(浙江专版)201X年高中物理 第十二章 机械波 章末小结与测评讲义(含解析)新人教版选修3-4

章末小结与测评

机械波?????机械波的形成???条件:同时存在波源和介质原因:介质中各质点之间存在相互作用力实质:传播振动形式、能量、信息波的分类???横波:振动方向与传播方向垂直,像水面波和绳波等

纵波:振动方向与传播方向在同一条直线上,像声波和弹簧波等

机械

波?

????????波动规律?????????物理量?????波长λ:一个周期波传播的距离,体现了空间周期性周期T :波源的振动周期,时间的周期性频率f :波源的振动频率,或波形每秒钟重复出现的次数波速v :由介质决定各物理量间的关系:v =

λT =λf 波动图???意义:反映某时刻参与波动的所有质点离开平衡位置的情况坐标:横轴表示平衡位置,纵轴表示位移物理信息:波长、振幅等 机械波?????波的现象?????反射:波从两种介质的介面上返回原介质

折射:波从一种介质进入另一种介质传播方向发生改变衍射:绕过障碍物或孔继续传播干涉:两列相干波源在空间的叠加多普勒效应:观察者与波源有相对运动,观察到的频率发生变化

波动图象反映的信息及其应用

(1)波长λ。

(2)振幅A 。

(3)该时刻各质点偏离平衡位置的位移情况。

(4)如果波的传播方向已知,可判断各质点该时刻的振动方向以及下一时刻的波形。

(5)如果波的传播速度大小已知,可利用图象所得的相关信息进一步求得各质点振动的周

期和频率:T =λv ,f =v λ

[典例1] 如图所示的横波正在沿x 轴正方向传播,波速为0.5 m/s 。请回答下列问题:

(1)P 点此时速度方向如何?加速度方向如何?

(2)质点K 和P 哪个先回到平衡位置?

(3)经过半个周期,质点L 的位移和路程分别等于多少?波传播的距离是多少?

(4)请画出此波经过1 s 后的波形曲线。

[解析] (1)由于波沿x 轴正方向传播,可判断P 点向上振动,即P 点速度方向向上;加速度方向与位移方向相反,指向y 轴负方向。

(2)质点P 向上振动,回到平衡位置的时间大于T 4,而质点K 经T 4

回到平衡位置,故质点K 先回到平衡位置。

(3)质点L 经过半个周期,回到平衡位置,位移为0;路程为2A =0.2 m 。波传播的距离为12λ=1.0 m 。

(4)T =λv =2.00.5 s =4 s ,而Δt =1 s =T 4,在T 4内波传播λ4,经T 4

后的波形如图中虚线所示。

[答案] 见解析

波的图象与振动图象的区别和联系

(1)先看两轴:由两轴确定图象种类。

(2)读取直接信息:从振动图象上可直接读取周期和振幅;从波的图象上可直接读取波长和振幅。

(3)读取间接信息:利用振动图象可确定某一质点在某一时刻的振动方向;利用波的图象可进行波的传播方向与某一质点振动方向的互判。

(4)利用波速关系式:波长、波速、周期间一定满足v =λ/T =λf 。

1.由波的图象确定振动图象

给出波的图象,附加波的传播方向便可粗略画出任一质点的振动图象(周期T 未知)。如果能再给出波速便可准确确定出任一质点的振动图象。

[典例2] 沿x 轴负方向传播的简谐波在t =0时刻的波形如图所

示,已知波速v =5 m/s ,试画出平衡位置在x =10 cm 的质点A 的振

图象。

[解析] 由于波沿x 轴负方向传播,所以t =0时刻A 点向下振动,由题图可知λ=10 cm 。 由v =λT 得T =λv =0.15

s =0.02 s ,则可画出质点A 的振动图象如图所

示。 [答案] 见解析图

2.由振动图象确定波的图象 这类问题的一般情况是:给出振动图象和波的传播方向,便可画出任一时刻的波形图;或是给出两个质点的振动图象,加上两质点平衡位置的间距和波源方位,便可画出多种情况下的波形图。

[典例3] P 、Q 是一列简谐横波中的两质点,它们的平衡位置相

1.5 m ,各自的振动图象如图中的实线和虚线所示。若P 比Q 离波源

近,试画出波速最大情况下t =0时刻波的图象。

[解析] 根据振动图象可知:该波的周期T =4 s 。波速最大,即波长最长时,可得1.5 m 是在一个波长之内。由题图可知,0至1 s ,P 由正向最大位移的位置运动到平衡位置,Q 点由平衡位置运动到负向最大位移的位置,P 又比Q 距波源近,故Q

达到P 的状态经历的时间为34T ,即波向前传播了34

λ的距离。 即3λ4

=1.5 m ,所以λ=2 m 。 则t =0时,波的图象如图所示。

[答案] 见解析图

波动问题的多解性

(1)空间周期性:波在均匀介质中传播时,传播的距离Δx =nλ+x 0(n =0,1,2,…),式中λ为波长,x 0表示传播距离中除去波长的整数倍部分后余下的那段距离。

(2)时间周期性:波在均匀介质中传播的时间Δt =nT +t 0(n =0,1,2,…),式中T 表示波的周期,t 0表示总时间中除去周期的整数倍部分后余下的那段时间。

(3)传播方向的双向性:本章中我们解决的都是仅限于波在一条直线上传播的情况,即波

有沿

x 轴正方向或负方向传播的可能。

(4)介质中质点间距离与波长的关系的不确定性:已知两质点平衡位置间的距离及某一时刻它们所在的位置,由于波的空间周期性,则两质点存在着多种可能波形。解决这类题时,可根据题意,在两质点间先画出最简波形,再做一般分析,从而写出两质点间的距离与波长关系的关系式。

[典例4] 如图所示,实线是某时刻的波形图线,虚线是0.2 s 后的波形图线。

(1)若波向左传播,求它传播的距离及最小距离;

(2)若波向右传播,求它的周期及最大周期;

(3)若波速为35 m/s ,求波的传播方向。

[解析] (1)由题图知,λ=4 m ,若波向左传播,传播的距离可能值为Δx =nλ+34

λ=(4n +3)m(n =0,1,2,…)

最小距离为Δx min =3 m 。

(2)若波向右传播,Δx =nλ+14λm ,所用时间为Δt =n +14T =0.2 s ,故T =0.84n +1

s(n =0,1,2,…),所以T max =0.8 s 。

(3)Δx =v ·Δt =35×0.2 m=7 m =(λ+3)m ,所以波向左传播。

[答案] (1)Δx =(4n +3) m(n =0,1,2,…) 3 m (2)T =0.84n +1

s(n =0,1,2,…) 0.8 s (3)波向左传播

[专题训练]

1.(多选)一列简谐横波在t =0 时刻的波形图如图中实

线所示,从此刻起,经0.1 s 波形图如图中虚线所示,若波传

的速度为10 m/s ,则( )

A .这列波沿x 轴负方向传播

B .这列波的周期为0.4 s

C .t =0时刻质点a 沿y 轴正方向运动

D .从t =0时刻开始质点a 经0.2 s 通过的路程为0.4 m

E.x=2 m处的质点的位移表达式为y=0.2sin(5πt+π)(m)

解析:选ABDE 由题图可知,波长等于4 m ,由波速等于10 m/s ,可得周期T =0.4 s ,B 正确;经0.1 s 波形图如题图中虚线所示,说明波沿x 轴负方向传播,A 正确;t =0时刻质点a 沿y 轴负方向运动,C 错误;从t =0时刻开始质点a 经0.2 s ,即半个周期通过的路程为0.4 m ,D 正确;由y =A sin(ωt +φ)易得E 正确。

2.(多选)(新课标全国卷Ⅰ)图(a)为一列简谐横波在t =2 s 时的波形图,图(b)为媒质中平衡位置在x =1.5 m 处的质点的振动图像,P 是平衡位置为x =2 m 的质点。下列说法正确的是( )

A .波速为0.5 m/s

B .波的传播方向向右

C .0~2 s 时间内,P 运动的路程为8 cm

D .0~2 s 时间内,P 向y 轴正方向运动

E .当t =7 s 时,P 恰好回到平衡位置

解析:选ACE 根据题图(a)可知:该波的波长λ=2 m ,由题图(b)可知:周期T =4 s ,故

波速v =λT

=0.5 m/s ,A 正确;从题图(b)中可知:x =1.5 m 处的质点在t =2 s 时,其在平衡位置沿y 轴负方向运动,在题图(a)中,沿波的传播方向,“下坡向上,上坡向下”,故该波的传

播方向向左,B 错误;0~2 s ,P 运动的路程s =t T

·4A =8 cm ,C 正确;0~2 s ,P 从正向最大位移处运动到负向最大位移处,即沿y 轴负向运动,D 错误;当t =7 s 时,P 点从负向最大位

移处运动了5 s ,即54

T ,到达平衡位置,E 正确。 3.图中实线为一列简谐波在时刻t 1的图象,虚线是它在t 2=(t 1+0.05)s 时的图象,求波速。 解析:由题图可知,这列波的波长λ=8 m 。

当波向右传播时,在0.05 s 内,设波传播的距离为s 1,则s 1

=? ??

??n +14λ,波传播速度v 1=s 1t =? ????n +14t λ=4n +14×80.05

m/s =40(4n +1)m/s(n =0,1,2…)。

当波向左传播时,在0.05 s 内,设波传播的距离为s 2,则s 2=? ????n +34λ,波传播速度v 2=s 2t

=? ????n +34λt =4n +3

4×80.05

m/s =40(4n +3)m/s(n =0,1,2…)。 答案:见解析

4.如图所示,简谐横波在t 时刻的波形如实线所示,经过

Δt =3 s ,其波形如虚线所示。已知图中x 1与x 2相距1 m ,波的

周期为T ,且2T <Δt <4T 。则可能的最小波速为________ m/s ,

小周期为________ s 。

解析:由题图可知波长为λ=7 m 。若波向右传播,则Δt =17T +nT ,故T =Δt n +17

,结合题目可知n =2,3;若波向左传播,则Δt =67T +mT ,故T =Δt m +67

,结合题目可知m =2,3。当波向右传播,且n =2时,周期T 最大,为T =75 s ,波速最小,最小波速为v =λT =77

5

m/s =5 m/s 。当波向左传播,且m =3时,周期最小,最小周期为T =79

s 。 答案:5 79

(时间:45分钟 满分:100分)

一、单项选择题(本题共7小题,每小题4分,共28分)

1.上课时老师将一蜂鸣器固定在教鞭一端,然后使蜂鸣器迅速水平旋转,蜂鸣器音调竟然忽高忽低变化,下列判断正确的是( )

A .旋转时蜂鸣器发出的频率变化了

B .由于旋转,改变了同学们听到的声音频率

C .蜂鸣器音调变高时,一定是向远离同学们的方向运动

D .音调的忽高忽低是由波的干涉造成的

解析:选B 蜂鸣器水平旋转时,蜂鸣器与同学们间距忽远忽近,故同学们接收到的频率忽高忽低,A 错误,B 正确;音调变高时,蜂鸣器一定向着同学们运动,C 错误;音调的变化,是因为同学们接收到的波的频率变化引起的,属于多普勒效应而不是波的干涉,D 错误。

2.一列简谐横波沿某一直线传播,A 、B 是该直线上相距1.2 m 的两点,从波到达其中一点开始计时,4 s 内A 完成8次全振动,B 完成10次全振动,则该波的传播方向及波速分别为

( )

A .方向由A 向

B ,v =0.3 m/s

B .方向由B 向A ,v =0.3 m/s

C .方向由B 向A ,v =1.5 m/s

D .方向由A 向B ,v =1.5 m/s

解析:选C 由于4 s 内B 完成的全振动次数大于A 完成的全振动的次数,所以波由B 向

A 传播;周期T =410

s =0.4 s ,A 、B 在4 s 内完成的全振动相差2次,即A 、B 间相距两个波长;2λ=1.2 m ,λ=0.6 m ,即v =λT =1.5 m/s 。C 项正确。

3. (北京高考)一列沿x 轴正方向传播的简谐机械横波,波速

为 4 m/s 。某时刻波形如图所示,下列说法正确的是( )

A .这列波的振幅为4 cm

B .这列波的周期为1 s

C .此时x =4 m 处质点沿y 轴负方向运动

D .此时x =4 m 处质点的加速度为0

解析:选D 由题图可知,这列波的振幅为2 cm ,波长λ=8 m ,而波速v =4 m/s ,知周期T =λv =84

s =2 s ,则A 、B 项错误;根据振动方向与波传播方向的关系,可知此时x =4 m 处的质点沿y 轴正方向运动,其加速度为0,则C 项错误,D 项正确。

4.(四川高考)图甲是一列简谐横波在t =1.25 s 时的波形图,已知c 位置的质点比a 位置的晚0.5 s 起振,则图乙所示振动图像对应的质点可能位于( )

A.a<x<b B.b<x<c

C.c<x<d D.d<x<e

解析:选D 根据题中所给波形图和c位置的质点比a位置的质点晚0.5 s起振,则该列简谐横波的周期是T=1 s,根据周期和所给波形图能找到t=0 时的波形图(余弦图象),根据所给振动图象可知,t=0时所找质点应该位于平衡位置上方且向上振动,结合t=0时的波形图可知,所找质点可能位于d

5.在水波槽里放两块挡板,当中留一窄缝,已知窄缝的宽度为0.5 cm,所用水波的波长为5 cm,则下图所示的衍射图样中正确的是( )

解析:选C 窄缝宽度0.5 cm明显小于水波波长5 cm,符合发生明显衍射的条件,且水波是以水中“某点”为中心的弧线,故只有选项C正确。

6.为了研究乐音的物理规律,某同学用计算机录制下优美的笛

声do和sol,然后在电脑上用软件播放,分别得到如图(a)和图(b)的

两个振动图象,由此可以判断( )

A.do和sol的周期之比约为2∶3

B.do和sol在空气中传播的波长之比为2∶3

C.do和sol的频率之比约为2∶3

D.do和sol在空气中传播的波速之比为3∶2

解析:选C 由题图可知,当do完成2个周期时,sol完成了3个周期,所用时间是相同的,所以二者的周期之比为3∶2,频率之比则为2∶3,因为声音在同种介质中传播速度是相同的,由v=λf可知,波长之比为3∶2,所以正确选项为C。

7.一根粗细均匀的较长绳子,右侧固定。现使左侧的S点上下振动,产生一列向右传播的机械波,某时刻第一次形成了如图所示的波形。下列说法中正确的是( )

A.S点的振动速度等于波的传播速度

B.该波的频率逐渐增大

C.此时S点向下运动

D.S点的起始振动方向是向下的

解析:选B 题中描述的波在传播过程中,质点做类简谐振动,振动速度是变化的,而波的传播速度则与质点的振动速度无关,A错误;因为v=λf,同一介质中波的传播速度不变,波长减小,则频率增大,B正确;根据“下坡上,上坡下”可知此时S点向上运动,C错误;由题图可知,此时波还未到达最右端,所以S点的起始振动方向应该是向上的,D错误。

二、多项选择题(本题共5小题,每小题4分,共20分)

8.关于波,下列说法中错误的是( )

A.一切波都能发生反射和衍射

B.插在水中的细棒对水波的传播没有影响

C.在墙外听到墙内有人讲话,这是波的反射现象

D.当障碍物的尺寸比波长大很多时,能发生明显的波的衍射现象

解析:选CD 一切波都会发生反射和衍射现象,A正确;水波的波长一般比细棒的线度大,故能发生明显的衍射,所以细棒对水波的传播没有影响,B正确;墙外的人能听到墙内人的讲话声,是波的衍射现象,C错误;据产生明显衍射现象的条件知,当障碍物的尺寸比波长大很多时,不能发生明显的衍射现象,D错误。

9.如图所示,为一波源O做匀速直线运动时在均匀介质中产生球面波的情况,A、B两处的观察者静止不动,则( )

A.该波源正在移向A点

B.该波源正在移向B点

C.在A处观察波的频率变低

D.在B处观察波的频率变低

解析:选AD 波源在某一位置产生一列波面后,该波面以该位置为球心,以波速作为传播速度向外传播,反之,由波面可确定出该波面的产生位置,即波源。波面半径大,表示产生时间早,传播时间长。对照题图,可确定出波源由右向左移动,选项A正确,选项B错误;由于观察者不动,在A处观察时,相邻波面间距比波源不动时间距小,因而经过观察者时间间隔短,频率变高,同理在B处时间间隔长,频率变低,选项C错误,选项D正确。

10.如图,a、b、c、d是均匀媒质中x轴上的四个质点、相邻两点的间距依次为2 m、4 m和6 m。一列简谐横波以2 m/s的波速沿

x 轴正方向传播,在t =0时刻到达质点a 处,质点a 由平衡位置开始竖直向下运动,t =3 s 时a 第一次到达最高点。下列说法正确的是( )

A .在t =6 s 时刻波恰好传到质点d 处

B .在t =5 s 时刻质点c 恰好到达最高点

C .质点b 开始振动后,其振动周期为4 s

D .在4 s <t <6 s 的时间间隔内质点c 向上运动

E .当质点d 向下运动时,质点b 一定向上运动

解析:选ACD 因为a 开始时由平衡位置竖直向下运动,经过t =3 s 后恰好第一次到达最高点,所以波的周期为T =4 s ,波长λ=vT =8 m ,在t =6 s 时波向前传播的距离为s =vt =12 m ,即恰好传到质点d 处,A 选项正确;当t =5 s 时,波向前传播了10 m ,作出波形图可知质点c 恰好处于平衡位置,B 选项错误;质点b 振动的周期即为波的周期,所以C 选项正确;

在4 s <t <6 s 的时间内质点c 从最低点运动到最高点,D 选项正确;因为b 与d 相距54

λ,所以d 向下运动时,质点b 不一定向上运动,所以E 选项错误。

11.如图,t =0时刻,波源在坐标原点从平衡位置沿y 轴正方向开始振动,振动周期为0.4 s ,在同一均匀介质中形成沿x 轴正、负两方向传播的简谐横波。选项图中不能正确表示t =0.6 s 时波形的图是( )

解析:选ABD 由题意可知,该波的周期为T =0.4 s ,则时间t =0.6 s =1.5T ,沿x 轴向左和向右分别形成1.5 个波长的波形。由于波源在坐标原点从平衡位置沿y 轴正方向开始振动,则t =0.6 s 时的振动方向沿y 轴负方向,故C 能正确表示,A 、B 、D 不能正确表示。

12.一列横波沿直线传播,在波的传播方向上有A 、B 两点,在t 时刻A 、B 两点间形成的波形如图甲所示,在(t +3 s)时刻A 、B 两点间形成的波形如图乙所示,已知A 、B 两点间距离s =9 m ,则以下说法中正确的是

A .若周期为4 s ,波一定向右传播

B .若周期大于4 s ,波可能向右传播

C .若波速为8.5 m/s ,波一定向左传播

D .该波波速可能的最小值为0.5 m/s

解析:选ACD 若波向右传播,3 s =? ????n +34T 1,(n =0,1,2,……),T 1=124n +3 s ;若波向左传播,3 s =? ??

??n +14T 2,(n =0,1,2,……),T 2=124n +1 s ;由于n 是整数,当T =4 s 时,符合T 1通项,波向右传播。故A 正确;由上分析,波向右传播的周期T ≤4 s,故B 错误;由题图

可知波长λ=6 m ,若波速为8.5 m/s ,波传播的距离为x =vt =8.5×3 m=414

λ,根据波形的平移,波一定向左传播。故C 正确;波传播的最小距离为向左传播1.5 m ,波速可能的最小值为v =

x t =

1.53

m/s =0.5 m/s 。故D 正确。 三、非选择题(本题共6小题,共52分)

13.(6分)一简谐横波沿x 轴正向传播,t =0时刻的波形如图(a)所示,x =0.30 m 处的质点的振动图线如图(b)所示,该质点在t =0时刻的运动方向沿y 轴________(填“正向”或“负向”)。已知该波的波长大于0.30 m ,则该波的波长为________ m 。

解析:由题图(b)可知,t =0时刻题给质点正在向上振动,故其振动方向沿着y 轴正向,且正好在八分之一周期的位置。考虑到波长大于0.3 m ,因此在题图(a)中处于八分之三波长处,

0.3 m =38

λ,解得λ=0.8 m 。 答案:正向 0.8

14.(8分)如图所示,沿波的传播方向上有间距为1 m 的13个质点a ,b ,c ,d ,e ,f ,g ,h ,i ,j ,k ,l ,m ,它们均静止在各自的平衡位置。一列横波以1 m/s 的速度水平向右传播。在t =0时刻到达质点a ,且质点a 开始由平衡位置向上振动,在t =1 s 时刻,质点a 第一次到达最高点,求:

(1)这列波的波长为________,周期为________。

(2)在图中画出g点第一次向下达到最大位移时的波形图象。

解析:(1)由题意知,周期T =4 s ,波长λ=vT =4 m 。

(2)当g 第一次到达最低点时波形图如图所示。

答案:(1)4 m 4 s (2)见解析图

15.(8分)如图所示,在某一均匀介质中,A 、B 是振动情况完全相同的

两个波源,其简谐运动表达式均为x =0.1 sin 20πt m ,介质中P 点与A 、B 两波源间的距离分别为4 m 和5 m ,两波源形成的简谐横波分别沿AP 、BP 方向传播,波速都是10 m/s 。

(1)求简谐横波的波长。

(2)P 点的振动________(填“加强”或“减弱”)。

解析:(1)设简谐波的波速为v ,波长为λ,周期为T ,由题意知T =0.1 s

由波速公式v =λT

代入数据得λ=1 m 。

(2)P 点与A 、B 两波源间的距离差

(5-4) m =1 m =λ,故P 点的振动加强。

答案:(1)1 m (2)加强

16.(10分)一列简谐横波沿AB 方向由A 质点传到B 质点。已知A 、B 相距0.6 m ,横波的波长λ>0.5 m 。从某一时刻开始计时,质点A 处于最大正位移处,经过0.1 s ,第二次回到平衡位置,此时质点B 达到最大正位移处。请在图中画出0.1 s 时刻,质点A 、B 之间的波形图。并计算这列波的波速是多大?

解析:因为λ>0.5 m ,AB =0.6 m ,所以A 、B 之间的波形如图所示:

由题意:34T =0.1 s ,故T =430 s ;34

λ=AB ,解得λ=0.8 m , 由波速公式得:v =λT

=6 m/s 。 答案:见解析图 6 m/s

17.(10分)甲、乙两人分乘两只船在湖中钓鱼,两船相距24 m 。一列水波在湖面上传播开来,使船每分钟上下振动20次。当甲船位于波峰时,乙船位于波谷,这时两船之间还有另一个波峰,求这列水波的波长和波速。

上海高一物理机械波的产生和描述

学科教师辅导讲义

(4)三者关系:________________________________________ 2、波动图像:表示在波的传播方向上,介质中的各个质点在________________相对平衡位置的________。当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线. (1)由波的图像可获取的信息 ①从图像可以直接读出振幅(注意单位). ②从图像可以直接读出波长(注意单位). > ③可求任一点在该时刻相对平衡位置的位移(包括大小和方向) ④可以确定各质点振动的加速度方向(加速度总是指向平衡位置) ⑤在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向. (2)波动图像与振动图像的比较: 振动图象波动图象研究对象一个振动质点沿波传播方向所有的质点 一个质点的位移随时间变化规律某时刻所有质点的空间分布规律@ 研究内容 图象 物理意义表示一质点在各时刻的位移表示某时刻各质点的位移 随时间推移,图象沿传播方向平移图象变化, 随时间推移图象延续,但已有形状不 变 一个完整曲线占横坐标距离表示一个周期表示一个波长 例3、一列简谐波在x轴上传播,其波形图如图7-32-4所示,其中实线,虚线分别表示t1=0,t2=时的波形,求⑴这列波的波速 ⑵若波速为280m/s,其传播方向如何此时质点P从图中位置运动至波谷位置 的最短时间是多少 :

练习2、如图7-32-5所示,甲为某一波在t=时的图象,乙为对应该波动的P质点的振动图象。 ⑴说出两图中AA’的意义 ⑵说出甲图中OA’B图线的意义 ⑶求该波速v= ⑷在甲图中画出再经时的波形图。 % ⑸求再经过时P质点的路程s和位移。 练习题: 1.在波的传播过程中,下列有关介质中质点的振动说法正确的是( ) A.质点在介质中做自由振动 B.质点在介质中做受迫振动 · C.各质点的振动规律都相同 D.各质点的振动速度都相同 2.下列关于横波与纵波的说法中,正确的是( ) A.振源上下振动形成的波是横波 B.振源左右振动形成的波是纵波 C.振源振动方向与波的传播方向相互垂直,形成的是横波 D.在固体中传播的波一定是横波 3.传播一列简谐波的介质中各点具有相同的( )

高考物理电磁场和电磁波知识点

高考物理电磁场和电磁波知识点 人类自古以来就生活在磁场、电场、电磁波之中。地球有磁场、大气层中有雷电、太阳和其它一些星球也有磁场,有的星球还发出电磁波。这些天然的电磁场、电磁波对人体危害不大,人们早就习以为常,甚至还产生了某些依存性。以下是小编为大家精心准备的:高考物理电磁场和电磁波知识点总结,欢迎参考阅读! 高考物理电磁场和电磁波知识点如下: 1.麦克斯韦的电磁场理论 (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场。 (2)随时间均匀变化的磁场产生稳定电场。随时间不均匀变化的磁场产生变化的电场。随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。 (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场。 2.电磁波 (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波。(2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长和频率f的乘积,即v=f,任何频率的电磁波在真空中的传播速度都等于真空中

的光速c=3。00108m/s。 高考物理第二轮备考磁场重点知识点: 1.磁场 (1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质。永磁体和电流都能在空间产生磁场。变化的电场也能产生磁场。 (2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用。 (3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用。 (4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体。 (5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向。 2.磁感线 (1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线。 (2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交。 (3)几种典型磁场的磁感线的分布: ①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱。 ②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀

机械振动和机械波知识点总结教学教材

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在 圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)机械振动的应用——受迫振动和共振现象的分析 (1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。 (2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。 2机械波中的应用问题 1. 理解机械波的形成及其概念。 (1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。 (2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。 (3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。 (4)描述机械波的物理量关系:v T f ==? λ λ 注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。 2. 会用图像法分析机械振动和机械波。 振动图像,例:波的图像,例: 振动图像与波的图像的区别横坐标表示质点的振动时间横坐标表示介质中各质点的平衡位置 表征单个质点振动的位移随时间变 化的规律 表征大量质点在同一时刻相对于平衡位 置的位移 相邻的两个振动状态始终相同的质 点间的距离表示振动质点的振动周 期。例:T s =4 相邻的两个振动始终同向的质点间的距 离表示波长。例:λ=8m

高中物理《机械波》知识梳理

《机械波》知识梳理 【波动形成和传播】 机械波:机械振动在介质中的传播过程叫机械波,机械波产生的条件有两个:一是要有做机械振动的物体作为波源,二是要有能够传播机械振动的介质。 横波和纵波: 质点的振动方向与波的传播方向垂直的叫横波。质点的振动方向与波的传播方向在同一直线上的叫纵波。气体、液体、固体都能传播纵波,但气体和液体不能传播横波,声波在空气中是纵波。 【波的图像】 横波的图象 用横坐标x表示在波的传播方向上各质点的平衡位置,纵坐标y表示某一时刻各质点偏离平衡位置的位移。 简谐波的图象是正弦曲线,也叫正弦波 简谐波的波形曲线与质点的振动图象都是正弦曲线,但他们的意义是不同的。波形曲线表示介质中的“各个质点”在“某一时刻”的位移,振动图象则表示介质中“某个质点”在“各个时刻”的位移。 【波长频率与波速】 波长:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。振动在一个周期内在介质中传播的距离等于波长。 频率f:波的频率由波源决定,在任何介质中频率保持不变。 波速v:单位时间内振动向外传播的距离。波速的大小由介质决定。 【波的反射和折射】 惠更斯原理:介质中任一波面上的各点,都可以看作发射子波的波源,而后任意时刻,这些子波在波前进方向的包络面便是新的波面。 波的反射:波遇到障碍物会返回来继续传播 反射规律:入射线、法线、反射线在同一平面内,入射线与反射线分居法线两侧,反射角等于入射角。 波的折射:波从一种介质进入另一种介质时,波的传播方向发生了改变的现象叫做波的折射. 折射规律:折射定律:入射线、法线、折射线在同一平面内,入射线与折射线分居法线两侧.入射角的正弦跟折射角的正弦之比等于波在第一种介质中的速度跟波在第二种介质中的速度之比: 【波的衍射】 波绕过障碍物或小孔继续传播的现象。产生显著衍射的条件是障碍物或孔的尺寸比波长小或与波长相差不多。 【波的干涉】 干涉:频率相同的两列波叠加,使某些区域的振动加强,使某些区域振动减弱,并且振动加强和振动减弱区域相互间隔的现象。产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。 【多普勒效应】 多普勒效应:由于波源和观察者之间有相对运动,使观察者感到频率变化的现象叫做多普勒效应。他是奥地利物理学家多普勒在1842年发现的。 多普勒效应的应用: ①现代医学上使用的胎心检测器、血流测定仪等有许多都是根据这种原理制成。 ②根据汽笛声判断火车的运动方向和快慢,以炮弹飞行的尖叫声判断炮弹的飞行方向等。 1

高中物理选修3-4知识点汇总(填空版)

高中物理选修3-4基础知识回顾(填空) 班级 姓名 第十一章 机械振动 一、简谐运动 1.概念:如果质点的位移与时间的关系遵从________函数的规律,即它的振动图象(x -t 图象)是一条________曲线,这样的振动叫简谐运动. 2.动力学表达式F =________. 运动学表达式x =A sin (ωt +φ). 3.描述简谐运动的物理量 (1)位移x :由____________指向______________________的有向线段表示振动位移,是矢量. (2)振幅A :振动物体离开平衡位置的____________,是标量,表示振动的强弱. (3)周期T 和频率f :做简谐运动的物体完成____________所需要的时间叫周期,而频率则等于单位时间内完成________________;它们是表示振动快慢的物理量.二者互为倒数关系. , 4.简谐运动的图象 (1)物理意义:表示振动物体的位移随时间变化的规律. (2)从平衡位置开始计时,函数表达式为x =A sin ωt ,图象如图2所示. 从最大位移处开始计时,函数表达式为x =A cos ωt ,图象如图3所示. 图2 图3 5.简谐运动的能量:简谐运动过程中动能和势能相互转化,机械能守恒,振动能量与________有关,________越大,能量越大. 二、单摆 如右下图所示,平衡位置在最低点. (1)定义:在细线的一端拴一个小球,另一端固定在悬点上,如果线的________和________都不计,球的直径比________短得多,这样的装置叫做单摆. [ (2)视为简谐运动的条件:________________. (3)回复力:小球所受重力沿________方向的分力,即:F =G 2=G sin θ=mg l x ,F 的方向与位移x 的方向相反. (4)周期公式:T = (5)单摆的等时性:单摆的振动周期取决于摆长l 和重力加速度g ,与振幅和振子(小球)质量无关. 注意 单摆振动时,线的张力与重力沿摆线方向的分力的合力提供单摆做圆周运动的向心力.重力沿速度方向的 分力提供回复力,最大回复力大小为mg l A ,在平衡位置时回复力为零,但合外力等于向心力,不等于零. 三、受迫振动和共振 1.受迫振动:系统在________________作用下的振动.做受迫振动的物体,它的周期(或频率)等于

高中物理选择性必修一第3章 机械波章末总结

章末总结 突破一波的图像反映的信息及其应用 从波的图像可以看出: (1)波长λ;(2)振幅A;(3)该时刻各质点偏离平衡位置的位移情况;(4)如果波的传播方向已知,可判断各质点该时刻的振动方向以及下一时刻的波形;(5)如果波的传播速度大小已知,可利用图像所得的相关信息进一步求得各质点振动的周 期和频率:T=λ v,f= v λ。 [例1] (多选)一列简谐横波在t=0时刻的波形图如图实线所示,从此刻起,经0.1 s波形图如图虚线所示,若波传播的速度为10 m/s,则() A.这列波沿x轴正方向传播 B.这列波的周期为0.4 s

C.t=0时刻质点a沿y轴正方向运动 D.从t=0时刻开始质点a经0.2 s通过的路程为0.4 m 解析从题图可以看出波长λ=4 m,由已知波速v=10 m/s,求得周期T=0.4 s;经0.1 s波传播的距离x=vΔt=1 m,说明波沿x轴负方向传播;t=0时刻质点a 沿y轴负方向运动;从t=0时刻开始质点a经0.2 s,即半个周期通过的路程为s=2A=0.4 m。 答案BD 突破二波的图像和振动图像的综合应用 对波的图像和振动图像问题可按如下步骤来分析 (1)先看两轴:由两轴确定图像种类。 (2)读取直接信息:从振动图像上可直接读取周期和振幅;从波的图像上可直接读取波长和振幅。 (3)读取间接信息:利用振动图像可确定某一质点在某一时刻的振动方向;利用波的图像可进行波传播方向与某一质点振动方向的互判。 (4)利用波速关系式:v=λ T=λf。 [例2]如图所示,甲为t=1 s 时某横波的波形图像,乙为该波传播方向上某一质点的振动图像,距该质点Δx=0.5 m 处质点的振动图像可能是()

高中物理机械振动和机械波知识点.doc

高中物理机械振动和机械波知识点 "机械振动和机械波是高中物理教学中的难点,有哪些知识点需要学生学习呢?下面我给大家带来高中物理课本中机械振动和机械波知识点,希望对你有帮助。 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大. (3)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅. ②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱. ③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即 T=1/f. (4)简谐运动的图像 ①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.

②特点:简谐运动的图像是正弦(或余弦)曲线. ③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况. 2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T. 3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型. (1)单摆的振动可看作简谐运动的条件是:最大摆角<5. (2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力. (3)作简谐运动的单摆的周期公式为: ①在振幅很小的条件下,单摆的振动周期跟振幅无关. ②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关. ③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g等于摆球静止在平衡位置时摆线的张力与摆球质量的比值). 4.受迫振动 (1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.

高中物理《机械波》典型题(精品含答案)

《机械波》典型题 1.(多选)某同学漂浮在海面上,虽然水面波正平稳地以1.8 m/s 的速率向着海滩传播,但他并不向海滩靠近.该同学发现从第1个波峰到第10个波峰通过身下的时间间隔为15 s .下列说法正确的是( ) A .水面波是一种机械波 B .该水面波的频率为6 Hz C .该水面波的波长为3 m D .水面波没有将该同学推向岸边,是因为波传播时能量不会传递出去 E .水面波没有将该同学推向岸边,是因为波传播时振动的质点并不随波迁移 2.(多选)一振动周期为T 、振幅为A 、位于x =0点的波源从平衡位置沿y 轴正向开始做简谐运动.该波源产生的一维简谐横波沿x 轴正向传播,波速为v ,传播过程中无能量损失.一段时间后,该振动传播至某质点P ,关于质点P 振动的说法正确的是( ) A .振幅一定为A B .周期一定为T C .速度的最大值一定为v D .开始振动的方向沿y 轴向上或向下取决于它离波源的距离 E .若P 点与波源距离s =v T ,则质点P 的位移与波源的相同 3.(多选)一列简谐横波从左向右以v =2 m/s 的速度传播,某时刻的波形图如图所示,下列说法正确的是( ) A .A 质点再经过一个周期将传播到D 点 B .B 点正在向上运动 C .B 点再经过18T 回到平衡位置

D.该波的周期T=0.05 s E.C点再经过3 4T将到达波峰的位置 4.(多选)图甲为一列简谐横波在t=2 s时的波形图,图乙为媒质中平衡位置在x=1.5 m处的质点的振动图象,P是平衡位置为x=2 m的质点,下列说法中正确的是( ) A.波速为0.5 m/s B.波的传播方向向右 C.0~2 s时间内,P运动的路程为8 cm D.0~2 s时间内,P向y轴正方向运动 E.当t=7 s时,P恰好回到平衡位置 5.(多选)一列简谐横波沿x轴正方向传播,在x=12 m处的质点的振动图线如图甲所示,在x=18 m处的质点的振动图线如图乙所示,下列说法正确的是( ) A.该波的周期为12 s B.x=12 m处的质点在平衡位置向上振动时,x=18 m处的质点在波峰 C.在0~4 s内x=12 m处和x=18 m处的质点通过的路程均为6 cm D.该波的波长可能为8 m E.该波的传播速度可能为2 m/s 6.(多选)从O点发出的甲、乙两列简谐横波沿x轴正方向传播,某时刻两列波分别形成的波形如图所示,P点在甲波最大位移处,Q点在乙波最大位移处,

高中物理电磁场知识点

高中物理电磁场和电磁波知识点总结 1.麦克斯韦的电磁场理论 (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场. (2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场. (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场. 2.电磁波 (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×10 8 m/s. 下面为大家介绍的是20XX年高考物理知识点总结电磁感应,希望对大家会有所帮助。 1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源. (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流. 2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义 式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和. 3. 楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便. (2)对楞次定律的理解 ①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量. ②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少. (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感). 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式 E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形 ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt . ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt . 5.自感现象

教科版选修3-4 第2章 章末总结 机械波

章末总结

一、对波的图像的理解 从波的图像中可以看出: (1)波长λ;(2)振幅A ;(3)该时刻各质点偏离平衡位置的位移情况;(4)如果波的传播方向已知,可判断各质点在该时刻的振动方向以及下一时刻的波形;(5)如果波的传播速度大小已知,可利用图像所得的相关信息进一步求得各质点振动的周期和频率:T =λv ,f =v λ. 例1 (多选)一列向右传播的简谐横波,当波传到x =2.0m 处的P 点时开始计时,该时刻波形如图1所示,t =0.9s 时,观测到质点P 第三次到达波峰位置,下列说法正确的是( ) 图1 A.波速为0.5m/s

B.经过1.4s 质点P 运动的路程为70cm C.t =1.6s 时,x =4.5m 处的质点Q 第三次到达波谷 D.与该波发生干涉的另一列简谐横波的频率一定为2.5Hz 答案 BCD 解析 简谐横波向右传播,由波形平移法知,各点的起振方向为竖直向上.t =0.9s 时,P 点第三次到达波峰,即为(2+14)T =0.9s ,T =0.4s ,波长为λ=2m ,所以波速v =λT =2 0.4m/s =5 m/s ,故A 错误;t =1.4s 相当于3.5个周期,每个周期路程为4A =20cm ,所以经过1.4s 质点P 运动的路程为s =3.5×4A =70cm ,故B 正确;经过4.5-2 5s =0.5s 波传到Q ,再经过2.75T 即1.1s 后Q 第三次到达波谷,所以t =1.6s 时, x =4.5m 处的质点Q 第三次到达波谷,故C 正确;要发生干涉现象,另外一列波的频率与该波频率一定相同,即f =1 T =2.5Hz ,故D 正确. 针对训练1 一列简谐横波沿x 轴传播,t =0时的波形如图2所示,质点a 与质点b 相距1m ,a 质点正沿y 轴正方向运动;t =0.02s 时,质点a 第一次到达正向最大位移处,由此可知( ) 图2 A.此波的传播速度为25m/s B.此波沿x 轴正方向传播 C.从t =0时起,经过0.04s ,质点a 沿波传播方向迁移了1m D.t =0.04s 时,质点b 处在平衡位置,速度沿y 轴负方向 答案 A 解析 由题意可知波长λ=2 m ,周期T =0.08 s ,则v =λ T =25 m/s ,A 对;由a 点向上运动知此波沿x 轴负方向传播,B 错;质点不随波迁移,C 错;t =0时质点b 向下运动,从t =0到t =0.04 s 经过了半个

高中物理知识点总结:机械波.doc

高中物理知识点总结:机械波 知识网络: 内容详解: 一、波的形成和传播: ●机械波:机械振动在介质中的传播过程叫机械波。 ●机械波产生的条件有两个: ①要有做机械振动的物体作为波源。 ②是要有能够传播机械振动的介质。 ●横波和纵波: ①质点的振动方向与波的传播方向垂直的叫横波。 ②质点的振动方向与波的传播方向在同一直线上的叫纵波。 气体、液体、固体都能传播纵波,但气体和液体不能传播横波,声波在空气中是纵波,声波的频率从20到2万赫兹。 ●机械波的特点: ①每一质点都以它的平衡位置为中心做简振振动,后一质点的振动总是落后于带动它的前一质点的振动。 ②波只是传播运动形式和振动能量,介质并不随波迁移。 振动和波动的比较: 两者的联系:

振动和波动都是物体的周期性运动,在运动过程中使物体回到原来平衡位置的力,一 般来说都是弹性力,就整个物体来看,所呈现的现象是波动。而对构成物体的单个质点来 看,所呈现的现象是振动,因此可以说振动是波动的起因,波动是振动在时空上的延伸, 没有振动一定没有波动,有振动也不一定有波动,但有波动一定有振动。 二者的区别: 从运动现象来看:振动是一个质点或一个物体通过某一中心,平衡位置的往复运动, 而波动是由振动引起的,是介质中大量质点依次发生振动而形成的集体运动。 从运动原因来看:振动是由于质点离开平衡位置后受到回复力的作用,而波动是由于 弹性介质中某一部分受到扰动后发生形变,产生了弹力而带动与它相邻部分质点也随同它 做同样的运动,这样由近及远地向外传开,在波动中各介质质点也受到回复力的作用。 从能量变化来看:振动系统的动能与势能相互转换,对于简谐运动,动能最大时势能 为零,势能最大时动能为零,总的机械能守恒,波在传播过程中,由振源带动它相邻的质 点运动,即振源将机械能传递给相邻的质点,这个质点再将能量传递给下一个质点,因此 说波的传播过程是一个传播能量的过程,每个质点都不停地吸收能量,同时向外传递能 量,当波源停止振动,不再向外传递能量时,各个质点的振动也会相继停下来。 二、波的图像: ●用横坐标x表示在波的传播方向上各质点的平衡位置,纵坐标y表示某一时刻各质 点偏离平衡位置的位移。 简谐波的图像是正弦曲线,也叫正弦波。 ●简谐波的波形曲线与质点的振动图像都是正弦曲线,但他们的意义是不同的。波形 曲线表示介质中的“各个质点”在“某一时刻”的位移,振动图像则表示介质中“某个质 点”在“各个时刻”的位移。 由某时刻的波形图画出另一时刻的波形图: 平移法:先算出经时间Δt波传播的距离Δx=vΔt,再把波形沿波的传播方向平移Δx 即可。因为波动图像的重复性,若已知波长,则波形平移,则波形平移,时波形不变。当 Δx=nλ+x时,可采取去整nλ留零x的方法,只需平移x即可。 特殊点法:在波形上找两个特殊点,如过平衡位置的点和与相邻的波峰、波谷点,先 确定这两点的振动方向,再看Δt=nT+t由于经nT波形不变,所以也采取去整nT留零t的方法,分别做出两个特殊点经t后的位置,然后按正弦规律画出新波形。 三、波长、波速和频率(周期)的关系: ●描述机械波的物理量 ①波长:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波 长。振动在一个周期内在介质中传播的距离等于波长。 ②频率f:波的频率由波源决定,在任何介质中频率保持不变。

高中物理电磁波知识点总结

高中物理电磁波知识点总结 麦克斯韦电磁场理论知识点的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场.麦克斯韦进一 步将电场和磁场的所有规律综合起来,建立了完整的电磁场理论体系.这个电磁场理论体系的核心就是麦克斯韦方程组, 麦克斯韦方程组是由四个微分方程构成,: (1)描述了电场的性质.在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线 是闭合的,对封闭曲面的通量无贡献, (2)描述了磁场的性质.磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献. (3)描述了变化的磁场激发电场的规律。 (4)描述了变化的电场激发磁场的规律, 麦克斯韦方程都是用微积分表述的,具体推导的话要用到微积分,高中没学很难理解,我给你把涉及到的方程写出来,并做个解释,你要是还不明白的话也不用着急,等上了大学学了微积分就都能看懂了: 1、安培环路定理,就是磁场强度沿任意回路的环量等于环路所包围电流的代数和. 2、法拉第电磁感应定律,即电磁场互相转化,电场强度的弦度等于磁感应强度对时间的负偏导. 3、磁通连续性定理,即磁力线永远是闭合的,磁场没有标量的源,麦克斯韦表述是:对磁感应强度求散度为零. 4、高斯定理,穿过任意闭合面的电位移通量,等于该闭合面内部的总电荷量.麦克斯韦:电位移的散度等于电荷密度,

1.振荡电流和振荡电路 大小和方向都做周期性变化的电流叫振荡电流,能产生振荡电流的电路叫振荡电路,LC电路是最简单的振荡电路。 2.电磁振荡及周期、频率 (1)电磁振荡的产生 (2)振荡原理:利用电容器的充放电和线圈的自感作用产生振荡 电流,形成电场能与磁场能的相互转化。 (3)振荡过程:电容器放电时,电容器所带电量和电场能均减少,直到零,电路中电流和磁场均增大,直到最大值。 给电容器反向充电时,情况相反,电容器正反方向充放电一次,便完成一次振荡的全过程。 (4)振荡周期和频率:电磁振荡完成一次周期性变化所用时间叫 电磁振荡的周期,一秒内完成电磁振荡的次数叫电磁振荡的频率。 对于LC振荡电路, (5)电磁场:变化的电场在周围空间产生磁场,变化磁场在周围 空间产生电场,变化的电场和磁场成为一个完整的整体,就是电磁场。 3.电磁波 (1)电磁波:电磁场由近及远的传播形成电磁波 (2)电磁波在空间传播不需要介质,电磁波是横波,电磁波传递 电磁场的能量。 (3)电磁波的波速、波长和频率的关系, 4.电磁波的发射,传播和接收 (1)发射

物理机械波知识点总结

物理机械波知识点总结 导读:高中物理选修3-4机械波重要知识点 描述机械波的物理量——波长、波速和频率(周期)的关系 ⑴波长λ:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。振动在一个周期内在介质中传播的距离等于波长。 ⑵频率f:波的频率由波源决定,在任何介质中频率保持不变。 ⑶波速v:单位时间内振动向外传播的距离。波速的大小由介质决定。 波的干涉和衍射 衍射:波绕过障碍物或小孔继续传播的现象。产生显著衍射的条件是障碍物或孔的尺寸比波长小或与波长相差不多。 干涉:频率相同的两列波叠加,使某些区域的振动加强,使某些区域振动减弱,并且振动加强和振动减弱区域相互间隔的现象。产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。 稳定的干涉现象中,振动加强区和减弱区的空间位置是不变的,加强区的振幅等于两列波振幅之和,减弱区振幅等于两列波振幅之差。 判断加强与减弱区域的方法一般有两种:一是画峰谷波形图,峰峰或谷谷相遇增强,峰谷相遇减弱。二是相干波源振动相同时,某点到二波源程波差是波长整数倍时振动增强,是半波长奇数倍时振动减弱。干涉和衍射是波所特有的现象。

高中物理选修3-4重要知识点 相对论的时空观 经典物理学的时空观(牛顿物理学的绝对时空观):时间和空间是脱离物质而存在的,是绝对的,空间与时间之间没有任何联系。 相对论的时空观(爱因斯坦相对论的相对时空观):空间和时间都与物质的运动状态有关。 相对论的时空观更具有普遍性,但是经典物理学作为相对论的特例,在宏观低速运动时仍将发挥作用。 时间和空间的相对性(时长尺短) 1.同时的相对性:指两个事件,在一个惯性系中观察是同时的,但在另外一个惯性系中观察却不再是同时的。 2.长度的相对性:指相对于观察者运动的物体,在其运动方向的长度,总是小于物体静止时的长度。而在垂直于运动方向上,其长度保持不变。 高中物理机械振动和机械波知识点 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度

高中物理知识点机械波详解和练习

机械波 一、知识网络 二、画龙点睛 概念 1、机械波 (1)机械波:机械振动在介质中的传播,形成机械波。 (2) 机械波的产生条件: ①波源:引起介质振动的质点或物体 ②介质:传播机械振动的物质

(3)机械波形成的原因:是介质内部各质点间存在着相互作用的弹力,各质点依次被带动。 (4)机械波的特点和实质 ①机械波的传播特点 a.前面的质点领先,后面的质点紧跟; b.介质中各质点只在各自平衡位置附近做机械振动,并不沿波的方向发生迁移; c.波中各质点振动的频率都相同; d.振动是波动的形成原因,波动是振动的传播; e.在均匀介质中波是匀速传播的。 ②机械波的实质 a.传播振动的一种形式; b.传递能量的一种方式。 (5)机械波的基本类型:横波和纵波 ①横波:质点的振动方向跟波的传播方向垂直的波,叫做横波。 表现形式:其中凸起部分的最高点叫波峰,凹下部分的最低 点叫波谷。横波表现为凹凸相间的波形。 实例:沿绳传播的波、迎风飘扬的红旗等为横波。 ②纵波:质点的振动方向跟波的传播方向在同一直线上的波,叫做纵波。 表现形式其中质点分布较稀的部分叫疏部,质点分布较密的 部分叫密部。纵波表现为疏密相间的波形。

实例:沿弹簧传播的波、声波等为纵波。 2、波的图象 (1)波的图象的建立 ①横坐标轴和纵坐标轴的含意义 横坐标x表示在波的传播方向上各个质点的平衡位置;纵坐标y 表示某一时刻各个质点偏离平衡位置的位移。 从形式上区分振动图象和波动图象,就看横坐标。 ②图象的建立:在xOy坐标平面上,画出各个质点的平衡位置x 与各个质点偏离平衡位置的位移y的各个点(x,y),并把这些点连成曲线,就得到某一时刻的波的图象。 (2)波的图象的特点 ①横波的图象特点 横波的图象的形状和波在传播过程中介质中各质点某时刻的分布形状相似。波形中的波峰也就是图象中的位移正向最大值,波谷即为图象中位移负向最大值。波形中通过平衡位置的质点在图象中也恰处于平衡位置。 在横波的情况下,振动质点在某一时刻所在的位置连成的一条曲线,就是波的图象,能直观地表示出波形。波的图象有时也称波形图或波形曲线。 ②纵波的图象特点 在纵波中,如果规定位移的方向与波的传播方向一致时取正值,位移的方向与波的传播方向相反时取负值,同样可以作出纵波的图

高中物理选修-电磁波知识点总结

高中物理选修3-4电磁波知识点总结 第二章第一节机械波的形成和传播 1.机械波的形成和传播(以绳波为例) (1)绳上的各小段可以看做质点. (2)由于绳中各部分之间都有相互作用的弹力联系着,先运动的质点带动后一个质点的运动,依次传递,使振动状态在绳上传播. 2.介质能够传播振动的物质. 3.机械波 (1)定义:机械振动在介质中的传播. (2)产生的条件①要有引起初始振动的装置,即波源. ②要有传播振动的_介质_. (3)机械波的特点 ①前面质点带动后面质点的振动,后面质点重复前面质点的振动,并且离波源越远,质点的振动越_滞后_. ②各质点振动周期都与波源振动_相同_. ③介质中每个质点的起振方向都和波源的起振方向相同_. ④波传播的是振动这种形式,而介质的每个质点只在自己的平衡位置附近振动,并不随波迁移. ⑤波在传播“振动”这种运动形式的同时,也在传递能量,而且可以传递信息__. 1.波的分类 按介质中质点的振动方向和波的传播方向的关系不同,常将波分为横波和纵波 . 2.横波 (1)定义:介质中质点的振动方向和波的传播方向垂直的波. (2)标识性物理量 ①波峰:凸起来的最高处. (质点振动位移正向最大处) ②波谷:凹下去的最低处. (质点振动位移负向最大处) 3.纵波 (1)定义:介质中质点的振动方向和波的传播方向平行的波. (2)标识性物理量①密部:介质中质点分布密集的部分. ②疏部:介质中质点分布稀疏的部分. 4.简谐波如果传播的振动是简谐运动,这种波叫做简谐波. 波动过程中介质中各质点的运动规律 (1)质点的“守位性”:机械波向外传播的只是振动的形式和能量,质点只在各自的平衡位置附近震动,并不随波迁移。 (2)“相同性”:介质中各质点均做受迫振动,各质点振动的周期和频率与波源振动的周期和频率相同,而且各质点开始振动的方向也相同,即各质点的起振方向相同。 (3)“滞后性”:离波源近的质点带动离波源远的质点依次振动,即离波源近的质点振动开始越早,离波源越远的质点振动开始越晚。 波动过程中介质中各质点的振动周期都与波源的振动周期相同,其运动特点可用三句话来描述: (1)先振动的质点带动后振动的质点; (2)后振动的质点重复前面质点的振动; (3)后振动的质点的振动状态落后于先振动的质点. 概括起来就是“带动、重复、落后”. 已知波的传播方向,可以判断各质点的振动方向,反之亦然. 判断方法一:带动法

高中物理机械运动机械波部分知识点及习题修订版

高中物理机械运动机械波部分知识点及习题修 订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

机械运动与机械波 Ⅰ.基础巩固 一、机械振动 1、机械振动:物体(或物体的一部分)在某一中心位置两侧做的往复运动. 振动的特点:①存在某一中心位置;②往复运动,这是判断物体运动是否是机械振动的条件. 产生振动的条件:①振动物体受到回复力作用;②阻尼足够小; 2、回复力:振动物体所受到的总是指向平衡位置的合外力. ①回复力时刻指向平衡位置;②回复力是按效果命名的, 可由任意性质的力提供.可以是 几个力的合力也可以是一个力的分力; ③合外力:指振动方向上的合外力,而不一定是 物体受到的合外力.④在平衡位置处:回复力为零,而物体所受合外力不一定为零.如 单摆运动,当小球在最低点处,回复力为零,而物体所受的合外力不为零. 3、平衡位置:是振动物体受回复力等于零的位置;也是振动停止后,振动物体所在位 置;平衡位置通常在振动轨迹的中点。“平衡位置”不等于“平衡状态”。平衡位置是 指回复力为零的位置,物体在该位置所受的合外力不一定为零。(如单摆摆到最低点 时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平 衡状态) 二、简谐振动及其描述物理量 1、振动描述的物理量

(1)位移:由平衡位置指向振动质点所在位置的有向线段. ①是矢量,其最大值等于振幅; ②始点是平衡位置,所以跟回复力方向永远相反; ③位移随时间的变化图线就是振动图象. (2)振幅:离开平衡位置的最大距离. ①是标量;②表示振动的强弱; (3)周期和频率:完成一次全变化所用的时间为周期T,每秒钟完成全变化的次数为频率f. ①二者都表示振动的快慢; ②二者互为倒数;T=1/f; ③当T和f由振动系统本身的性质决定时(非受迫振动),则叫固有频率与固有周期是定值,固有周期和固有频率与物体所处的状态无关. 2、简谐振动:物体所受的回复力跟位移大小成正比时,物体的振动是简偕振动. ①受力特征:回复力F=—KX。 ②运动特征:加速度a=一kx/m,方向与位移方向相反,总指向平衡位置。简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。

高中物理选修3-4电磁波知识点总结

第二章第一节机械波的形成和传播 1.机械波的形成和传播(以绳波为例) (1)绳上的各小段可以看做质点. (2)由于绳中各部分之间都有相互作用的弹力联系着,先运动的质点带动后一个质点的运动,依次传递,使振动状态在绳上传播. 2.介质能够传播振动的物质. 3.机械波 (1)定义:机械振动在介质中的传播. (2)产生的条件①要有引起初始振动的装置,即波源. ②要有传播振动的_介质_. (3)机械波的特点 ①前面质点带动后面质点的振动,后面质点重复前面质点的振动,并且离波源越远,质点的振动越_滞后_. ②各质点振动周期都与波源振动_相同_. ③介质中每个质点的起振方向都和波源的起振方向相同_. ④波传播的是振动这种形式,而介质的每个质点只在自己的平衡位置附近振动,并不随波迁移. ⑤波在传播“振动”这种运动形式的同时,也在传递能量,而且可以传递信息__. 1.波的分类 按介质中质点的振动方向和波的传播方向的关系不同,常将波分为横波和纵波 . 2.横波 (1)定义:介质中质点的振动方向和波的传播方向垂直的波. (2)标识性物理量 ①波峰:凸起来的最高处. (质点振动位移正向最大处) ②波谷:凹下去的最低处. (质点振动位移负向最大处) 3.纵波 (1)定义:介质中质点的振动方向和波的传播方向平行的波. (2)标识性物理量①密部:介质中质点分布密集的部分. ②疏部:介质中质点分布稀疏的部分. 4.简谐波如果传播的振动是简谐运动,这种波叫做简谐波. 波动过程中介质中各质点的运动规律 (1)质点的“守位性”:机械波向外传播的只是振动的形式和能量,质点只在各自的平衡位置附近震动,并不随波迁移。 (2)“相同性”:介质中各质点均做受迫振动,各质点振动的周期和频率与波源振动的周期和频率相同,而且各质点开始振动的方向也相同,即各质点的起振方向相同。 (3)“滞后性”:离波源近的质点带动离波源远的质点依次振动,即离波源近的质点振动开始越早,离波源越远的质点振动开始越晚。 波动过程中介质中各质点的振动周期都与波源的振动周期相同,其运动特点可用三句话来描述: (1)先振动的质点带动后振动的质点; (2)后振动的质点重复前面质点的振动;(3)后振动的质点的振动状态落后于先振动的质点. 概括起来就是“带动、重复、落后”. 已知波的传播方向,可以判断各质点的振动方向,反之亦然. 判断方法一:带动法 由波的形成原理可知,后振动的质点总是重复先振动质点的运动,若已知波的传播方向而判断质点振动方向时,可在波源一侧找与该质点距离较近的前一质点,如果前一质点在该质点下方,则该质点将向下运动(力求重复前面质点的运动),否则该质点向上运动. 判断方法二:上下坡法 如图5所示,沿波的传播方向,“上坡”的质点向下振动,如A、D、E;“下坡”的质点向上振动,如B、C、F、G、H. 判断方法三:同侧法 如图6所示,波形图上表示传播方向和振动方向的箭头在图像同侧. 第二节波速与波长、频率的关系 1.波长

相关文档
最新文档