法尔定律对其求解,再根据矢量叠加原理,将其最终结果在直角坐标系中的三个坐标轴上的分量分离了出来,且验证了空间分布公式在特殊情况下也适用! 计算过程; 1. 建立坐标系:设环半径为R ,以环 心0为原点,环形电流所在平面为 x0y 平面,以环中心轴为z 轴建立如图坐标系,则圆环的表达式为: 222x y R += 在空间内任意选取一点p(x,y,z),在环 上任取一点11A(x ,y ,0),则在A 点处的电流元Idl 满足关系式: Idl IR(isin jcos )d βββ=-+ (1) 而P,A 两点的矢径为: x z y p(x,y,z) R β 11A(x ,y ,0)

r (x R c o s )i (y R s i n ββ=-+-+ (2) 将(1)(2)式代入毕奥——萨法尔定律: 03Idl r dB 4r μπ?= (3) 得P 点的磁感应强度为: 00332222IR Idl r zi cos z jsin (R x cos ysin )k B d 4r 4(R y z 2yR sin )μμβββββππβ?++--==++-?? (4) 则令: 20x 302222IR zi cos B d 4(R y z 2yR sin )πμββπβ=++-? 20y 302222IR z jsin B d 4(R y z 2yR sin )πμββπβ=++-? (5) 20z 302222IR (R x cos ysin )k B d 4(R y z 2yR sin )πμβββπβ--= ++-? 这就是环形电流在空间产生的磁场在空间的分布分量情况! 特别地 当p(x,y,z)在环的中心轴线上即z 轴上时,其坐标为p(0,0,z),代入 (5)组式,得到: 20x 30222IR zi cos B d 4(R z )πμββπ=+? 20y 30222IR z jsin B d 4(R z )πμββπ=+? 20z 30222IR Rk B d 4(R z )πμβπ= +? 利用matlab 分别输入以下程序并得相应结果: (其中0U 表示0μ,A 表示β)

电流的磁场

第十一章 电流的磁场 §11-1基本磁现象 §11-2磁场 磁感应强度 一、 磁场 电流 磁铁磁场电流磁铁??? ? 电流磁场电流?? 实验和近代物理证明所有这些磁现象都起源于运动电荷在其周围产生的磁场,磁场给场中运动电荷以作用力(变化电荷还在其周围激发磁场)。 1)作为磁场的普遍定义不宜笼统定义为传递运动电荷之间相互作用的物理场。电磁场是物质运动的一种存在形式。 2)磁场相互作用不一定都满足牛顿第三定律。 二、 磁感应强度 实验发现: ①磁场中运动电荷受力与v ?有关但v F ??⊥; ②当0?=F 时,v ?的方向即B ?的方向(或反方向); ③当B v ??⊥时,max ??F F =; ④ qv F max 与qv 无关,B v q F ????=。 描述磁场中一点性质(强弱和方向)的物理量,为一矢量。由 B v q F ????= (B ?的单位:特斯拉) 为由场点唯一确定的矢量(与运动电荷无关)。B ?大小: qv F B max = (B v ??⊥时)方向由上式所决定。 三、 磁通量 1. 磁力线 磁场是无源涡旋场 2. 磁通量(B ?通量) s d B ds B ds B d n m ??cos ?===Φα

???==Φ=Φs s n m m ds B ds B d αcos ? ??=Φs m s d B ?? (单位:韦伯(wb )) 3. 磁场的高斯定理 由磁力线的性质 ??∑=?q s d D ?? 0??=??s s d B (??∑=?s i q s d E 0 1??ε) §11-3 比奥—萨伐尔定律 一、 电流元l Id ?在空间(真空)某点产生的B d ? 2 )?,?s i n (r r l Id Idl dB ∝ 322??????r r l Id k r l d I k r r r l Id k B d ?=?=?= 与电荷场相似,磁场也满足迭加原理 ???==L L r r l Id k B d B 3???? 在国际单位制中(SI 制)70 104-== π μk ,真空磁导率70104-?=πμTmA -1(特米安-1) ? 3 ? ?4?0 r r l Id B d ?=πμ 当有介质时,r μμμ0=, ? 3 ??4?r r l Id B d ?=πμ 二、 运动电荷的磁场(每个运动带电粒子产生的磁场) 设:单位体积内有n 各带电粒子,每个带电粒子带有电量为q ,每个带电粒子均以 v 运动,则单位时间内通过截面s 的电量为qnvs ,即 q n v s I = 代入上式(l Id ?与v ?同向),

圆环形电流的磁场分布

圆环形电流的磁场分布 福建省石狮市石光中学 陈龙法 摘 要 本文详细推算出圆环形电流的磁场分布(包括磁标势、磁感应强度),证明了圆电流平面上圆内的磁感应强 度为r 的单调增函数,且在圆心处磁感应强度有极小值。 设圆环形电流强度为I ,圆半径为R 0,以圆心为原点,过圆心垂直于圆面的轴为极轴,建立球坐标系。如图所示。用半径为R 0的球面把整个空间分成两个区域,在这两个区域内,磁场的标势分别满足拉普拉斯方程 012=?m φ (rR 0) 由于具有轴对称性,磁标势与方位角φ无关,所以满足边界条件 有限??→?→01r m φ, 有限??→?∞ →r m 2φ 的通解可取为: ()θφcos 1n n n n m P r a ∑= (rR 0) ⑵ r=R 0的球面上,21m m φφ和满足边值关系: ()φααφφe e f f m m r -=-=?-??12 ⑶ ()012=?-??m m r φφe ⑷ 解上列⑴⑵⑶⑷式得: ()()f n n n n n n n n d dP R b d dP R a αθθθθ=-∑∑+-cos cos 2 10 ⑸ ()()()0cos cos 1101 =++∑ ∑--n n n n n n n n P R na P R b n θθ ⑹ 其中,面电流密度??? ??-=20πθδαR I f ,I 是圆环中的电流强度 。??? ? ? -2πθδ可按连带勒让德函数展 开: ()()()()θθπθδcos ! 1!12 12cos 2n n n n n P n n n P f '+-+==?? ? ? ? -∑∑ ⑺ )

亥姆霍兹线圈磁场测定-实验报告

开放性实验实验报告—— 亥姆霍兹线圈磁场测定 姓名学号班级 亥姆霍兹线圈是一对相同的、共轴的、彼此平行的各有N匝的圆环电流。当它们的间距正好等于其圆环半径R时,称这对圆线圈为亥姆霍兹线圈。在亥姆霍兹线圈的两个圆电流之间的磁场比较均匀。在生产和科研中经常要把样品放在均匀磁场中作测试,利用亥姆霍兹线圈是获得一种均匀磁场的比较方便的方法。 一、实验目的 1. 熟悉霍尔效应法测量磁场的原理。 2. 学会亥姆霍兹磁场实验仪的使用方法。 3. 测量圆线圈和亥姆霍兹线圈上的磁场分布,并验证磁场的叠加原理 二、实验原理 同学们注意,根据自己的理解,适当增减,不要太多,有了重点就可以了。 1.霍尔器件测量磁场的原理 图3—8—1 霍尔效应原理

如图3—8—1所示,有-N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,电流密度为J,则电子将沿负J方向以速度运动,此电子将受到垂直方向磁场B的洛仑兹力 作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场,该电场对电子的作用力,与反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压,此种效应为霍尔效应,由此而产生的电压叫霍尔电压,1、2端输出的霍尔电压可由数显电压表测量并显示出来。 如果半导体中电流I是稳定而均匀的,则电流密度J的大小为

(3—8—1) 式中b为矩形导体的宽,d为其厚度,则bd为半导体垂直于电流方向的截面积。 如果半导体所在范围内,磁场B也是均匀的,则霍耳电场也是均匀的,大小为 (3—8—2) 霍耳电场使电子受到一与洛仑兹力F m相反的电场力F e,将阻止电子继续迁移,随着电荷积累的增加,霍耳电场的电场力也增大,当达到一定程度时,F m与F e大小相等,电荷积累达到动态平衡,形成稳定的霍耳电压,这时根据F m=F e有 (3—8—3) 将(3—8—2)式代入(3—8—3)式得 (3—8—4) 式中、容易测量,但电子速度难测,为此将变成与I有关的参数。根据欧姆定理电流密度,为载流子的浓度,得,故有 (3—8—5) 将(3—8—5)式代入(3—8—4)式得

磁悬浮实验报告67796

实验报告 课程名称: 工程电子场与电磁波 指导老师:________熊素铭________ 成绩:__________________ 实验名称:_ 磁悬浮 _实验类型: 动手操作及仿真 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、观察自稳定的磁悬浮物理现象; 2、了解磁悬浮的作用机理及其理论分析的基础知识; 3、在理论分析与实验研究相结合的基础上,力求深化对磁场能量、电感参数和电磁力等知识点的理解。 二、实验内容 1、观察自稳定的磁悬浮物理现象 2、实测对应于不同悬浮高度的盘状线圈的激磁电流 3、观察不同厚度的铝板对自稳定磁悬浮状态的影响 实验原理 专业: 姓名: 学号: 日期: 地点:

1、自稳定的磁悬浮物理现象 由盘状载流线圈和铝板相组合构成磁悬浮系统的实验装置,如图2-6所示。该系统中可调节的扁平盘状线圈的激磁电流由自耦变压器提供,从而在50 Hz正弦交变磁场作用下,铝质导板中将产生感应涡流,涡流所产生的去磁效应,即表征为盘状载流线圈自稳定的磁悬浮现象。 2、基于虚位移法的磁悬浮机理的分析 在自稳定磁悬浮现象的理想化分析的前提下,根据电磁场理论可知,铝质导板应被看作为完纯导体,但事实上当激磁频率为50 Hz时,铝质导板仅近似地满足这一要求。为此,在本实验装置的构造中,铝质导板设计的厚度b 还必须远大于电磁波正入射平表面导体的透入深度d(b )。换句话说,在理想化的理论分析中,就交变磁场的作用而言,此时,该铝质导板可被看作为“透不过的导体”。 对于给定悬浮高度的自稳定磁悬浮现象,显然,作用于盘状载流线圈的向上的电磁力必然等于该线圈的重量。本实验中,当通入盘状线圈的激磁电流增大到使其与铝板中感生涡流合成的磁场,对盘状载流线圈作用的电磁力足以克服线圈自重时,线圈即浮离铝板,呈现自稳定的磁悬浮物理现象。现应用虚位移法来求取作用于该磁悬浮系统的电动推斥力。

巨磁电阻实验报告

巨磁电阻实验报告 【目的要求】 1、 了解GMR 效应的原理 2、 测量GMR 模拟传感器的磁电转换特性曲线 3、 测量GMR 的磁阻特性曲线 4、 用GMR 传感器测量电流 5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理 【原理简述】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 无外磁场时顶层磁场方向 无外磁场时底层磁场方向 图 2 多层膜GMR 结构图 图3是图2结构的某种GMR 材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减 图3 某种GMR 材料的磁阻特性 磁场强度 / 高斯 电阻 \ 欧姆

电流的磁场教案教案

电流的磁场 一、教学目标: 1、知识与技能: (1)知道电流周围存在磁场 (2)知道通电螺线管对外相当于一个条形磁铁 (3)知道右手螺旋定则 2、过程与方法: (1)通过观察和体验通电导体与磁体之间的相互作用,初步了解电和磁之间的关系 (2)通过合作探究通电螺线管的磁场分布情况,感悟建立模型的方法 3、情感、态度价值观: 通过图片、漫画让学生感悟到奥斯特善于发现问题,勇于科学探索的精神;通过体验电和磁之间的联系,初步使学生乐于探索自然界的奥秘。 二、教学重点和难点: 教学重点:通电螺线管的磁场 教学难点:右手螺旋定则 三、教学过程

学生猜想:“电”能不能使小磁针发生偏转。生发现问题的能力,体现从生活走向物理的教学观念。 电流的磁效应 1、奥斯特实验: 简介奥斯特发现电流磁效应的过程,并引导学生进行进一 步的探索。教师简述实验方法: (1)在桌面上放一小磁针,观察小磁针静止时两极的指向?(如 图1) (2)触接电路,观察小磁针N极的方向是否发生偏转?(如图 2) (3)改变电流的方向,重做实验,你能发现什么现象?(如图 3) 了解奥斯特 实验的由来。 学生分组验 证奥斯特实验。学 生边实验边填写 实验记录。 学生分 组验证奥斯 特实验的结 论。 电流 的磁效应 教师总结: 通电导体的周围有磁场,磁场的方向跟电流的方向有关。 这种现象叫做电流的磁效应。 学生汇报实 验现象 学生分析、概 括实验结论。 培养学 生分析、概 括能力。

通 电螺线管的磁场 分布后,观察小磁针的偏转方向,根据小磁针N极的指向画出通电 螺线管周围的磁感线分布。 方案2:用镶在有机玻璃板上的螺线管来作实验,先在螺 线管周围的玻璃板上均匀地洒上细铁屑,再给螺线管通电,轻 敲玻璃板,观察细铁屑的排列,根据排列画出通电螺线管周围 的磁感线分布。 教师指导学生根据实验方案1(即借助小磁针),进行实验。 教师通过通过投影展示实验步骤: a 、按下图布置器材(用8个小磁针) b 、根据实验现象,在标出小磁针N极的指向(即该点的 磁场方向) c 、根据实验现象,画出通电螺线管的磁场方向。在右图 中画出该通电螺线管的磁感线,并标出螺线管的N、S极。 通过投影展示几个小组学生描绘的螺线管周围的磁感线, 及所标的N、S极。 教师用投影仪把条形磁体、蹄形磁体、同名磁极,异名磁 极间的磁感线分布展示出来。 师生概括得出结论:通电螺线管周围存在磁场;通电螺线 管外部的磁场与条形磁体的磁场相似。 学生分组讨 论实验方案。 分组讨论实验步 骤。 学生分组做 探究性实验:探究 通电螺线管的磁 场,并做好实验 记录。 分析、比较, 得出结论。 培养学生归 纳的能力。 会通过 设计实验方 案,有目的 地进行实 验。 描述、 比较、处理 信息的能 力。

霍尔效应测磁场实验报告

实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、实验学时: 四、实验原理: (一)霍耳效应现象 将一块半导体(或金属)薄片放在磁感应强度为B 的磁场中,并让薄片平面与磁场方向(如Y 方向)垂直。如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。 如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即 d B I R U H H = (1) 式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有 B KI U H H = (2) 式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。如果霍耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式 H H KI U B = (3) 算出磁感应强度B 。

图1 霍耳效应示意图 图2 霍耳效应解释 (二)霍耳效应的解释 现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为 evB f B = 方向沿Z 方向。在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为 H E eE f = 方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。当B f 和E f 达到静态平衡后,有 E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为 vbB U H = (4) 通过的电流H I 可表示为 nevbd I H -= 式中n 是电子浓度,得 nebd I v H - = (5) 将式(5)代人式(4)可得 ned B I U H H - = 可改写为

均匀带电圆盘转动下的磁场分

均匀带电圆盘转动下的磁场分布 西南交通大学机械工程学院20090994 朱鹏飞 [摘要]文章通过麦克斯韦方程导出电磁辐射公式在圆盘上任取一个带电小圆环小圆环转动形成电流电流产生电磁场利用场强叠加原理得整个带电环产生的电磁场再计算整个圆盘绕对称轴匀速转动产生的电磁场并进行适当的讨论,在此基础上增加了数字模拟下的均匀带电圆盘转动下的磁场立体分布,并加以讨论。 [关键词]均匀带电圆盘麦克斯韦方程推迟势磁感应强度引言 人们在生活和生产中利用圆盘转动数不胜数,这些圆盘一旦带上电后就成为绕对称轴转动的均匀带电圆盘,由于转动产生电流,电流激电磁场.这种情况可看作若干环形线电荷所激发的电徽场的叠加,这是电磁学中的一个较重要的问题。本文采用矢势对其进行求解.先通过麦克斯韦方程,达朗贝尔方程和洛伦兹变换条件推导出了载流圆盘周围空间的磁场分布完整的解析表达式。进而求解转动带电圆盘的磁场,并对结果讲行讨论. 1原理和公式的推导 1.1波动方程绕对称轴转动在均匀带电圆盘的电磁辐射场应满足麦 克斯韦方程组

在真空中,取(1)式第一式的旋度并利用第二式及得: 同样在(1)中消除电场,可得磁场的偏微分方程: 1. 2电磁场的矢势和标势 在恒定场中,由的无源性引入矢势使: 在变化情况下电场与磁场发生直接关系。因而电场的表达式必然包含矢势在内,把(4)代入(1)第一式得: 该式表示是无旋场,因此它可以用标势描述

因此,一般情况下电场的表达式为: 1. 3达朗贝尔方程及求解 现在由麦克斯韦方程组推导矢势和所满足的基本方程,把(4)和(5)代入(1)中第二式和第三式并应用得: 采用洛伦兹规范 由(6)和(7)式得: 用洛伦兹规范时,和的方程具有相同形式,其意义也特别明显。方程(8)称为达朗贝尔方程,它是非齐次的波动方程,其自

相关文档
最新文档