高能球磨法综述

高能球磨法综述
高能球磨法综述

高能球磨法研究进展

高能球磨法研究进展

摘要:复合材料的性能与应用和其合成所用的粉体密切相关,合成粉体的方式是提高材料特性的重要途径。高能球磨法相比于传统方法,有着反应温度低、产量大和粉体粒径分布均匀等优点,使得其在合成粉体中有重要作用。本文综述了高能球磨法(机械力化学法)在合成粉体方面的具体原理、影响因素和当前研究进展,并进一步展望这种方法在未来的发展前景。

关键字:高能球磨、机械力化学、粉体合成、纳米制备

传统上,新物质的生成、晶型转化或晶格变形都是通过高温(热能) 或化学变化来实现的。按照反应体系的状态,目前合成超细功能粉体的方法可分为固相法、液相法和气相法;若根据合成原理则可分为物理法和化学法。这些方法在粉体合成方面得到了广泛的应用,但也发现存在着各自的不足。例如,物理法可制得粒径易控的超细粒子,但所需设备昂贵;化学法成本低,条件简单,易于通过过程控制和调整粒子大小,但适用范围窄,流程长,收率低,无法工业化生产[1]。高能球磨(high-energy ball milling)又被称为机械力化学(mechanochemistry),是将物理法和化学法结合,其基本原理是晶体物质通过超细磨的过程中,机械力的作用可以启动其化学活性,使得通常需要在高温下进行反应能在较低的温度下进行。因此,高能球磨法可以合成一般化学方法和加热方法所不能得到的具有特殊的超细粉体。这种独特的性质让这种粉体制备方法制备出特殊的超细粉体,使复合材料的合成工艺水平大大提高。因此,本文综述了高能球磨法的最新发展并展望了其在未来的发展趋势。

1. 高能球磨法的原理与特点

高能球磨法是通过球磨机的转动或振动使硬球对原料进行强烈的撞击、研磨和搅拌,能明显降低反应活化能、细化晶粒、增强粉体活性、提高烧结能力、诱

发低温化学反应,最终把金属或合金粉末粉碎为纳米级微粒的方法。其主要原理分为以下几个步骤:

(1)晶粒细化

通过球磨过程以及反复碰撞和碾碎,使得放入的原始粉末逐渐变小直到纳米级别,随后粉末原子中表面产生一系列的键断裂,晶格产生缺陷,然后缺陷不断扩大化,在球磨罐中形成了一系列随时间增多的无序。这种对原有化学态的破坏使得系统本身为了寻求新的平衡而相互交换离子,从而搭配键能。表面或者蔓延到内部的运动会促进放入的不同原料相互侵入对方形成新稳定状态,随即发生化学反应,形成新化合物。

(2)局部碰撞点升温

碰撞的瞬间会在碰撞处产生很大能量,这种瞬间的温度升高也会促进在该地点产生化学作用,球磨罐中的总体温度一般不会超过70℃,但是局部碰撞点的温度却要远高于70℃。个别碰撞点的超高温度会帮助产生的缺陷进行扩散;帮助不同成分侵入对方;帮助原子之间重新组合;帮助键能重新组织。有科学家发现机械化学过程在作用的瞬间也就是在10-8~10-9s的范围内,局部能够产生高温,最高能够达到1000K,产生的高压最高能够达到1~10 GPa。例如行星磨粉磨Zr0

为24

2

小时,晶格畸变达到6×10-3~10×10-3。

(3)晶格松弛与结构裂解

有科学家认为机械力的持续作用会让原料中本身存在的晶格松弛,晶格内部原子的部分电子开始活跃,随后激发出高能量电子以及等离子区域,原有的完整结构被打破而裂解。对于球磨机激发出10 eV的高能量是可行的,但是该能量在通常条件下加热到1000度以上都很难达到。所以说通过机械力作用有可能进行通常情况热化学所不能进行的反应。

高能球磨法与传统低能球磨的不同之处在于球磨的运动速度较大,不受外界转速的限制,使粉体产生塑性变形及相变,而传统的球磨工艺只对粉体起到破碎和混合均匀的作用,高能球磨通过搅拌器将动能通过磨球传递给作用物质,能量利用率大大提高,从而改善材料的性能,是一种节能、高效的材料制备技术,并且,可以批量生产,它已经成为制备纳米材料的重要方法之一[2]。

2. 高能球磨法的影响因素

高能球磨法所需设备少,工艺简单,但影响最终产品组成和性能的因素很多。

2.1 球料比

料球比是指球磨机内物料与研磨体质量之比,是影响球磨过程的重要参数,球的数量太少,撞击和研磨的次数都少,效率低;如果太多,影响了球与球之间的撞击,不能充分发挥击碎作用。蒋太炜[3]在用高能球磨法制备CNTs/Cu复合材料实验中,通过改变球料比,分别为5: 1、10:1、15:1、20:1时(质量比),发现球料比为5:1时,制备得到的复合粉末的中位径D50是最大的,球料比为10:1所制得的复合粉末的D50是最小的,与15:1和20:1所制得的复合粉末的中位径D50相比较,发现D50是依次增加的。这是因为当磨球的质量是固定时,当球料比高,也就是加入的原料比较少,这样易产生空磨,因而能量利用率低,影响球磨效果;球料比低时,也就是加入的原料较多。因为钢球相对于较少,只有小部分的原料被球与球之间的界面捕捉到,所以在球磨过程中,有大量的粉被剂压逸出,进行研磨破碎,其他的由于剪切力和揉搓的作用延展开来,导致D50偏大。

球磨中球的大小直接影响球磨的效率,重量大的球,下落时,具有较大的撞击力,能够击碎大的颗粒。但是,球大则个数少,接触面积小,对料粉的研磨效率低;球小则个数多,接触面积大,对粉料的研磨效率高。因此,在实验中可以综合这两个因素,加入大小不同的球,找到具有最佳的配比,达到较好的球磨效果。

2.2 分散剂添加量

在快速球磨的过程中,粉体、小球和罐壁之间相互高速碰撞而产生的静电摩擦作用使得一些粉体粘在管壁和小球上,进而形成大的颗粒;加入的分散剂可以吸附在粉体的表面,起到降低表面活性的作用,削弱粉体聚集成团的能力。王絮[4]等人在制备YAG粉体的过程中加入无水乙醇作为分散剂,在实验中在50g原料混合物中加入0.0mL、2.5mL、5.0mL、7.5mL、10.0mL、12.5mL无水乙醇溶液并进行60min球磨处理。对比粉体的粒度发现,随着分散剂的增加,粉体颗粒平均粒度先降低,当分散剂用量为10ml时,实验获得的粉体粒度较为集中;当

分散剂用量继续增大时,粉体粒度反而上升。说明在球磨过程中,存在一个最佳分散剂用量,当分散剂在这个范围之内时,可以有效地抑制粉体颗粒的集聚,达到较好的实验效果。

2.3 搅拌轴转速

球磨机转速越高,就会有越多的能量传递给研磨物料。但是并不是转速越高越好。这是因为,一方面,球磨机转速提高的同时,球磨介质的转速一定会提高,当达到某一临界值或以上时,磨球的离心力大于重力,球磨介质就紧贴于球磨容器内壁,磨球、粉料、磨筒处于相对静止的状态,此时球磨作用停止,球磨物料不产生任何冲击作用,不利于塑性变形和合金化进程;另一方面,转速过高会使球磨系统温度升高过快,有时是不利的,例如较高温度可能会导致球磨过程中需要形成的过饱和固溶体、非晶相或其他亚稳态的分解。

2.4 研磨介质

高能球磨中一般采用不锈钢为球磨介质,为了避免球磨介质对样品的污染,在球磨一些易磨性较好的物料是,也采用瓷球。球磨介质要有适当的密度和尺寸,以便对物料产生足够的冲击,这些对球磨后的最终产物都有直接影响。例如研究Ti-Al混合粉末是,若采用直径为15mm的磨球,最终可得到Ti-Al固溶体,而若采用20~25mm的磨球,在同样条件下,即使研磨时间更长,也得不到Ti-Al 固溶体。

2.5 球磨时间

球磨时间的长短直接影响着产物组分和纯度,球磨时间对粒度的影响也较明显。在开始阶段,随着时间的延长粒度下降较快,但到一定时间以后,即使继续延长球磨时间,产品的粒度值下降幅度很小。因此,在一定条件下,随着球磨的进程,合金化程度会越来越高,颗粒尺寸也会逐渐减小最终到一个稳定的平衡状态,此时颗粒的尺寸不会再发生变化。但另一方面,球磨时间越长造成的污染也就越严重,影响产物的纯度。

2.6 球磨容器

球磨容器的材质及形状对球磨的结果有重要影响。在球磨过程中,球磨对球磨容器内壁的撞击和摩擦作用会使球磨容器内壁的部分材料脱落而请入球磨物料中造成污染。常用的球磨容器材料通常选用特殊的材料,例如球磨物料中含有铜或钛时,为了减少污染而选用铜或钛球磨容器。此外,球磨容器的形状也很重要,特别是内壁的形状设计,例如,异形腔,就是在磨腔内安装滑板和凸块,使得磨腔断面有原形成为异形,从而提高介质的滑动速度并产生了向心加速度,增强介质件的摩擦作用,这有利于合金化进程。

2.7 其他因素

影响高能球磨法的因素还有球磨温度、球磨气氛、过程控制剂等。一般认为,温度影响晶体扩散速度,最终影响纳米材料的性能;球磨过程一般在真空或惰性气体的保护下进行,目的是为了防止气体环境产生的污染;过程控制剂的作用是防止粉末团聚,加快球磨进程,提高出粉率。常用的过程添加剂有硬脂酸、固体石蜡、液体酒精和四氯化碳等。

3. 高能球磨法应用进展

3.1 纳米粉体的制备

高能球磨法制备的球磨粉体中会有部分机械能积蓄,使得粉体有较高的表面能,可有有效地防止聚集,得到较好的粉体。

王海涛[5]通过高能球磨制备纳米晶粉体,并利用放电等离子烧结技术(Spark Plasma Sintering,SPS)制备出了高致密度、高强韧性的奥氏体不锈钢块体材料。他在实验中发现,烧结体的硬度、抗拉强度、屈服强度均得到较大提高,随球磨时间增长而增强;延伸率严重降低,随球磨时间增长而降低。力学性能的变化不仅与烧结体中微观应变、位错的存在有关,更与其中马氏体相含量变化相关,表现出了马氏体的硬而脆的特性。该实验探究了不同球磨时间下得到的粉体对烧结块体力学性能的影响,为通过控制粉体合成来控制烧成物力学性质提供了一种方法。

张浩[6]等人采用高能球磨法制备了纳米晶纯钨粉末。通过实验证明了球磨参数对所制备粉体的影响,发现制备纯W纳米粉体的最佳球磨参数为:球料比15∶1;过程控制剂为5%的无水乙醇;球磨时间50h。在最佳球磨参数下制备粉体颗粒形状近似球形,通过XRD图谱计算,其平均晶粒尺寸为15nm,内应变达到0.73。该实验较为准确的得到球磨法制备钨粉时最佳参数,可以指导实际工业生产。

陈站[7]等人将Fe粉与Si粉按3:1的比例进行高能球磨,探索不同条件下混合粉末合金化形成Fe75Si25的效率。研究表明,球磨时间、球料比和球磨机转速对机械合金化(MA)进程有重要影响,发现MA55h后可达到完全合金化,此时Si溶入Fe中形成α-Fe(Si)饱和固溶体,晶粒尺寸减小至7~8nm,是一种比较理想的材料合成原料。该实验表明高能球磨法可以有效地使金属合金化,为金属合金工厂化提供了新的方向。

3.2 粉体改性

杨金鑫[8]等人利用高能球磨法对纳米SiO2进行了表面修饰改性。首先通过高速机械冲击将纳米SiO2粒子镶嵌在微米级的CaCO3粒子表面形成草莓结构的CaCO3/SiO2复合粒子,从而阻止纳米SiO2的团聚。而后又以六甲基二硅氮烷(hexmethyldisilazane,HMDS)和γ-氨丙基三乙氧基硅烷KH550为改性剂对CaCO3/SiO2复合粒子进行了表面改性。实验考察了搅拌速度、CaCO3/SiO2配比、改性温度、改性时间和改性剂用量对CaCO3/SiO2复合粒子形貌和表面改性效果的影响。结果表明:在搅拌速度为 6 500 r/min CaCO3与SiO2的质量比为5:1,以HMDS为改性剂在200 ℃反应90 min时,对纳米SiO2的改性效果最好。CaCO3/SiO2复合粒子既保持了纳米SiO2的纳米效应,同时又具有多重表面同时又具有多重表面结构,在橡胶补强填料和超疏水涂层制备方面有着广阔的应用空间。

3.3 微波介电材料的制备

随着信息技术的发展,微波介电材料应用广泛,因为微波材料的特殊性质,需要降低微波陶瓷的烧结温度。高能球磨法能明显降低反应活化能,可以以较低的温度烧结陶瓷。

程蕾[9]采用高能球磨法制备具有微波介电性能的Mg2TiO4纳米粉体,MgO 和TiO2作为原料,通过高能球磨10~30 h后,混合物由原来的TiO2和MgO增加了Mg2TiO4相,且Mg2TiO4相的主峰含量随球磨时间的增加而上升。通过550℃~ 1050℃(保温4 h预烧,先大量生成MgTiOs和少量MgzTiCV在850℃温度下MgTiO3的量达到最大值。随着温度的继续升高,MgTiO3减少,并大量合成Mg2TiO4相,并在900 ℃温度下Mg2TiO4变成主相,在1000℃下得到纯相的Mg2TiO4粉末。利用高能球磨法合成单相粉末的温度比常规固相合成法制备Mg2TiO4粉体的温度低200 ℃并且球磨30小时在1000 ℃预烧的纳米粉平均粒径为163 nm,效果良好。

郭宝春[10]等人采用高能球磨法,以氧化镁为原料,在不同球磨时间得到粒度大小不同的氧化镁粉体颗粒。高能球磨25h的粉体添加不同摩尔质量LiF,在900℃烧结。结果表明高能球磨法能够有效降低粉末的平均颗粒尺寸,并且高能球磨和添加LiF的双重作用可以显著降低MgO陶瓷的烧结温度,高能球磨25h 的纳米粉添加5mol% (x=0.05)含量 LiF在900℃烧结MgO陶瓷表现出优秀的性能。

虽然高能球磨制备该材料无法优化法微波性能本身,然而其操作方便、工艺简单、无溶剂,粒径分布窄、节能、高效和降低烧结温度等优点让它成为合成微波介电材料的很好选择。

3.4 制备复合材料

在机械化学合成反应过程中,不同组份的均匀分散及混合是其重要特征。因此机械化学反应很适合来制备复合材料,来生成均勾分散的复合结构。一些重要的复合材料都己经尝试用机械化学法来合成,例如一些金属氧化物系统[11]。

申连华[12]等人通过设计正交试验的方法,优化了高能球磨制备Al/B复合材料工艺参数,在二元Al/B的基础上制备纳米复合含能材料。通过这种方法,实现了铝粉和铜粉纳米级的复合,制备出了微米级Al/B/Fe2O3的复合材料。

徐世娇[13]等人采用高能球磨法制备了不同体积分数的碳纳米管(CNT)与Al 粉的混合物,用粉末冶金工艺制备了CNT/Al复合材料。微观结构分析表明,球磨可以分散到一定含量的CNT到Al基体中,并与其产生良好结合。在适当的球磨工艺下。球磨不会造成CNT的严重损伤,拉伸试验表明,CNT体积分数为1.5%

时,力学性能达到最高值,屈服强度相当于纯Al基体提高了53.6%,形成了大量的CNT团聚,力学性能迅速下降。试验表明,高能球磨法能够将CNT有效地分散在Al表面,可以通过调整球磨参数来控制复合材料的力学性能。

4.展望

高能球磨法主要的特点是物料在机械力的作用下发生的结构及物理化学性质上的变化,近期的科研工作已经在多种材料的合成上取得了令人瞩目的成就,并在新材料、化工、冶金、纳米材料领域得到了实际和广泛应用,尤其大多数令人感兴趣的领域是用于制备纳米结构材料和纳米复合材料。机械化学合成方法在磁学、电学、热学性能上均不同于以往普通方法制备的材料,因此它指引了一条新的设计纳米结构的路线,这是一种价格低廉、环境友好、高效率和可控性高的合成方法,是一种使得材料性能具有更多设计可能性且可能工业化生产的新工艺[14]。

参考文献

[1] 宋晓岚, 邱冠周, 杨华明. 超细功能粉体的机械化学合成研究进展[J]. 金属矿山,

2004(7):25-30.

[2] 黄开金. 纳米材料的制备及应用[M].冶金工业出版社, 2009:

[3] 蒋太炜. 高能球磨法制备CNTs/Cu复合材料[D]. 昆明理工大学, 2012:85.

[4] 王絮, 王修慧, 赵国权, 等. 机械力化学法制备YAG粉体的研究[J]. 粉末冶金技术,

2014(01):54-58.

[5] 王海涛. 高能球磨制备不锈钢纳米晶粉体及其放电等离子烧结研究[D]. 燕山大学, 2012:60.

[6] 张浩, 薛丽红, 严有为. 高能球磨法制备纳米晶纯钨粉末的研究[J]. 粉末冶金工业,

2011(04):27-32.

[7] 陈站, 张晋敏, 赵青壮, 等. 高能球磨法制备Fe3Si合金粉末[J]. 材料导报, 2012(08):39-43.

[8] 杨金鑫, 周子鹄, 文秀芳, 等. 机械化学法改性纳米SiO_2粒子(英文)[J]. 硅酸盐学报,

2010(02):320-326.

[9] 程蕾. 高能球磨法制备Mg2TiO4米粉体及其陶瓷的微波介电性能研究[D]. 陕西师范大学,

2013:

[10] 郭宝春, 程蕾, 刘鹏, 等. 高能球磨法和添加LiF低温烧结MgO陶瓷及其微波介电性能的研

究[J]. 陕西师范大学学报, 2013.

[11] 吴皓. 纳米材料机械化学法制备及性能表征[D]. 华东师范大学, 2012:132.

[12] 申连华, 李国平, 罗运军. 高能球磨法制备Al /B /Fe2纳米复合含能材料[J]. 固体火箭技术,

2014.

[13] 许世娇. 高能球磨法制备的碳纳米管增强铝基复合材料的微观组织和力学性能[J]. 金属学报,

2012.

[14] 任红轩. 磁性纳米材料的制备与应用发展趋势[J]. 新材料产业, 2011(08):49-52.

高能球磨法在超微粉体制备中的应用

高能球磨法在超微粉制备中的应用 宗泽宇 (南京工业大学,材料化学工程国家重点实验室,210009) 摘要:简述分别通过高能球磨法制备氧化锆-硬脂酸材料, 纳米氧化亚铜材料 , 纳米 WC/MgO材料,纳米AL 2O 3 /Al复合材料的过程,总结五种材料各自的特点与生产方法。列 举了这五种材料在工业方面的优点与主要应用。 关键词:纳米;高能球磨法;制备; 应用 The Applications about High Energy Milling Zong Zeyu (17,Class 0802, Material department of science & engineering, Nanjing University of Technology ) Abstract: This paper gives a sketch of five materials by High Energy Milling: Zr02-stearci Acid , Nano-cuprous Oxide, Nano-sized WC/MgO, Nano-sized AL2O3/Al composite material,find out their characteristics and preparation. The paper Also list the main applications of this five materials in industry and their advantages. Keywords: nanoparticle; High Energy Milling ; preparation; applications 1 引言 高能球磨法一经出现,就成为制备超细材料的一种重要途径。传统上,新物质的生成、晶型转化或晶格变形都是通过高温(热能) 或化学变化来实现的。机械能直接参与或引发了化学反应是一种新思路。高能球磨法法的基本原理是利用机械能来诱发化学反应或诱导材料组织、结构和性能的变化, 以此来制备新材料。本文简述了通过高能球磨法制备五种材料的方法以及它们各自的应用与优点。 2 制备方法 高能球磨法(又称机械合金化, High Energy Milling)是一种制备合金粉末的高新技术[1],它是在高能球磨[2]作用下,利用金属粉末混合物的反复变形、断裂、焊合、原子间相互扩散或发生固态反应形成合金粉末[3]。机械合金化作为新材料的制备技术之一,特别是其在细微、超细微粉体材料的研究方面占有重要的地位,已引起材料科学界的广泛关注。本文采用高能球磨法制备氧

固相反应

一、固相反应法的特点固相法是通过从固相到固相的变化来制造粉体,其特征是不像气相法和液相法伴随有气相→固相、液相→固相那样的状态(相)变化。对于气相或液相,分子(原子)有很大的易动度,所以集合状态是均匀的,对外界条件的反应很敏感。另一方面,对于固相,分子(原子)的扩散很迟缓,集合状态是多样的。固相法其原料本身是固体,这较之于液体和气体都有很大的差异。固相法所得的固相粉体和最初固相原料可以使同一物质,也可以不是同一物质。[1] 二、物质粉末化机理一类是将大块物质极细地分割,称作尺寸降低过程,其特点是物质无变化,常用的方法是机械粉碎(用普通球磨、振磨、搅拌磨、高能球磨、喷射磨等进行粉碎),化学处理(溶出法)等。另一类是将最小单位(分子或原子)组合,称作构筑过程,其特征是物质发生了变化,常用的方法有热分解法(大多数是盐的分解),固相反应法(大多数是化合物,包括化合反应和氧化还原反应),火花放电法(常用金属铝产生氢氧化铝)等。三、固相反应的具体方法1、机械粉碎法主要应用是球磨法,机械球磨法工艺的主要目的包括离子尺寸的减小、固态合金化、混合或融合以及改变离子的形状。目前已形成各种方法,如滚转磨、振动磨和平面磨。采用球磨方法,控制适合的条件可以得到纯元素、合金或者是复合材料的纳米粒子。其特点是操作简单、成本低,但产品容易被污染,因此纯度低,颗粒分布不均匀[2]。2、热分解法热分解反应不仅仅限于固相,气体和液体也可引发热分解反应,在此只讨论固相的分解反应,固相热分解生成新的固相系统,常用如下式子表示(S代表固相、G代表气相):121 1212 SSGSSGG 第一个式子是最普通的,第二个式子是第一个式子的特殊情况。热分解反应基本是第一式的情况。3、固相反应法由固相热分解可获得单一的金属氧化物,但氧化物以外的物质,如碳化物、硅化物、氮化物等以及含两种金属元素以上的氧化物制成的化合物,仅仅用热分解就很难制备,通常是按最终合成所需组成的原料化合,再用高温使其反应的方法,其一般工序如左图所示。首先是按照规定的组成称量,通常用水等做分散剂,在玛瑙球的球磨内混合,然后通过压滤机脱水后再用电炉焙烧,通常焙烧温度比烧成温度低。在固相反应中粉体间的反应相当的复杂,反应从固体间的接触部分通过离子扩散来进行,但接触状态和各种原料颗粒的分布情况显著地收到颗粒的性质(粒径、颗粒形状和表面状态等)和粉体处理的方法(团聚状态和填充状态等等)的影响。 另外,当即热上述粉体时,固相反应以外的现象也同时进行。一个烧结,另一个是颗粒的生长,这两种现象均在同种原料间和反应生成物间出现。对于固相反应生成的化合物,原料的烧结和颗粒生长均使原料的反应性降低,并且导致扩散距离增加和接触点密度的减少,所以应尽量抑制烧结和颗粒生长。4、点火花放电法把金属电极插入到气体或者液体等绝缘体中,不断地增高电压,如果首先提高电压可观察到电流增加,在某一点产生电晕放电,之后即使不增加电压电流也会自然增加,向瞬时稳定的放电状态即电弧放电移动。从电晕放电到电弧放电过程中的过度放电称为火花放电,火花放电持续的时间很短,但是电压梯度很高,电流密度很大,也就是说火花放电在短时间内能释放出很大的电能。因此在放电的瞬间产生高温,同时产生很强的机械能。在煤油之类的液体中利用,利用电极和被加工物之间的火花放电来进行放电加工是电加工中广泛使用的一种方法。在放电加工中,电极、被加工物会生成工屑,如果我们积极地控制工屑的生成就有可能制造出微粉,也就是电火花放电法制造微粉。图2 电火花发制备粉体装置示意图[3] 原料 称量称量溶剂混合脱水干燥煅烧粉碎造粒、整粒原料烧结用粉体图1 固相反应法制备粉体工艺流程 四、总结除了上述制备方法之外还有溶出法等,固相法来制备陶瓷粉体方法很多,

高温固相法

高温固相法 氧化铈(CeO2)是一种廉价、用途极广的轻稀土氧化物,已被用于发光材料、抛光剂、紫外吸收剂、汽车尾气净化催化剂、玻璃的化学脱色剂以及耐辐射玻璃等。氧化铈的物理化学性质可能直接影响材料的性能,如超细氧化铈加入不但可以降低陶瓷的烧结温度,还可以增加陶瓷的密度;大比表面积可以提高催化剂的催化活性;且由于铈具有变价性,对发光材料也具有重要意义。铈的抗菌作用早在19世纪晚期就已经被发现,相关研究表明铈对16类种属细菌中39个菌种有抑菌作用,此外铈对于弱酸性的细菌敏感性最为明显。 纳米氧化铈的制备方法主要包括固相法、液相法和气相法。固相法是一种传统的粉体制备工艺,是在高温下通过固-固反应制备产品的方法,具有产量大、制备工艺简单易行等优点,但容易混入杂质等缺点,一般使用较少。液相法相对于固相法和气相法而言,具有不需苛刻的物理条件、易中试放大、操作方便和粒子可控的特点,因而研究广泛。液相法主要包括沉淀法、溶胶-凝胶法、水热法和微乳液法等。沉淀法制备纳米级氧化物粉体工艺中,在沉淀反应、干燥、焙烧三个阶段会导致不同程度的团聚,因此需要解决粒子间的团聚问题。溶胶-凝胶法以易于水解的金属结合物(无机盐或金属醇盐)为原料,使之在某种溶剂中和水发生反应,经过水解和缩聚过程逐渐凝胶化,再经干燥和煅烧得到所需氧化物粉末,可以使得粒子的粒径达到纳米级。水热法是在特制的密闭反应容器里,采用水溶液作为介质,通过对反应

容器加热,创造一个高温高压反应环境,使得通常难溶或不溶的物质溶解并且重结晶,该法应用较为广泛。微乳液法制备的粒子,反应条件容易实现,所得粒子粒度小,且可控制,但是应用这种方法制备超细粒子所消耗的表面活性剂及溶剂的量很多,成本较高。气相法是指两种或两种以上单质或化合物在气相中发生化学反应生成纳米级新化合物的方法,包括溅射法、通电加热蒸发法、挥发性化合物混合法和激光诱导化学气相沉积(LICVD)等,但是需要的条件严苛,对反应条件的控制也更高。 固相法就是把金属盐或金属氧化物按配方充分混合,研磨后进行煅烧,直接得到产物或再研磨得到产物。固相法包括固相热分解法、高温固相化学反应法和室温固相化学反应法等。其中,固相热分解法制备超微粉的工艺比较简单,但生成的粉末易团聚,需要进行二次粉碎;高温固相化学反应法是将金属盐或金属氧化物按定比例充分混合,研磨后进行煅烧,通过发生固相反应直接制得纳米粉末的方法。室温固相化学反应法是近几年发展起来的一种新型合成方法,该法是在室温下对反应物直接进目行研磨,合成一些中间化合物,再对化合物进行适当处理得到最终产物。由于它从根本上消除了溶剂化作用,使反应在全新的化学环境下进行,因而有可能获得在溶液中不能得到的物质。此法成本低,实验设备简单,工艺流程短,操作方便,且粒度分布均匀,无团聚现象,工业化生产前景乐观,是制备纳米材料的重要方法之一。目前,利用室温固相反应法已成功地制备了许多草酸盐、碳酸

高能球磨法综述

高能球磨法研究进展

高能球磨法研究进展 摘要:复合材料的性能与应用和其合成所用的粉体密切相关,合成粉体的方式是提高材料特性的重要途径。高能球磨法相比于传统方法,有着反应温度低、产量大和粉体粒径分布均匀等优点,使得其在合成粉体中有重要作用。本文综述了高能球磨法(机械力化学法)在合成粉体方面的具体原理、影响因素和当前研究进展,并进一步展望这种方法在未来的发展前景。 关键字:高能球磨、机械力化学、粉体合成、纳米制备 传统上,新物质的生成、晶型转化或晶格变形都是通过高温(热能) 或化学变化来实现的。按照反应体系的状态,目前合成超细功能粉体的方法可分为固相法、液相法和气相法;若根据合成原理则可分为物理法和化学法。这些方法在粉体合成方面得到了广泛的应用,但也发现存在着各自的不足。例如,物理法可制得粒径易控的超细粒子,但所需设备昂贵;化学法成本低,条件简单,易于通过过程控制和调整粒子大小,但适用范围窄,流程长,收率低,无法工业化生产[1]。高能球磨(high-energy ball milling)又被称为机械力化学(mechanochemistry),是将物理法和化学法结合,其基本原理是晶体物质通过超细磨的过程中,机械力的作用可以启动其化学活性,使得通常需要在高温下进行反应能在较低的温度下进行。因此,高能球磨法可以合成一般化学方法和加热方法所不能得到的具有特殊的超细粉体。这种独特的性质让这种粉体制备方法制备出特殊的超细粉体,使复合材料的合成工艺水平大大提高。因此,本文综述了高能球磨法的最新发展并展望了其在未来的发展趋势。 1. 高能球磨法的原理与特点 高能球磨法是通过球磨机的转动或振动使硬球对原料进行强烈的撞击、研磨和搅拌,能明显降低反应活化能、细化晶粒、增强粉体活性、提高烧结能力、诱

高温固相法

高温固相合成是指在高温(1000~1500℃)下,固体界面间经过接触,反应,成核,晶体生长反应而生成一大批复合氧化物,如含氧酸盐类、二元或多元陶瓷化合物等。 高温固相法是一种传统的制粉工艺,虽然有其固有的缺点,如能耗大、效率低、粉体不够细、易混入杂质等,由于该法制备的粉体颗粒无团聚、填充性好、成本低、产量大、制备工艺简单等优点,迄今仍是常用的方法。 高温固相合成是指在高温(1000~1500℃)下,固体界面间经过接触,反应,成核,晶体生长反应而生成一大批复合氧化物,如含氧酸盐类、二元或多元陶瓷化合物等。高温固相法是一种传统的制粉工艺,虽然有其固有的缺点,如能耗大、效率低、粉体不够细、易混入杂质等,由于该法制备的粉体颗粒无团聚、填充性好、成本低、产量大、制备工艺简单等优点,迄今仍是常用的方法。 扩展资料 合成稀土三基色荧光粉的几种方法. (一)高温固相反应法 此方法是制备稀土三基色荧光粉最原始的一种方法.以稀土三基色荧光粉中的红色荧光粉(YEu)O3为例,用这种方法制备的工艺如下:称取一定计量比的Y2O3和Eu2O3(99.99%或以上)加入定量助熔剂,混匀在1300-1500oC灼烧2h左右后取出研磨并洗涤即可.这种方法操作简单但粒度较大,会有成分偏析的现象,这样会降低发光效率,若灼烧温度偏高则会烧结严重在最后研磨时会破坏激活剂所在的晶格

位置从而导致发光效率的降低. (二)共沉淀法制备前驱体 在发现了高温固相法的缺点后人们一直在探索一种新的方法试图克服高温固相反应的弊端.结果发现,在溶液合成荧光粉会使产品成分均匀.方法如下:(同样以红色荧光粉为例)取一定配比的Y2O3和Eu2O3(99.99%或以上)用HNO3或HCl溶解,制成混合稀土酸溶液后用草酸与其反应直至完全在经烘干,其他方法同方法(一).这种方法制出的产品成分组成相对均匀很少出现成分的偏析,但粒度不易控制,工序比第一种方法稍复杂. 以上两种方法使比较常用的也已形成工业化生产,虽然两种方法都存在着不足,但这两种方法制备出来的产品比其他方法合成的产品在发光性能指标上有着很大的优势.

实验报告—固相反应

南昌大学实验报告 (样本) 学生姓名:×××学号: 5702106*** 专业班级:无机材料062班 实验类型:■演示□验证□综合□设计□创新实验日期:2008-11-20实验成绩: 实验五固相反应 一.实验目的与内容 固相反应是材料制备中一个重要的高温动力学过程,固体之间能否进行反应、反应完成的程度、反应过程的控制等直接影响材料的显微结构,并最终决定材料的性质,因此,研究固体之间反应的机理及动力学规律,对传统和新型无机非金属材料的生产有重要的意义。 1.本实验的目的: 掌握TG法的原理,采用TG法研究固相反应的方法。通过Na2CO3-SiO2系统的反应验证固相反应的动力学规律—金斯特林格方程。通过作图计算出反应的速度常数和反应的表观活化能。 2.实验原理 固体材料在高温下加热时,因其中的某些组分分解逸出或固体与周围介质中的某些物质作用使固体物系的重量发生变化,如盐类的分解、含水矿物的脱水、有机质的燃烧等会使物系重量减轻,高温氧化、反应烧结等则会使物系重量增加。 现代热重分析仪常与微分装置联用,可同时得到TG-DTG曲线。通过测量物系质量随温度或时间的变化来揭示或间接揭示固体物系反应的机理或反应动力学规律。 固体物质中的质点,在高于绝对零度的温度下总是在其平衡位置附近作谐振动。温度升高时,振幅增大。当温度足够高时,晶格中的质点就会脱离晶格平衡位置,与周围其它质点产生换位作用,在单元系统中表现为烧结,在二元或多元系统则可能有新的化合物出现。这种没有液相或气相参与,由固体物质之间直接作用所发生的反应称为纯固相反应。实际生产过程中所发生的固相反应,往往有液相或气相参与,这就是所谓的广义固相反应,即由固体反应物出发,在高温下经过一系列物理化学变化而生成固体产物的过程。 固相反应属于非均相反应,描述其动力学规律的方程,通常采用转化率G(已反应的反应物量与反应物原始重量的比值)与反应时间t之间的积分或微分关系来表示。 测量固相反应速率,可以通过TG法(适应于反应中有重量变化的系统)、量气法(适应于有气

高能球磨法

高能球磨法 制备纳米晶Zn铁氧体 姓名:李成利 学号:1104030118 班级:无机非金属111

摘要:用高能球磨法制备了纳米晶Zn 铁氧体.通过样品的穆斯堡尔(Mossbauer )谱及RD 谱的测定,研究了纳米晶的形成过程.结果表明:球磨约3h ——Fe 2O 3即与ZnO 发生机械化学反应生成Zn 铁氧体,这种反应是通过先形成。α——Fe 203——ZnO 固溶体而进行的.制得的纳米晶铁氧体有一定的晶格崎变. 关键词:纳米晶、Zn 铁氧体、高能球磨法 Mossbauer 谱、XRD

内容:Leefslhtel等(1)在70年代后期研究了α——Fe203与Zn0混合粉体在惰性气体气氛下在普通球磨过程中的变化,发现球磨400多 小时后有ZnFe 204形成;KosmaC等(2)利用振 动式球磨机,发现在球磨的初期可以形成Zn 铁氧体,但最终得到的是非平衡态的固溶体(Fe,Zn)0.作者利用行星式高能球磨机首次合成了晶粒大小为snm的zn铁氧体纳米晶(3).本 文研究由α——Fe 203与ZnO合成纳米晶 ZnFe204的过程.

?实验方法 ?原料为(纯度高于99.5%)的α——Fe203和ZnO粉体.先将两种粉体分别过200目筛,然后以1:1的摩尔比在玛瑙研钵中混合均匀.球磨在1ooml的不锈钢球磨罐中进行,用60个直径为8mm的硬质钢球,钢球与原料的质量比20:1. 所用高能球磨机的型号为QM一1F行星式.球磨在室温下进行,球磨机转速为200r/min.当球磨达不同的预定时间后停机取少量样品进行性能测试. ?在室温下用等加速电磁驱动型Mossbauer谱仪测定不同球磨时间所得样品的Mossbuaer谱,放射源为57Co(Rh); 用25μm厚的α——Fe 203箔进行速度定标.XRD测定所用 靶为cuKa,入=1.54nm·

高能球磨与普通球磨的区别

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/4f547932.html,) 高能球磨与普通球磨的区别 随着实验室球磨机的种类越来越多,如何选择合适的球磨机成了一个难题。如行星式球磨机、实验滚筒球磨机、实验搅拌球磨机……一系列实验室球磨机,了解其区别,成了快速选择合适机型的一种方法。 实验室球磨机的区别从研磨方式分有行星式、滚筒式、搅拌式等等,研磨方法有干法研磨和湿法研磨,而普通球磨和高能球磨是以磨球研磨时对物料作用所蕴含的能量高低来区分的。 目前,普通球磨与高能球磨并没有一个相关的标准。如果只以球磨时的转速来鉴定又很不准确。我们不能说同一台设备,在10r/min时是普通球磨,到100r/min时就变成了高能球磨。

用实验室球磨机中的普通球磨机和高能球磨机来进行对比一下或许更加清楚。滚筒球磨机是十分经典的普通球磨机,而行星式球磨机广泛运用于机械合金化等高能球磨法,是十分热门的高能球磨机。同一大小机型,行星式球磨机的较高转速在1000r/min以上,而滚筒球磨机转速约在100-200r/min之间,球磨时产生的能量高下立见。 你可能要问这不就是转速的区别吗?当然不是,滚筒球磨机要做到1000r/min很简单,但市场上的机型多在100-200r/min 之间,是因为滚筒球磨机受到临界转速的限制根本用不上这么高的转速,一旦转速产生的离心力超过磨球所受重力,磨球就会与球磨罐同时运动,相对静止,研磨完全失效。行星式球磨机则是多种离心力相互作用,行星式结构使得多种力得到平衡,始终能够有效研磨,将大部分能量用于球磨作用之中。 本文摘自变宝网-废金属_废塑料_废纸_废品回收_再生资源B2B交易平台网站; 变宝网官网:https://www.360docs.net/doc/4f547932.html,/?cj 买卖废品废料,再生料就上变宝网,什么废料都有!

球磨

九江工贸有限公司铁石坨选矿球磨机三规一制自学考试试卷考试时间:姓名:岗位:分数:阅卷人: 一、填空题:(每题1分共30分) 1、上岗前()穿戴好劳动保护用品;班前、班中严禁() 2、作业前应认真检查作业地点的安全情况,发现严重危及人身安全的征兆时,应迅速撤出危险区,同时设置警戒和照明标志,()人员和车辆通行,并报告单位负责人。 3、设备运转时()触摸运转部位。 4、设备停机处理故障()严格落实“四牌”使用规定。 5、两米以上属于登高作业,必须系安全带,并悬挂在上方的()点上。 6、设备运转时()处理故障和擦拭清理设备。 7、吊装作业时必须设专人指挥,指挥信号协调一致,吊装作业范围下面()行走或停留。 8、在生产过程中,所有岗位人员必须与机动车辆保持一定的()距离。 9、所有检修、抢修、临时性工作必须制定安全措施,安全措施要切合工作实际有针对性,必须达到人人清楚相关内容,安全措施与()规程同等效率。 10、班中要认真遵守安全生产的有关规定,()发生事故。 11、非本岗位人员,()操作本岗设备。 12、检查确认各部地脚、联接螺丝()牢固可靠。 13、设备润滑点位按()加注润滑油。 14、接班后,()对本班发生的问题负责。 15、交本班设备()、参数变化、停机时间及原因。 16、对设备各部积矿、积油进行清理,油污擦拭干净,机体无积尘、油污,达到()。 17、检查确认安全装置是否牢固、各种仪表()。 18、严禁用()进行球磨机盘车,应用慢传盘动球磨机。 19、环境温度低于()℃时,开机前半小时启动油站加热系统。 20、球磨机停机超过()小时,在开机前必须用慢传盘车,摇散磨体内部结块物。 21、球磨台时:()t/h 。 22、磨矿浓度:一段()% ;二段()% 。 23、球磨机电流:一段()A;二段()A。 24、球磨机充填率:一段()% ;二段()% 。 25、球磨机开机顺序:空气离合器气泵→()→()→球磨机主机→空气离合器→大齿圈喷射润滑。 26、两个班组进行交接时需交接本班()及检修情况。 27、交接班时应交接本班工艺技术状况及()指标完成情况。 28、交接班时要确保记录本多种记录填写齐全完整,双方()后签字交接。 29、职工交班前要填写好()。 30、交接班时双方要在记录本上签字,未履行签字手续不准()。 二、选择题:(每题1分共30分;在括号里填写相关字母) 1、在生产过程中,()用湿手开停电气设备,电气设备发生故障必须找电工处理。 A、允许 B、可以 C、禁止 2、安全生产“三为零”指的是()为零、违规为零、事故为零。 A、隐患、 B、事故 C、疾病 3、发现有人触了电,你应立即()使其脱离电源。 A、用手去拉触电者 B、用绝缘物拨开电源 C、顺手拿物拨开电源

实验一 固相反应

实验一固相反应 一、实验目的 1. 探讨Na2CO3-SiO2系统的固相反应动力学关系。 2. 掌握用失重法进行固相反应研究的方法。 3. 验证固相反应的动力学规律——杨德方程。 二、实验原理 固相物质中的质点,温度升高时,振动要相应增大,达到一定温度时,其中的若干原子或离子便具有一定的活度,以至可以跳离原来的位置与周围的其他质点发生换位作用。在一元系统中表现为烧结的开始;如果是二元或多元系统,则表现为表面相接触的各物质间有新的化合物生成,亦即发生了固相反应。温度升高,固相反应的速度增大。这种反应是在没有气相和液相参加下进行的,反应发生的温度低于液相出现的温度,这种反应称作纯固相反应。不过实际生产工艺中是在生成的液相和气相参与下所进行的固相反应,因此,这里所提的固相反应是广义的,即由固态反应物出发,在高温下经一系列物理化学变化而生成固态产物的过程。 测定固相反应速度问题,实际上就是测定反应过程中各反应阶段的反应量的问题。因此,有许多中测定方法。 本实验是通过失重法研究Na2CO3-SiO2系统的固相反应,以观察它们之间的反应动力学关系,并可对固相反应的速度做出定量的研究和验证固相反应动力学公式。 Na2CO3-SiO2系统的固相反应按下式进行 Na2CO3+SiO2=Na2SiO3+CO2↑ 此反应是按分子比例作用的。若能测得反应进行中各时间下失去的CO2量,就可计算这段时间内反应物的反应量或生成物的生成量。据此,按照固相反应的动力学关系则可求得Na2CO3-SiO2系统固相反应的速度常数。 三、实验仪器装置 1. 电炉1台 2. 电流表1台 3. 温度控制器1台 4. 镍铬电偶1支 5. 热天平1台 6. 坩埚及挂钩1组 实验装置如图1所示。

高温固相法

高温固相法 高温固相反应法 此方法是制备稀土三基色荧光粉最原始的一种方法。以稀土三基色荧光粉中的红色荧光粉(yeu)o3为例,用这种方法制备的工艺如下:称取一定计量比的y2o3和eu2o3(99.99%或以上)加入定量助熔剂,混匀在1300-1500oc灼烧2h左右后取出研磨并洗涤即可。这种方法操作简单但粒度较大,会有成分偏析的现象,这样会降低发光效率,若灼烧温度偏高则会烧结严重在最后研磨时会破坏激活剂所在的晶格位置从而导致发光效率的降低。 固相法通常具有以下特点: 1)固相反应一般包括物质在相界面上的反应和物质迁移两个过程。2)一般需要在高温下进行。 3)固态物质间的反应活性较低 4)整个固相反应速度由最慢的速度所控制。 5)固相反应的反应产物具阶段性:原料→最初产物→中间产物→最终产物。 固相法按其加工的工艺特点又可分为机械粉碎法和固相反应法两类。机械粉碎法是用碎机将原料直接研磨成超细粉。固相反应法是把金属盐或金属氧化物按配方充分混合,经研磨后再进行煅烧发生固相反应后,直接得到或再研磨后得到超细粉。 近年来稀土三基色荧光粉以其良好的发光性能和稳定的物理性质在发光材料中占有不可替代的位置。但随着需求领域的扩展,对荧光粉

提出了不同的要求。这就需要不断改进荧光粉的某些性质如:粒度,成分的均匀程度,纯度,工业生产也需降低成本。满足这些要求还需从合成方法下手。下面简单的叙述一下合成稀土三基色荧光粉的几种方法。 共沉淀法制备前驱体 在发现了高温固相法的缺点后人们一直在探索一种新的方法试图克服高温固相反应的弊端。结果发现,在溶液合成荧光粉会使产品成分均匀。方法如下:(同样以红色荧光粉为例)取一定配比的y2o3和eu2o3(99.99%或以上)用hno3或hcl溶解,制成混合稀土酸溶液后用草酸与其反应直至完全在经烘干,其他方法同方法(一)。这种方法制出的产品成分组成相对均匀很少出现成分的偏析,但粒度不易控制,工序比第一种方法稍复杂。 以上两种方法使比较常用的也已形成工业化生产,虽然两种方法都存在着不足,但这两种方法制备出来的产品比其他方法合成的产品在发光性能指标上有着很大的优势。

功能陶瓷的固相反应法制备及介电性能测试

功能陶瓷的固相反应法制备及介电性能测试 一、实验目的 1、了解制备功能陶瓷材料的固相反应法; 2、掌握用LCR仪测试功能陶瓷材料介电性能的方法; 3、测量特定频率及温度范围内BaTiO3陶瓷的介电性能随频率及温度的变化; 4、结合实验结果分析BaTiO3陶瓷的介电性能与频率及温度的关系。 二、实验原理 固相反应法制备功能陶瓷: 制备功能陶瓷材料的方法有很多种,其中最成熟、应用最为广泛的则是固相反应法。这种方法以高纯度粉末(常为氧化物)为原料,经精确称量后与球磨介质(常为球状,一般用ZrO2、Al2O3、玛瑙等高硬度材料)及分散液体(通常为水或酒精)混在一起,经球磨、干燥、过筛后得到颗粒细小、混合均匀的粉末。均匀混合的粉末在高温下发生化学反应,合成所需的物相,此过程称为预烧结(又称锻烧)。之后再次进行球磨、干燥、过筛,并将得到的颗粒细小的粉末与少量有机物水溶液(如PV A、PVB等)混合在一起、研磨后过筛(此过程称为造粒),以增加粉末在成型过程中的可塑性和流动性,并减小粉末与模具间的摩擦。将造粒后的粉末放置于金属模具中,并施加高压,即得到具有所需形状的压粉体(又称素胚),此过程称为成型。压粉体具有一定的强度和致密度,但其中仍存在很多气孔,需通过高温下的烧结过程予以排除。由于粉末颗粒细小,具有较高的表面能,这和高温一起构成了烧结过程的动力。在烧结动力的作用下,颗粒之间发生传质的过程,同时伴随着晶粒的长大、大部分气孔的排除、体积的收缩、密度的增大及强度的提高,最终得到致密的陶瓷材料。 材料的介电性能及其测试方法: 介电性是材料对外加电场的一种反应。介电材料内的电荷在外加电场的作用下会发生位移,导致正、负电荷中心不重合,从而发生电极化、在介质表面形成束缚电荷,并在宏观上表现为电容及介电常数。介电常数 是表征材料介电性能

实验报告3—固相反应

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:■演示□验证□综合□设计□创新实验日期:实验成绩: 实验三固相反应 一、实验目的 1. 掌握TG法的原理,采用TG法研究固相反应的方法。 2. 通过Na2CO3-SiO2系统的反应验证固相反应的动力学规律—金斯特林格方程。 3. 通过作图计算出反应的速度常数和反应的表观活化能。 二、实验原理 固体材料在高温下加热时,因其中的某些组分分解逸出或固体与周围介质中的某些物质作用使固体物系的重量发生变化,如盐类的分解、含水矿物的脱水、有机质的燃烧等会使物系重量减轻,高温氧化、反应烧结等则会使物系重量增加。 现代热重分析仪常与微分装置联用,可同时得到TG-DTG曲线。通过测量物系质量随温度或时间的变化来揭示或间接揭示固体物系反应的机理或反应动力学规律。 固体物质中的质点,在高于绝对零度的温度下总是在其平衡位置附近作谐振动。温度升高时,振幅增大。当温度足够高时,晶格中的质点就会脱离晶格平衡位置,与周围其它质点产生换位作用,在单元系统中表现为烧结,在二元或多元系统则可能有新的化合物出现。这种没有液相或气相参与,由固体物质之间直接作用所发生的反应称为纯固相反应。实际生产过程中所发生的固相反应,往往有液相或气相参与,这就是所谓的广义固相反应,即由固体反应物出发,在高温下经过一系列物理化学变化而生成固体产物的过程。 固相反应属于非均相反应,描述其动力学规律的方程,通常采用转化率G(已反应的反应物量与反应物原始重量的比值)与反应时间t之间的积分或微分关系来表示。 测量固相反应速率,可以通过TG法(适应于反应中有重量变化的系统)、量气法(适应于有气体产物逸出的系统)等方法来实现。本实验通过失重法来考察Na2CO3-SiO2系统的固相反应,并对其动力学规律进行验证。Na2CO3-SiO2系统固相反应按下式进行: Na2CO3+SiO2—→Na2SiO3+CO2↑ 恒温下通过测量不同时间t时失去的CO2的重量,可计算出Na2CO3的反应量,进而计算

高温固相法

固相法通常具有以下特点: 1)固相反应一般包括物质在相界面上的反应和物质迁移两个过程。 2)一般需要在高温下进行。 3)固态物质间的反应活性较低 4)整个固相反应速度由最慢的速度所控制。 5)固相反应的反应产物具阶段性:原料→最初产物→中间产物→最终产物。 固相法按其加工的工艺特点又可分为机械粉碎法和固相反应法两类。机械粉碎法是用碎机将原料直接研磨成超细粉。固相反应法是把金属盐或金属氧化物按配方充分混合,经研磨后再进行煅烧发生固相反应后,直接得到或再研磨后得到超细粉。 稀土三基色荧光粉以其良好的发光性能和稳定的物理性质在发光材料中占有不可替代的位置。但随着需求领域的扩展,对荧光粉提出了不同的要求。这就需要不断改进荧光粉的某些性质如:粒度,成分的均匀程度,纯度,工业生产也需降低成本。满足这些要求还需从合成方法下手。下面简单的叙述一下合成稀土三基色荧光粉的几种方法。 (一)高温固相反应法

此方法是制备稀土三基色荧光粉最原始的一种方法。以稀土三基色荧光粉中的红色荧光粉(yeu)o3为例,用这种方法制备的工艺如下:称取一定计量比的y2o3和eu2o3(99.99%或以上)加入定量助熔剂,混匀在1300-1500oc灼烧2h左右后取出研磨并洗涤即可。这种方法操作简单但粒度较大,会有成分偏析的现象,这样会降低发光效率,若灼烧温度偏高则会烧结严重在最后研磨时会破坏激活剂所在的晶格位置从而导致发光效率的降低。 (二)共沉淀法制备前驱体 在发现了高温固相法的缺点后人们一直在探索一种新的方法试图克服高温固相反应的弊端。结果发现,在溶液合成荧光粉会使产品成分均匀。方法如下:(同样以红色荧光粉为例)取一定配比的y2o3和eu2o3(99.99%或以上)用hno3或hcl溶解,制成混合稀土酸溶液后用草酸与其反应直至完全在经烘干,其他方法同方法(一)。这种方法制出的产品成分组成相对均匀很少出现成分的偏析,但粒度不易控制,工序比第一种方法稍复杂。

实验报告1—固相反应

成都理工大学实验指导书课程:材料科学基础实验 专业:材料科学与工程班级 班级: 指导教师: 单位: 时间:2014年5月

实验一:固相反应动力学 一、实验目的 1. 掌握TG法的原理,采用TG法研究固相反应的方法。 2. 通过CaCO3-SiO2系统的反应验证固相反应的动力学规律—金斯特林格方程。 3. 通过作图计算出反应的速度常数和反应的表观活化能。 二、实验原理 固体材料在高温下加热时,因其中的某些组分分解逸出或固体与周围介质中的某些物质作用使固体物系的重量发生变化,如盐类的分解、含水矿物的脱水、有机质的燃烧等会使物系重量减轻,高温氧化、反应烧结等则会使物系重量增加。 现代热重分析仪常与微分装置联用,可同时得到TG-DTG曲线。通过测量物系质量随温度或时间的变化来揭示或间接揭示固体物系反应的机理或反应动力学规律。 固体物质中的质点,在高于绝对零度的温度下总是在其平衡位置附近作谐振动。温度升高时,振幅增大。当温度足够高时,晶格中的质点就会脱离晶格平衡位置,与周围其它质点产生换位作用,在单元系统中表现为烧结,在二元或多元系统则可能有新的化合物出现。这种没有液相或气相参与,由固体物质之间直接作用所发生的反应称为纯固相反应。实际生产过程中所发生的固相反应,往往有液相或气相参与,这就是所谓的广义固相反应,即由固体反应物出发,在高温下经过一系列物理化学变化而生成固体产物的过程。 固相反应属于非均相反应,描述其动力学规律的方程,通常采用转化率G(已反应的反应物量与反应物原始重量的比值)与反应时间t之间的积分或微分关系来表示。 测量固相反应速率,可以通过TG法(适应于反应中有重量变化的系统)、量气法(适应于有气体产物逸出的系统)等方法来实现。本实验通过失重法来考察CaCO3-SiO2系统的固相反应,并对其动力学规律进行验证。CaCO3-SiO2系统固相反应按下式进行: CaCO3+SiO2—→CaSiO3+CO2↑ 恒温下通过测量不同时间t时失去的CO2的重量,可计算出CaCO3的反应量,进而计算出其对应的转化率G,来验证金斯特林格方程:[1-(2G/3)-(1-G)2/3]=K k t的正确性。 式中,K k=Aexp(-Q/RT)为金斯特林格方程的速度常数,Q为反应的表观活化能。改变反应温度,则可通过金斯特林格方程计算出不同温度下的K k和Q。 三、主要仪器设备及耗材

固相反应

固相反应实验 一、实验目的 固相化学反应是人类最早使用的化学反应之一,固相化学反应研究固体物质的制备、结构、性质及应用。固相反应不使用溶剂,具有高选择性、高产率、工艺过程简单等优点,已成为人们制备新型固体材料的主要手段之一。固态物质之间可以直接进行反应,当温度高到一定程度,晶格中的原子或离子脱离平衡的晶格位置而扩散迁移,如果两种物质彼此接触,则在界面上就会发生物质的交换和相互反应。这种反应可完全不在液相或气相条件下进行。对大多数硅酸盐而言,该温度大约为0.6~0.9Tm(Tm为物质熔点),人们把无液相、气相参与的直接反应称为纯固相反应。固相化学反应能否进行,取决于固体反应的结构和热力学函数。所有固相化学反应和溶液中的化学反应一样,必须遵守热力学的限制,即整个反应的吉布斯函数改变小于零。在满足热力学条件下,反应物的结构成了反应速率的决定性因素。 本实验的目的: 掌握TG法的原理,熟悉TG法研究固相反应的方法。 二、实验原理 固相反应过程一般为放热过程(晶体材料有序度较高,晶态相之间熵的差异较小,只有在放热时,Gibbs 自由能才会减小,但多数固相反应是在恒温条件下进行的,因为固相反应速率一般较低,反应所放出的热量有足够的时间从固体材料中散发掉或放热量远小于外界所提供的热量)。 TG法研究固相反应的原理: 在程序温度控制下,把样品重量的变化对时间进行连续记录,测量物质的质量(或重量)随温度变化的一种技术叫做TG(热重)法。 通常以纵坐标表示重量变化,横坐标表示温度,重量对温度的关系曲线,称为TG(热重)曲线。 在正常情况下,TG曲线水平部分为恒定重量的特征。TG曲线的形状和重复性取决于实验条件的稳定性。误差来源于温度测量的不准确性、空气浮力、程序温度、炉子气氛及被研究对象的反应热。 TG法可以研究物质的热分解、物质在各种气氛中的行为、反应动力学、矿物鉴定、化合物分离条件。本实验通过失重法来考察CuSO4·5H2O固相反应。 本实验由WRT-3P 热重仪测定, 升温速率10℃?min- 1, 样品五水硫酸铜10~15 mg。 三、实验步骤: 开机预热: 1.打开各控制单元的电源开关(数据站接口单元,差热放大单元,温控单元)。 2.在打开温控单元电源开关时,用手指按住面板上的朝上键“∧”,使SV显示器显示为“stop”后,松开 此键。 3.开启冷却水。 4.启动计算机,此时预热半小时。 装取样品: 1.松开炉盖上的螺栓,将炉盖轻轻移开,用镊子取出上保温盖,再用镊子取出里面的小瓷盖,取出样品杆 上的已测过的样品坩埚,放入已称好质量的被测的样品坩埚。注意坩埚放入时,坩埚底面与样品杆托盘平面接触良好,注意样品不要打翻在里面造成样品杆污染。 2.装好样品后,用镊子盖上小瓷盖,再装上保温盖,转回炉盖,旋上螺栓。 3.打开温控程序窗口,设置温控程序后,在启动电炉电源按钮后,点击“run”运行。 4.打开“WRT-3P”应用软件窗口,输入样品名,样品质量及相关实验参数。 采样: 完成实验后,点击停止采样,保存TG曲线。点击温控程序窗口上的“stop”键,停止加热。然后关闭电炉电源。

固相反应实验报告

实验报告 固相反应动力学实验 院(系) 材料科学与工程学院 专 业 材料类 班 级 2010级创新班 学生姓名 李智豪 2013 年 5 月 13 日

一、实验目的 1、研究扩散控制固相反应机理,过程动力学。 2、学习研究Na 2CO 3 -SiO 2 系统的固相反应。 3、验证金斯特林方程,研究转化率和时间的关系。 二、实验方法 1、研究系统 Na 2CO 3 -SiO 2 系统(均为分析纯),在加热保温至700℃时,系统发生反应Na 2 CO 3 (s)+ SiO 2(s) → Na 2 O·SiO 2(s) + CO 2(g) ↑。在此恒温下通过测量不同时间t时失去 的CO 2的重量,可计算出Na 2 CO 3 的反应量,进而计算出其对应的转化率G,来验证 金斯特林格方程:[1-(2G/3)-(1-G)2/3]=K G *t的正确性。 2、实验仪器 热重同步热分析仪,电子分析天平,研钵,250目筛,烘箱。 3、实验过程 3.1 样品制备 将Na 2CO 3 (AR)和SiO 2 (AR)分别在玛瑙研钵中研细,过250目筛。SiO 2 的筛 下料在空气中加热至800℃,保温5h,Na 2CO 3 筛下料在200℃烘箱中保温4h。把 上述处理好的原料按Na 2CO 3 :SiO 2 =1:1摩尔比配料,混合均匀,烘干,放入干燥 器内备用。 3.2 样品测试 3.2.1检查周围环境及仪器状态:要求室内环境温度为23±5℃,熟悉控制器的操作。 3.2.2 开机预热,设定所需的SDT模式及要保存的信号(热流、重量、△T)等。 3.2.3 称量样品,将其装入测试坩埚中,放入仪器中,等待约5min,在其系统稳定后开始测量。 3.2.4 根据不同时间测出的重量填写表格。 三、实验数据及处理

相关文档
最新文档