基于单片机的电冰箱温度控制器设计 韩凯(DOC)

基于单片机的电冰箱温度控制器设计 韩凯(DOC)
基于单片机的电冰箱温度控制器设计 韩凯(DOC)

课程设计大纲

学院名称电气工程与自动化学院课程名称传感器原理

开课系(或教研室)测控技术与仪器

执笔人韩凯

审定人孙凯

修(制)订日期2013年1月13日

山东轻工业学院

课程设计任务书

学院电气工程与自动化学院专业测控技术与仪器

姓名韩凯班级10-2 学号201002051071

题目基于单片机的电冰箱温度控制器设计

主要内容、基本要求、主要参考资料等:

一、主要内容

利用51单片机、温度传感器DS18B20、过欠电压检测电路等设计出冰箱温控器

二、基本要求

掌握51单片机的使用,掌握温度传感器与相关电路的工作原理与设计关键点。本系统可实现电冰箱温度设置、电冰箱过欠压检测、开门显示、压缩机开启延时等功能。

三、参考文献

[1] 求是科技.8051系列单片机C程序设计完全手册[M].北京:人民邮电出版社,2006

[2] 张鑫等.单片机原理及应用[M].北京:电子工业出版社,2006

[3] 谭浩强.C程序设计(第三版)[M].北京:清华大学出版社,2005

[4] 周兴华.单片机智能化产品——C语言设计实例详解[M].北京:北京航空航天大学出版社,2007

[5] 张齐等.单片机应用系统设计技术——基本C语言编程[M].北京:电子工业出版社,2004

[6] 王东锋,董冠强.单片机C语言应用100例[M].北京:电子工业出版社,2009

[7] 余瑾,姚燕.基于DS18B20测温的单片机温度控制系统[J].单片机开发与应用,2009,25(3-2):105-106.

完成期限:自2013 年 1 月 6 日至2013 年 1 月10 日指导教师:孙凯系(或教研室)主任:孙涛

2

目录

第1章绪论 (5)

1.1课题研究背景及目的 (5)

1.2 电冰箱的基本介绍 (5)

1.3 本设计研究内容 (6)

第2章总体设计方案 (6)

2.1 功能要求 (6)

2.2 方案论证 (6)

2.2.1方案一 (6)

2.2.2方案二 (7)

第3章系统的硬件设计 (8)

3.1 硬件电路的重要芯片介绍 (8)

3.1.1 MCS-51单片机STC89C52 (8)

3.1.2 温度传感器DS18B20 (10)

3.2 部分电路简介 (13)

3.2.1 过欠电压检测电路 (13)

3.2.2 12864液晶连接电路 (14)

第4章系统软件程序设计 (16)

4.1 显示子程序 (17)

4.2 DS18B20程序 (18)

4.3 预置温度调节程序 (19)

4.4 判断控制程序 (20)

4.5 开启延时程序 (21)

第5章分析与结论 (22)

总结与体会.......................................... 错误!未定义书签。参考文献 (24)

温控器系统原理图.................................... 错误!未定义书签。

3

摘要

单片机是实时检测和自动控制系统中心一个核心器件。本文设计的基于单片机的电冰箱温度控制器系统是利用温度传感器DS18B20采集电冰箱冷藏室的温度,通过INTEL公司的高效微控制器STC89C52单片机进行信号控制,从而达到智能控制的目的。本系统可实现电冰箱温度设置、电冰箱过欠压检测、开门显示、压缩机开启延时等功能。通过对直冷式电冰箱制冷系统的改进,实现了电冰箱的智能控制,使电冰箱能根据使用条件的变化迅速合理地调节制冷,且节能效果良好。

关键词:单片机;电冰箱;温度控制;过欠压检测;开启延时

4

第1章绪论

1.1课题研究背景及目的

冰箱是深刻改变了人类生活的现代奇迹之一。在人们发明冰箱之前,保存肉类的唯一方法是腌制,而在夏季喝到冰镇饮料更是一种奢望。

随着国民经济的日益发展,人民的生活水平有了很大的提高,冷冻器具在家庭,医院,旅馆,餐厅和科研单位得到了广泛的应用。

电冰箱作为应用较为普及的家用电器,近年来,随着微电子技术、传感器技术以及控制理论的发展,其呈现迅猛发展,电冰箱向大容量、多功能、无氟、节能、智能化、人性化方向发展,因此传统的机械式、简单的电子控制难以满足现代冰箱的发展要求。电冰箱一般设有冷冻室和冷藏室。冷冻室的温度为:- 16~ - 24 ℃。冷藏室的温度为:2~8 ℃。电冰箱控制的主要任务就是保持箱内食品最佳温度,达到食品保鲜的目的。而此次设计的目的则是熟悉温控器的原理,并通过开发板模拟实现电冰箱温控器。

1.2 电冰箱的基本介绍

冰箱的基本原理很简单:冰箱利用液体蒸发吸收热量。冰箱中使用的液体(即制冷剂)会在极低的温度蒸发,使冰箱内部保持冰冻温度。所有冰箱都由五个基本部件组成:

压缩机

热交换管,冰箱外部呈弯曲或盘曲状的管道

安全阀

冷交换管,冰箱内部呈弯曲或盘曲状的管道

制冷剂,冰箱内蒸发以制造低温的液体很多工业冰箱使用纯氨作为制冷剂,纯氨在-32℃时蒸发。压缩机压缩制冷剂气体,这将升高制冷剂的压力和温度(橙色),而冰箱外部的热交换线圈帮助制冷剂散发加压产生的热量。

当制冷剂冷却时,制冷剂液化成液体形式(紫色),并流经安全阀。

当制冷剂流经安全阀时,液态制冷剂从高压区流向低压区,因此它会膨胀并

5

蒸发(浅蓝色)。在蒸发过程中,它会吸收热量,发挥制冷效果。

冰箱内的线圈帮助制冷剂吸收热量,使冰箱内部保持低温。然后,重复该循环。

1.3 本设计研究内容

在本次课题研究中我将参考从各个方面收集到的文献,博取其精华。研究方法则是采用C51单片机开发板模拟电冰箱工作环境,并模拟设定电冰箱各项参数,以研究电冰箱温控器的工作原理及设计。

研究的内容主要包括以下方面:

1、液晶显示的工作原理,并通过液晶将各项数据显示在冰箱外;

2、温度控制器原理,制冷原理,自动控制电冰箱工作使其通过制冷达到所设定的温度;

3、智能检测电冰箱工作电压是否正常,避免压缩机烧坏;

4、继电器工作原理,模拟对压缩机的通/断电操作;

5、单片机C程序编程语言;

在本文中将介绍基于单片机的电冰箱温控器设计的总体设计思想和方案,及用得到的部分芯片及硬件设计的原理,还有软件设计过程中的思想和方法等。

第2章总体设计方案

2.1 功能要求

通过液晶显示所设定的温度,温度能随意调节,能自动控制电冰箱工作,使其通过制冷达到所设定的温度。

2.2 方案论证

根据毕业设计的要求,我们可以知道在本次设计中最重要的部分就是温控器,温控器的选择将决定外部电路的设计,所以温控器的选择具体有两种以下方案。

2.2.1方案一

在日常生活及工农生产中,经常要用到温度的检测及控制,传统的测温元件

6

有热电耦和热电阻。温控器的第一选择就可以选择热电耦和热电阻,他们测出的一般都是电压,再转换成对应的温度,但是需要比较多的外部硬件支持。因此这种选择就有如下主要缺点:

●硬件电路复杂;

●软件调试复杂;

●制作成本高;

2.2.2方案二

采用美国DALLAS半导体公司生产的高性能数字智能温度传感器DS18B20。DS18B20作为检测元件,测温范围为-55~125℃,最高分辨率可达0.0625℃。DS18B20可以直接读出被测温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的特点。

所以在本次毕业设计中采用方案二,使用DS18B20作温控器配合51单片机STC89C52进行设计。

按照系统设计功能的要求,确定系统由6个模块组成:主控制器、测温电路、液晶显示电路、过欠压检测电路、按键电路、继电器压缩机电路。

温度控制器总体电路结构框图如图2-1所示。

图 2- 1 温度控制器总体电路结构框图

7

第3章系统的硬件设计

3.1 硬件电路的重要芯片介绍

温控器电路设计原理图如附录A所示,控制器使用单片机STC89C52,温度传感器使用DS18B20,及12864液晶显示屏实现温度和其他显示。

3.1.1 MCS-51单片机STC89C52

单片微机封装形式为双排直列式结构(DIP),引脚共40个。如图3-1所示。MCS-51单片机STC89C52其内部基本组成为:一个8位的中央处理器(CPU),256byte片内RAM单元,4Kbyte掩膜式ROM,2个16位的定时器/计数器,四个8位的并行I/O口(P0,P1,P2,P3),一个全双工串行口5个中断源,一个片内振荡器和时钟发生电路,可编程串行通道,有低功耗的闲置和掉电模式。这种结构特点决定了单片机具有体积小、成本低、可靠性高、应用灵活、开发效率高、易于被产品化等优点,使其具有很强的面向控制的能力,在工业自动化控制、家用电器、智能化仪表、机器人、军事装置等领域获得了广泛的应用。

图 3- 1 MSC-C51单片机STC89C52引脚图

8

2.管脚说明:

VCC:供电电压。

GND:接地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当

P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL 门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为8051的一些特殊功能口,如下所示:

口管脚备选功能

P3.0 RXD(串行输入口)

P3.1 TXD(串行输出口)

P3.2 /INT0(外部中断0)

P3.3 /INT1(外部中断1)

P3.4 T0(记时器0外部输入)

P3.5 T1(记时器1外部输入)

P3.6 /WR(外部数据存储器写选通)

P3.7 /RD(外部数据存储器读选通)

9

P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA 端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:来自反向振荡器的输出。

3.1.2 温度传感器DS18B20

温度传感器是本系统不可或缺的元件,其性能的好坏直接影响系统的性能,因此温度传感器采用DALLAS公司生产的高性能数字温度传感器DS18B20。

DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92

小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D

转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。以上特点使DS18B20非常适用于远距离多点温度检测系统。

10

DS18B20内部结构如图3-3所示,主要由4部分组成:64位ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如图3-2所示:

图 3- 2 DS18B20的管脚排列图

DQ:为数字信号输入/输出端;

GND:为电源地;

VDD:为外接供电电源输入端(在寄生电源接线方式时接地,见图3-2)。

ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码,每个DS18B20的64位序列号均不相同。64位ROM的排的循环冗余校验码(CRC=X8+X5+X4+1)。ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

11

图 3- 3 DS18B20的内部结构

DS18B20 用12 位存贮温度值,最高位为符号位。以下图表为DS18B20的温度存储方式,负温度S = 1,正温度S = 0,如:0550H为+ 85℃,0191H为25.0625 ℃,FC90H为- 55℃。

温度值低字节

LSB

高低温报警触发器TH和TL、配置寄存器均由一个字节的EEPROM组成,使用一个存储器功能命令可对TH、TL或配置寄存器写入。其中配置寄存器的格式如下:

R1、R0决定温度转换的精度位数:R1R0=00,9位精度,最大转换时间为93.75ms,R1R0=01,10位精度,最大转换时间为187.5ms,R1R0=10,11位精度,最大转换时间为375ms,R1R0=11,12位精度,最大转换时间为750ms;未编程时默认为12位精度。

高速暂存器是一个9字节的存储器。开始两个字节包含被测温度的数字量信息;第3、4、5字节分别是TH、TL、配置寄存器的临时拷贝,每一次上电复位时被刷新;第6、7、8字节未用,表现为全逻辑1;第9字节读出的是前面所有8

个字节的CRC码,可用来保证通信正确。

DS18B20的一线工作协议流程是:初始化→ROM操作指令→存储器操作指令→数据传输。

12

3.2 部分电路简介

3.2.1 过欠电压检测电路

如图3-4(a)所示即为过欠压检测电路,也称为电压窗口比较器。在图3-4(a)中,A1,A2是专用电压比较器LM119。LM119的内部采用射级接地、集电极开路的三极管集电极输出方式。在使用时,必须外接上拉电阻。过欠压检测电路只有检测出电压是否稳定便可,而这种电路允许输出端并接在一起。

此电路的工作原理是:

当输入电压Ui

当输入电压Ui>UR1时,比较器A1的输出管导通,而比较器A2的输出管截止,此窗口比较器的输出电平将由比较器A1输出电平确定为低电平。

只有当输入电压处于窗口电压之内,即UR2

(a) (b)

图 3- 4 过欠压检测电路

13

3.2.2 12864液晶连接电路

液晶显示屏有功耗低、体积小、重量轻、超薄等许多其他显示器无法比拟的优点,近几年来被广泛用于单片机控制的智能仪器、仪表和低功耗电子产品中。利用该模块灵活的接口方式和简单、方便的操作指令,可构成全中文人机交互图形界面。可以显示8×4行16×16点阵的汉字. 也可完成图形显示.低电压低功耗是其又一显著特点。由该模块构成的液晶显示方案与同类型的图形点阵液晶显示模块相比,不论硬件电路结构或显示程序都要简洁得多,且该模块的价格也略低于相同点阵的图形液晶模块。带中文字库的128×64每屏可显示4行8列共32个16×16点阵的汉字,每个显示RAM可显示1个中文字符或2个16×8点阵全高ASCII 码字符,即每屏最多实现32个中文字符或64个ASCII码字符的显示。带中文字库的128×64内部提供128×2字节的字符显示RAM缓冲区,字符显示是通过将字符显示编码写入该字符显示RAM实现的。根据写入内容的不同,可分别在液晶屏上显示CGROM(中文字库)、HCGROM(ASCII码字库)及CGRAM(自定义字形)的内容。字符显示的RAM的地址与32个字符显示区域有着一一对应的关系,其对应关系如下表所示:

表 3- 1 汉字显示坐标

在此系统中,液晶采用并口通信,所以第15脚PSB端固定接高电平,引脚7-14作为三态数据线,其他引脚说明见表3-2,连接图如图3-5所示:

14

15

图 3- 5 12864液晶连接电路图

表 3- 2 12864引脚功能说明

第4章系统软件程序设计

基于单片机的电冰箱温控器软件设计主要由显示子程序、读出并处理DS18B20的测量温度值程序、预置温度调节程序、温度判断控制程序、电冰箱开启延时程序、还有软件复位程序等组成。软件程序设计总体流程图如下图4-1:

图 4- 1 软件程序设计总体流程图

由于51系列的单片机没有停机的指令,所以可以利用主程序设置死循环反复运行各个任务。于是就把有实时要求的部分放在最内层的循环中。

16

4.1 显示子程序

在本次设计中,显示子程序包括三部分:往LCD液晶显示屏发送一个字节的数据或指令子程序,LCD液晶屏初始化子程序,显示数据处理程序。

1)往LCD液晶显示屏发送一个字节的数据或指令子程序

其调用的函数是void TransferData(char data1,bit DI),在程序中首先将并行口选择为写的状态,然后选择将要传送的是指令还是数据,再将数据送到P1口,打开并行口的使能端,等待数据输出完毕后关闭并行口使能。其流程图如图4-2所示。

图 4- 2 传送数据流程图图 4- 3 LCD液晶初始化程序流程图

2)LCD液晶屏初始化子程序

其使用的函数是void initinal(void),仅在开机时调用一次,主要负责设置LCD液晶屏的一些状态,包括设置液晶总线模式,芯片复位,功能设定,关闭芯片显示,设置芯片动态显示,清屏,设置起始行0行0列;液晶初始化结束返回。LCD液晶屏初始化完成后就可以显示各种字符了,即进入正常工作状态。具体流程图4-3所示。

3)显示数据处理程序

调用方式:void lcd_mesg(uchar code *adder1)

函数说明:显示全屏的内容

调用方式:void lcd_mesg2(uchar add,uchar code *adder2)

函数说明:显示某一行的内容

17

调用方式:void LCD_w_wd(uchar add2,int wwd,uchar fs)

函数说明:温度显示处理并送入LCD的指定区域

这些函数的使用可以使得显示内容时,非常合适的处理好了页切换和列切换,只要通过查表送至12864液晶显示屏RAM中便可显示自如。

4.2 DS18B20程序

整个DS18B20程序调用方式是uint ReadTemperature(void),该函数主要包括了对DS18B20的初始复位,读温度,温度转换,计算温度等子程序,并将转换后的数据扩大10倍返回主函数,提供给下一个函数使用。读DS18B20程序流程图如图4-4。

图 4- 4读DS18B20程序流程图

1)对 DS18B20 操作时,首先要将它复位将DQ线拉低480至960s,再将数据线拉高15至60s,然后DS18B20发出60至此240s的低电平作为应答信号,这时主机才能对它进行其它操作[11]。

2)读温度子程序的主要功能是读出DS18B20的RAM中的9个字节。前两个就是温度,将高低字节分别放入b和a中。在读出时须进行CRC校验,校验有错时不进行温度数据的改写。读操作:主机将数据线从高电平拉至低电平1s以上,再使数据线升为高电平,从而产生读起始信号从主机将数据线从高电平拉至低电平起15s至60s,主机读取数据每个读周期最短的持续期为60s 周期之间必须有1s以上的高电平恢复期[11]。

3)温度转换命令子程序主要是发送温度转换开始命令。当采用12位分辨率时,转换的时间约为750ms。在本程序中,采用2s显示程序延时法等待转

18

换完成。发送温度转换命令的写操作:将数据线从高电平拉至低电平,产生写起始信号从DQ 线的下降沿起计时,在 15s到60s这段时间内对数据线进行检测,如数据线为高电平则写1;若为低电平,则写0,完成了一个写周期在开始另一个写周期前,必须有1s以上的高电平恢复期每个写周期必须要有60 s以上的持续期[11]。

4)计算温度子程序将RAM中读取值进行BCD码的转换运算,并进行温度值正负的判定。因为从DS18B20中读出的二进制值必须先转换成十进制值,才能用于字符的显示。DS18B20的转换精度为9~12位可选,为了提高精度采用12位。在采用12位转换精度时,温度寄存器里的值是以0.0625为步进的,即温度值为温度寄存器里的二进制值乘以0.0625,就是实际的十进制温度值。扩大十倍,四舍五入后便可将精度精确到0.1℃。

4.3 预置温度调节程序

在本次设计中,可预置的温度范围可以从-20~20℃。在编写程序过程中,如果直接对代表温度值的变量yskey的值在-20~20操作对数据的转换将很复杂和麻烦。于是我将其yskey值的范围移至1-40间,进而就不需要去处理yskey复杂的数据类型转换的问题了。程序的详细设计流程图如下图4-5:

图 4- 5预置温度调节程序流程图

yskey返回给主函数中的ys后,要得到真实的温度值,只需要判断ys是大于等于20,还是小于20的。若其值大于则减去20即为要预设的实际正数温度值;

19

若是其值小于则20减去其值,再加上一个负数符号便是要预设的负温度值。将其值送入指定的温度显示区域,我们便能够适时的看到调节的预置温度了。

4.4 判断控制程序

判断控制程序是根据用户设定的温度值和DS18B20实时测得温度值相比较,从而决定是否需要制冷,并在液晶屏上显示其工作状态。而对压缩机的控制则是通过控制继电器的通断决定是否给压缩机通电工作来实现的。当ysj=1,也就是P1.1脚为高电平的时候,继电器闭合,压缩机通电工作;当ysj=0时,继电器断开,压缩机停止工作。

若当压缩机的工作电压不正常时,压缩机将有被烧坏的危险,程序自动进入故障处理部分,在液晶显示屏上显示故障原因,压缩机停止工作。直到故障解除,然后重行启动电冰箱程序。图4-6所示的就是该程序的流程图。

为了避免冷气泄露,节约电能需要进行电冰箱门关好与否的检查,因此在程序中又设置一判断门是否关好的语句能够及时地提醒用户门没关好。这一部分将不再图4-6中画出。

图 4- 6判断控制程序流程图

20

温度控制器的设计与制作共13页

温度控制器的设计与制作 一、功能要求 设计并制作一个温度控制器,用于自动接通或断开室内的电加热设备,从而使室内温度达到设定温度要求,并能实时显示室内温度。当室内温度大于等于设定温度时,控制器断 ?时,控制器接通电加热设备。 开电加热设备;当室内温度比设定温度小2C 控温范围:0~51C? 控温精度:≤1C? 二、硬件系统设计 1.硬件系统由七部分组成,即单片机及看门狗电路、温度检测电路、控制输出电路、键盘电路、显示电路、设置温度储存电路及电源电路。 (1)单片机及看门狗电路 根据设计所需的单片机的内部资源(程序存储器的容量、数据存储器的容量及I/O口数量),选择AT89C51-24PC较合适。为了防止程序跑飞,导致温度失控,进而引起可怕的后果,本设计加入了硬件看门狗电路IMP813L,如果它的WDI脚不处于浮空状态,在1.6秒内WDI不被触发(即没有检测到上什沿或下降沿),就说明程序已经跑飞,看门狗输出端WDO将输出低电平到手动复位端,使复位输出端RST发出复位信号,使单片机可靠复位,即程序重新开始执行。(注:如果选用AT89S51,由于其内部已具有看门狗电路,就不需外加IMP813L) (2)温度检测电路 温度传感器采用AD590,它实际上是一个与绝对温度成正比的电流源,它的工作电压为4~30V,感测的温度范围为-550C~+1500C,具有良好的线性输出,其输出电流与温度成正比,即1μA/K。因此在00C时的输出电流为273.2μA,在1000C时输出电流为373.2μA。温度传感器将温度的变化转变为电流信号,通过电阻后转变电压信号,经过运算放大器JRC4558运算处理,处理后得到的模拟电压信号传输给A/D转换部分。A/D转换器选用ADC0804,它是用CMOS集成工艺制成的逐次逼近型模数转换芯片,分辨率8位,转换时间100μs,基准电压0~5V,输入模拟电压0~5V。 (3)控制输出电路 控制信号由单片机的P1.4引脚输出,经过光耦TLP521-1隔离后,经三极管C8550直接驱动继电器WJ108-1C-05VDC,如果所接的电加热设备的功率≤2KW,则可利用继电器的常开触点直接控制加热设备,如果加热设备的功率>2KW,可以继电器控制接触器,由接触器直接控制加热设备。 (4)键盘电路 键盘共有四个按键,分别是S1(设置)、S2(+)、S3(-)、S4(储存)。通过键盘来设置室内应达到的温度,键盘采用中断方式控制。 (5)显示电路 显示电路由两位E10501_AR数码管组成,由两片74LS164驱动,实现静态显示,74LS164所需的串行数据和时钟由单片机的P3.0和P3.1提供。对于学过“串行口”知识的班级,实习时,可以采用串行口工作于方式0,即同步移位寄存器的输出方式,通过串行口输出显示数据(实时温度值或设置温度值);对于没学过“串行口”知识的班级,实习时,可以采用模拟串行口的输出方式,实现显示数据的串行输出。 (6)设置温度存储电路 为了防止设定温度在电源断电后丢失,此设计加入了储存电路,储存器选用具有I2C总线功能的AT24C01或FM24C01均可。每次通过键盘设置的室内设定温度都通过储存器储存起来,即使是电源断电,储存器存储的设定温度也不丢失,在电源来电后,单片机自动将设

基于PLC的锅炉温度控制系统毕业设计

基于PLC的锅炉温度控制系统 作者姓名xxx 专业自动化 指导教师姓名xxx 专业技术职务讲师

目录 摘要 (1) 第一章绪论 (3) 1.1课题背景及研究目的和意义 (3) 1.2国内外研究现状 (3) 1.3项目研究内容 (4) 第二章 PLC和组态软件基础 (5) 2.1可编程控制器基础 (5) 2.1.1可编程控制器的产生和应用 (5) 2.1.2可编程控制器的组成和工作原理 ··············错误!未定义书签。 2.1.3可编程控制器的分类及特点 (7) 2.2组态软件的基础 (8) 2.2.1组态的定义 (8) 2.2.2组态王软件的特点 (8) 2.2.3组态王软件仿真的基本方法 (8) 第三章 PLC控制系统的硬件设计 (9) 3.1 PLC控制系统设计的基本原则和步骤 (9) 3.1.1 PLC控制系统设计的基本原则 (9) 3.1.2 PLC控制系统设计的一般步骤 (9) 3.1.3 PLC程序设计的一般步骤 (10) 3.2 PLC的选型和硬件配置 (11) 3.2.1 PLC型号的选择 (11) 3.2.2 S7-200CPU的选择 (12) 3.2.3 EM235模拟量输入/输出模块 (12) 3.2.4 热电式传感器 (12) 3.2.5 可控硅加热装置简介 (12) 3.3 系统整体设计方案和电气连接图 (13) 3.4 PLC控制器的设计 (14) 3.4.1 控制系统数学模型的建立 (14)

3.4.2 PID控制及参数整定 (14) 第四章 PLC控制系统的软件设计 (16) 4.1 PLC程序设计的方法 (16) 4.2 编程软件STEP7--Micro/WIN 概述 (17) 4.2.1 STEP7--Micro/WIN 简单介绍 (17) 4.2.2 计算机与PLC的通信 (18) 4.3 程序设计 (18) 4.3.1程序设计思路 (18) 4.3.2 PID指令向导 (19) 4.3.3 控制程序及分析 (25) 第五章组态画面的设计 (29) 5.1组态变量的建立及设备连接 (29) 5.1.1新建项目 (29) 5.2创建组态画面 (33) 5.2.1新建主画面 (33) 5.2.2新建PID参数设定窗口 (34) 5.2.3新建数据报表 (34) 5.2.4新建实时曲线 (35) 5.2.5新建历史曲线 (35) 5.2.6新建报警窗口 (36) 第六章系统测试 (37) 6.1启动组态王 (37) 6.2实时曲线观察 (38) 6.3分析历史趋势曲线 (38) 6.4查看数据报表 (40) 6.5系统稳定性测试 (42) 结束语 (43) 参考文献 (44) 致谢 (45)

冰箱冷藏室温度智能控制系统(DOC)

目录 摘要 (1) 1 引言 (1) 2 设计思路 (2) 2.1 设计任务 (2) 2.2 设计的理论基础 (2) 2.3 冰箱的系统组成 (2) 2.3.1 蒸汽式压缩机电冰箱 (2) 2.3.2 直冷式电冰箱 (3) 2.4 总体设计方案选择 (3) 2.5 方案总体介绍 (4) 3 硬件系统设计 (4) 3.1 系统总体结构 (4) 3.2 温度采集模块 (5) 3.2.1 温度采集模块的选择 (5) 3.2.2 DS18B20测温电路 (6) 3.2.3 测量数据的比较 (7) 3.3 单片机系统及液晶模块 (7) 3.3.1 微处理器(单片机) (7) 3.3.2 显示电路的设计 (8) 3.4 输出控制模块 (9) 4 软件设计 (9) 4.1 主程序流程框图 (10) 4.2 DS18B20工作的流程图 (12) 5 调试与实验 (12) 5.1 使用说明 (12) 5.1.1 Keil单片机模拟仿真 (12) 5.2 功能测试 (14) 5.2.1 温度测量分辨率 (14) 5.3 晶振的选择 (14) 附录1 硬件原理图 (15)

冰箱冷藏室温度智能控制系统 摘要:本智能温度控制主要由温度采集模块、液晶显示模块、单片机智能控制模块和输出控制模块组成。此次设计相比于传统的冰箱温度控制器,温度信号更加精确,利用单片机控制冷藏室温度在1℃~5℃之间,当温度低于1℃,继电器不工作;当温度高于5℃,继电器开始工作,并且利用液晶显示冷藏室温度的变化。 关键词:温度采集;液晶显示;温度控制 1 引言 随着集成电路的发展,单片机的功能也越发的多样。单片机因为他本是的诸多优点,比如功能强、体积小、可靠性高、开发的周期短,成为各种检测控制方面被广泛应用的元器件,在电子工业生产中变为不可缺少的存在,特别是在我们日常的生活生产中也发挥了很多的作用[1]。而在日常生活中,冰箱已经成了家庭生活中不可缺少的一部分,就此对于冰箱的性能要求也越来越高。在这其中冰箱的智能温度控制是现今市场上冰箱重要选择。 现在市面上的冰箱大多都包含着两部分,分别是冷藏室和冷冻室。其中冷藏室用于冷藏食物,要求有一定的保鲜作用,不可冻伤食物;冷冻室一般用于对食物的冷冻作用。 现代信息技术的三大基础是信息采集(即传感器技术)、信息传输(通用技术)和信息处理(计算机技术)。目前信息技术中前端的产品就是传感器,而其中被广泛应用在工业生产、科学研究方面的传感器就是温度传感器,在这些领域中温度传感器的应用是位于各种传感器的第一位[2]。 智能温度传感器最早是出现在20世纪90年代的中期,在其内部就应用了A/D转换器,但他测量的温度范围比较低,而且也只有1℃的分辨率。到了21世纪以后,智能温度传感器正在迅速的朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向发展[3]。 传统电冰箱的温度一般是由冷藏室控制。冷藏室、冷冻室之间不同的温度是通过调节蒸发器在两室的面积大小来实现的,温度的调节完全是依靠压缩机的开停来控制。但是影响冰箱内部温度的因素有很多种:如放到冰箱内的食物

电加热炉温度控制系统设计

湖南理工学院南湖学院 课程设计 题目:电加热炉温度控制系统设计专业:机械电子工程 组名:第三组 班级:机电班 组成员:彭江林、谢超、薛文熙

目录 1 意义与要求 (2) 1.1 实际意义 (2) 1.2 技术要求 (2) 2 设计内容及步骤 (2) 2.1 方案设计 (2) 2.2 详细设计 (3) 2.2.1 主要硬件介绍 (3) 2.2.2 电路设计方法 (4) 2.2.3 绘制流程图 (7) 2.2.4 程序设计 (8) 2.3 调试和仿真 (8) 3 结果分析 (9) 4 课程设计心得体会 (10) 参考文献 (10) 附录............................................................ 10-27

1 意义与要求 1.1 实际意义 在现实生活当中,很多场合需要对温度进行智能控制,日常生活中最常见的要算空调和冰箱了,他们都能根据环境实时情况,结合人为的设定,对温度进行智能控制。工业生产中的电加热炉温度监控系统和培养基的温度监控系统都是计算机控制系统的典型应用。通过这次课程设计,我们将自己动手设计一个小型的计算机控制系统,目的在于将理论结合实践以加深我们对课本知识的理解。 1.2 技术要求 要求利用所学过的知识设计一个温度控制系统,并用软件仿真。功能要求如下: (1)能够利用温度传感器检测环境中的实时温度; (2)能对所要求的温度进行设定; (3)将传感器检测到得实时温度与设定值相比较,当环境中的温度高于或低于所设定的温度时,系统会自动做出相应的动作来改变这一状况,使系统温度始终保持在设定的温度值。 2 设计内容及步骤 2.1 方案设计 要想达到技术要求的内容,少不了以下几种器件:单片机、温度传感器、LCD显示屏、直流电动机等。其中单片机用作主控制器,控制其他器件的工作和处理数据;温度传感器用来检测环境中的实时温度,并将检测值送到单片机中进行数值对比;LCD显示屏用来显示温度、时间的数字值;直流电动机用来表示电加热炉的工作情况,转动表示电加热炉通电加热,停止转动表示电加热炉断

温度控制器的设计

目录 第一章课程设计要求及电路说明 (3) 1.1课程设计要求与技术指标 (3) 1.2课程设计电路说明 (4) 第二章课程设计及结果分析 (6) 2.1课程设计思想 (6) 2.2课程设计问题及解决办法 (6) 2.3调试结果分析 (7) 第三章课程设计方案特点及体会 (8) 3.1 课程设计方案特点 (8) 3.2 课程设计心得体会 (9) 参考文献 (9) 附录 (9)

第一章课程设计要求及电路说明 1.1课程设计要求与技术指标 温度控制器的设计 设计要求与技术指标: 1、设计要求 (1)设计一个温度控制器电路; (2)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (3)撰写设计报告。 2、技术指标 温度测量范围0—99℃,精度误差为0.1℃;LED数码管直读显示;温度报警指示灯。

1.2课程设计电路说明 1.2.1系统单元电路组成 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 1.2.2设计电路说明 主控制器:CPU是整个控制部分的核心,由STC89C52芯片连同附加电路构成的单片机最小系统作为数据处理及控制模块. 显示电路:显示电路采用4个共阳LED数码管,用于显示温度计的数值。报警电路:报警电路由蜂鸣器和三极管组成,当测量温度超过设计的温度时,该电路就会发出报警。 温度传感器:主要由DS18B20芯片组成,用于温度的采集。 时钟振荡:时钟振荡电路由晶振和电容组成,为STC89C52芯片提供稳定的时钟频率。

第二章课程设计及结果分析 2.1课程设计 2.1.1设计方案论证与比较 显示电路方案 方案一:采用数码管动态显示 使用一个七段LED数码管,采用动态显示的方法来显示各项指标,此方法价格成本低,而且自己也比较熟悉,实验室也常备有此元件。 方案二:采用LCD液晶显示 采用1602 LCD液晶显示,此方案显示内容相对丰富,且布线较为简单。 综合上述原因,采用方案一,使用数码管作为显示电路。 测温电路方案 方案一:采用模拟温度传感器测温 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:采用数字温度传感器 经过查询相关的资料,发现在单片机电路设计中,大多数都是使用传感器,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 综合考虑,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.1.2设计总体方案 根据上述方案比较,结合题目要可以将系统分为主控模块,显示模块,温度采集模块和报警模块,其框图如下:

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

温度测控仪设计-毕业设计

温度测控仪设计 学生:XXX 指导教师:XXX 容摘要:本文主要介绍了智能温度测量仪的设计,包括硬件和软件的设计。先对该测量仪进行概括性介绍,然后介绍该测量仪在硬件设计上的主要器件:“Pt100热电阻”、AT89C51单片机和LCD显示器以及描述测量仪的总体结构原理。在本设计中,是以铂电阻PT100作为温度传感器,采用恒流测温的方法,通过单片机进行控制,用放大器、A/D 转换器进行温度信号的采集。总体来说,该设计是切实可行的。 关键词:温度 Pt100热电阻 AT89C51单片机 LCD显示器

Design of and control instrument Abstract: This paper describes the design of the intelligent temperature measuring instrument, including hardware and software design. Be the first general description of the measuring instrument, and then describes the hardware design of the measuring instrument's main device: "Pt100 thermal resistance", AT89C51 microcontroller and LCD display, and describe the principle of measuring the overall structure. In this design, as is the PT100 platinum resistance temperature sensor, temperature measurement using constant current method, through the microcontroller to control, amplifier, A/D converter for temperature signal acquisition. Overall, the design is feasible. Keywords:temperature Pt100 thermal resistance AT89C51 microcontroller LCD monitor .

冰箱温度控制器CAREL IR33

快速查阅手册

界面说明 1. ON/OFF 开关键– UP (向上)键增加温度值 2. DOWN(向下)键降低数值–激活/停止手动除霜 3. 设定温度键 4. Prg/mute编程/消音键 5. 故障或错误报警图标 6. 高/低温警告图标 7. 化霜开始时此图标亮起 8. 压缩机起动时此图标亮起 9. 蒸发器风机起动时此图标亮起 10. 当辅助输出激活时图标亮起 控制器的主要功能

关机 当控制器关闭时,显示屏上显示OFF ,所有的内部继电器停止工作(不得电) 开机 当控制器打开时,有个特别的步骤测试显示器和按键。显示器亮起2秒钟。 三条横杠 “---“ 在屏幕上显示2秒钟,控制器就可以操作了。 压缩机图标闪烁,表示压缩机延迟起动,处于安全保护时间内 冰箱内温度设定 显示或设定温度,按以下步骤: 保持SET 按键按住超过1秒钟。控制器显示温度值; 通过上/下键增加或降低设定值,直到达到设定值; 再次按SET 按键,确认新的温度值。 常用参数(类别F ) 按Prg/mute 键超过5秒钟,控制器显示常用参数代码(类别F )。 –如果激活了报警,按下此键,可以先将蜂鸣器消音。 常用参数列表: St, rd, rt, rH, rL, dI, dt1, dt2, dP1, dP2, dd, d8, d/1, d/2, AL, AH, Ad, F1, Fd 配置参数 配置参数由密码保护,以防止出现不应该的修改,或者由未经授权的人员擅自修改。 (类别C ) 1. 同时按住Prg/Mute 和Set 按键3秒钟以上,显示屏显示闪烁的数字“0”,是 输入密码的提示符 2. 按UP 键设定密码– CAREL 温度控制器的密码设置为11(通过这个密码可以进入 配置参数 3. 按Set 键进入程序模式,通过上下键滚动找到相应的参数 4. 显示屏上显示优先调节参数项(类别C 参数)/2

管式加热炉温度控制系统设计

过程控制系统课程设计报告书管式加热炉温度控制系统设计 学院:自动化 班级:15级自动化4班 指导老师:陈刚 组员: 重庆大学自动化学院 2019年1月

任务分配 过程控制系统课程设计——管式加热炉温度控制系统的设计

目录 任务分配 (2) 过程控制系统课程设计——管式加热炉温度控制系统的设计 (2) 1摘要 (4) 2模型简介 (4) 2.1背景 (4) 2.2模型假设 (4) 2.3系统扰动因素 (5) 3控制方案 (5) 3.1传统PID控制方法 (5) 3.2串级控制系统 (6) 3.3 方案选择 (7) 4串级控制器的设计 (7) 4.1主副控制器设计 (7) 4.1.1主、副回路的设计原则 (7) 4.1.2主、副调节器的选型 (7) 4.1.3主、副调节器调节规律的选择作用 (8) 4.2串级控制器的参数整定 (8) 5系统的仿真和改进 (9) 5.1串级控制系统仿真 (9) 5.2基于Smith预估计补偿器的串级控制系统 (11) 六.总结 (14) 七.参考文献 (15)

1摘要 当今世界,随着市场竞争的日益激烈,产品的质量和功能也向更高的档次发展,制造产品的工艺过程变得越来越复杂,为满足优质、高产、低消耗,作为工业自动化重要分支的过程控制的任务也愈来愈重,无论是在大规模的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及节省能源等均起十分重要的作用。为了能将课程所学理论知识初步尝试应用于实践。 本设计针对管式加热炉系统的控制问题展开了研究。通过将实际加热炉模型化,通过实验法建立锅炉的数学模型。针对物料温度控制问题,在对比了简单的单回路PID控制方法、串级控制两种方法的优劣性后,选择了串级控制的方法控制物料温度。综合应用过程控制理论以及MATLAB仿真技术,通过经验模型及参数整定,得到系统响应曲线。通过反复实验,调整参数,使控制效果比较理想。 关键词:管式加热炉系统、串级控制、MATLAB仿真 2模型简介 2.1背景 管式加热炉是石油工业中重要装置之一,加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于其具有强耦合、大滞后等特性,控制起来非常复杂。同时,近年来能源的节约、回收和合理利用日益受到关注。加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。 2.2模型假设 管式加热炉的主要任务是把原质油或重油加热到一定的温度,保证下一道工序正常进行。假设有一个加热炉系统,系统参数设定为: 1.物料以恒定速度进入管道,流速为10L/s,管道直径为10cm,不考虑物料浓度变化、压力变化等其他条件。 2.物料在加热炉内的长度为L=5m,假定物料受热均匀,并在t=10s后上升至指定温度。 3.假定燃气混合浓度不变,物料温度上升只受燃料流量影响。 4.不考虑环境温度、燃料值等影响,主要考虑燃料流量的扰动。

模电课设—温度控制系统设计

目录 1.原理电路的设计 (11) 1.1总体方案设计 (11) 1.1.1简单原理叙述 (11) 1.1.2设计方案选择 (11) 1.2单元电路的设计 (33) 1.2.1温度信号的采集与转化单元——温度传感器 (33) 1.2.2电压信号的处理单元——运算放大器 (44) 1.2.3电压表征温度单元 (55) 1.2.4电压控制单元——迟滞比较器 (66) 1.2.5驱动单元——继电器 (88) 1.2.6 制冷部分——Tec半导体制冷片 (99) 1.3完整电路图 (1010) 2.仿真结果分析 (1111) 3 实物展示 (1313) 3.1 实物焊接效果图 (1313) 3.2 实物性能测试数据 (1414) 3.2.1制冷测试 (1414) 3.2.2制热测试 (1818) 3.3.3性能测试数据分析 (2020) 4总结、收获与体会 (2121) 附录一元件清单 (2222) 附录二参考文献. (2323)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339 N为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741,NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

电冰箱温度控制系统设计样本

电冰箱温度控制系统设计 一、引言 电冰箱是每个家庭现代化厨房必备的家用电器之一, 它是利用电能在箱体内形成低温环境,用于冷藏冷冻各种食品和其它物品的家用电器设备。它的主要任务就是控制压缩机、化霜加热等来保持箱内食品的最佳温度达到食品保鲜的目的, 即保证所储存的食品在经过冷冻或冷藏之后保持色、味、水分、营养基本不变。从19 世界上第一台电机压缩式电冰箱研制成功, 随着科学技术的飞速发展电冰箱也在不断的演变和更新特别是近年来高新技术的迅猛崛起更使得电冰箱的发展日新月异。现代社会每一个家庭都处在快节奏的生活中人们大多已无闲暇的时间和精力花费在经常性的采购日常生活用品上。因此集中时间大量采购的新型生活方式已为越来越多的人所接受从而决定了大容量电冰箱将是一种国际化的发展趋势。传统的机械式直冷式电冰箱的控制原理是根据蒸发器的温度控制制冷压缩机的启、停,使电冰箱内的温度保持在设定温度范围内。一般,当蒸发器温度升至3~5℃时启动压缩机制冷;当温度低于-10 ~ -20℃时停止制冷,关断压缩机。 随着微机技术的飞速发展,单片机以其体积小、价格低、应用灵活等优点在家用电器、仪器仪表等领域中得到了广泛的应用。

采用单片机进行控制,能够使电冰箱的控制更准确、灵活、直观。 本次所设计的就是基于51单片机的电冰箱温度控制系统, 以AT89C51单片机为核心控制压缩机的启动和停止, 解决了传统电冰箱控制系统存在的不足, 能够使控制更准确、更灵活。 本次设计的目的是设计一个温度控制系统, 要求: 1.利用键盘分别控制冷藏室、冷冻室温度( 0~5℃, -7 ~ -18℃) ; 2.显示各室的温度值; 3.制冷压缩机运行后若突然断电要有30秒延时; 4.各个门开后超过2分钟要报警。 本次设计的意义是经过此次设计加深对测控系统原理与设计课程的理解, 掌握微机化测控系统设计的思路, 了解一般设计过程。 二、电冰箱温度控制系统硬件电路设计 1. 总体设计方案 以AT89S51单片机为核心, 来实现各个模块的功能。温度传感器模块、键盘输入模块作为系统的输入模块, 液晶显示模块、温度控制器模块、报警模块作为系统的输出模块, 构成基本电路, 原

加热炉出口温度与炉膛温度串级控制系统设计

第一章系统分析与控制方案的确立 1.系统分析 图1.1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。 T1出口 支路1 炉膛 支路2 燃料 被加热物料 图1.1加热炉出口温度系统 由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。 2.串级控制系统的设计 加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。为了提高控制质量,采用串级控制系统,运用副回路的快速作用,以加热炉出口温度为主变量,选择滞后较小的炉膛温度为副变量,构成炉出口温度与炉膛温度的串级控制系统有效地提高控制质量,以满足工业生产的要求,系统的串级控制结构图如图1.2所示。

图 1.2 加热炉出口温度串级控制系统结构图 串级控制系统的工作过程,就是指在扰动作用下,引起主、副变量偏离设 定值,由主、副调节器通过控制作用克服扰动,使系统恢复到新的稳定状态的 过渡过程。由加热炉出口温度串级控制系统结构图可绘制出其结构方框图,如 图 1.3 所示。 图 1.3 加热炉出口温度串级控制系统结构方框图 (1) 主被控参数的选择 应选择被控过程中能直接反映生产过程中的产品产量和质量,又易于测量 的参数。在加热炉出口温度与炉膛温度的串级控制系统中加热炉出口温度为系 统的主被控参数,因为加热炉出口温度是整个控制作用的关键,要求出口物料 温度维持在某给定值上下。如果其调节欠妥当,会造成整个系统控制设计的失 败。 (2) 副被控制参数的选择 从整个系统来看,加热炉的炉膛温度虽然不是我们要控制的直接目标,但 是炉膛温度会很大程度上影响出口物料的温度,因此我们选择炉膛温度为副被 控参数。 (3) 控制器的选择 主控制器的选择:主被控变量是工艺操作的主要指标(温度),允许波动的 度 副控制器 调节阀 主控制器 主检测、变送仪表 副检测、变送仪表 炉膛 出口温度

课程设计(论文)-基于PLC的电加热炉温度控制系统设计

第一章绪论 1.1选题背景及意义 加热炉是利用电能来产生蒸汽或热水的装置。因为其效率高、无污染、自动化程度高,稳定性好的优点,冶金、机械、化工等各类工业生产过程中广泛使用电加热炉对温度进行控制。而传统的加热炉普遍采用继电器控制。由于继电器控制系统中,线路庞杂,故障查找和排除都相对困难,而且花费大量时间,影响工业生产。随着计算机技术的发展,传统继电器控制系统势必被PLC所取代。二十世纪七十年代后期,伴随着微电子技术和计算机技术的快速发展,也使得PLC 具有了计算机的功能,成为了一种以电子计算机为核心的工业控制装置,在温度控制领域可以让控制系统变得更高效,稳定且维护方便。 在过去的几十年里至今,PID控制已在工业控制中得到了广泛的应用。在工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)中位居第一。由于其原理简单、使用方便、适应能力强,在工业过程控制中95%甚至以上的控制回路都采用了PID结构。虽然后来也出现了很多不同新的算法,但PID仍旧是最普遍的规律。 1.2国内外研究现状及发展趋势 一些先进国家在二十世纪七十年代后期到八十年代初期就开始研发电热锅炉,中国到八十年代中期才开始起步,对电加热炉的生产过程进行计算机控制的研究。直到九十年代中期,不少企业才开始应用计算机控制的连续加热炉,可以说发展缓慢,而且对于国内的温度控制器,总体发展水平仍不高,不少企业还相当落后。与欧美、日本,德国等先进国家相比,其差距较大。目前我国的产品主要以“点位”控制和常规PID为主,只能处理一些简单的温度控制。对于一些过程复杂的,时变温度系统的场合往往束手无策。而相对于一些技术领先的国家,他们生产出了一批能够适应于大惯性、大滞后、过程复杂,参数时变的温度控制系统。并且普遍采用自适应控制、模糊控制及计算机技术。 近年来,伴随着科学技术的不断快速发展,计算机技术的进步和检测设备及

(完整版)基于51单片机智能温度控制器设计与实现毕业设计

题目基于51单片机智能温度控制器设计与实 现 本题目要求设计者以智能温度控制器为对象,完成硬件系 统和软件设计并实现其功能。 1.熟悉任务,分析课题要求,熟悉温度控制器的原理, 进行方案设计; 2.熟悉硬件设计技术基础、单片机应用系统设计要领, 根据本课题的特点选择相应器件; 3.搜集素材,优选素材,整理素材; 4.完成所硬件电路的装配和调试,编写程序实现其功 能; 5.撰写毕业设计论文。 6.参加毕业设计论文答辩。

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可

以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和

冰箱温度控制器代换的方法和注意事项

冰箱温度控制器代换的方法和注意事项 案例描述:送修冰箱是一台华菱b c d-268w间冷式电冰箱,在本冰箱维修案例要掌握的是冰箱温度控制器代换技术资料以及温控器调试方法。 分析与检修;电冰箱中使用的蒸汽压力式温控器在出厂时,根据电冰箱的设计要求,通过内腔调节螺钉已将温控器的主要技术参数预调好,旋转温控器的调节旋钮是在预调的基础参数上进行具体的细调,能根据冰箱各简室温度要求进行自动控制。 冰箱温控器一般均设有温差调节螺钉和温度范围调节螺钉,温控器温差调节机构,利用两个螺钉分别控制平衡弹簧(控制温度范围)和差额调节弹簧(开停时温差)。顺时针方向旋转温差调节螺钉,可使触点升程减小,使通断温差减小,反之则温差增大。温差调节螺钉每旋转一圈,温度变化约1℃左右,每次调整应不超过一圈。顺时针旋转调节螺钉,使主弹簧拉力增大,故要使触点闭合,使压缩机启动运转,必须适当提高蒸发器温度(感温元件压力相应提高),即开机温度升高,停机温度也相应提高,从而实现了对电冰箱温度范围的调节。 在电冰箱维修的过程中,原则上不提倡对温控器的调试,如果要进行调试时.应首先断开电源,调试后接通电源的间隔应大于5分钟,如需同时调试2~3个螺钉时,应根据各螺钉的作用及相互关系确定先后顺序,每次调节螺钉1/2~1圈,检测调试结果时,须将温控器(特别是感温管)按原位置装好。当温拄器因机械零件变形过大、漏气等原因造成失灵时,一般应更换新的同型号温控器。 华凌b c d-268w电冰箱采用冷气强制循环方式,由风扇将冷气一路送入冷冻室,另外分两路沿着冰箱后侧风道,向下经由挡风门温度控制器(自动感温调节通风口的大小),送往变温室和冷藏室。由冷冻室温控器控制着压缩机的开、停,并调节整个系统的制冷情况。

冰箱温度控制器的设计

冰箱温度控制器的设计

冰箱温度控制器的设计 1 引言 家用电冰箱一般有冷冻室和冷藏室,冷冻室的温度为-6℃~-18℃左右;冷藏室的温度为0℃~10℃。在该温度范围内,食品保鲜效果较好,因此,对控制器的要求是将冷冻室和冷藏室的温度自动控制在各自的范围内。在电冰箱的控制中,温度是主要的控制对象,控制的好就有显著的节能效果。但冰箱内要受诸如环境温度的高低、冰箱本身的容积、冰箱中食物的多少、以及食物的种类和性质、存放物品的初始温度、散热特性及其热容量、物品的充满率及开门的频繁程度等控制。冰箱内的温度场分布极不均匀,要想建立电冰箱温度变化的精确数学模型是很困难的,因此采用模糊控制技术才能达到最佳的控制效果。 2 模糊控制系统概述

2.1 普通电冰箱的结构 普通电冰箱的箱体是用隔热材料分割成几个空间,可有单门冷藏式、单门冷冻式、双门冷藏、冷冻式和三门冷冻、冷藏式。 (1)冷冻室和冷藏室 冰箱是利用冷却剂周期性循环的物态变化吸热而致冷。用于吸热的蒸发器就设在冷冻室,蒸发器冷却的冷气循环到冷藏室,使之降温。由于这种结构的安排,冷冻室的温度降得较快,而冷藏室的温度降得较慢。 (2)除霜加热器 因为在冰箱降温过程中,空气和食物中所含的水分会凝聚到蒸发器和食物上而结成霜,当蒸发器表面结霜后,其热交换能力下降,而影响致冷效果;当霜层过厚时,还可能引起压缩机故障。除霜加热器包括门框加热器和蒸发器上的化霜加热器。 2.2 模糊控制电冰箱系统结构 家用电冰箱的发展,除了无氟、大容量外,主要是多门分体结构,一套制冷装置、多通道风冷式。为了适应这一情况,达到高精度、智能化

控制的目的,本系统主要实现温度控制和智能化霜。温度控制就是要把握冰箱内存放的食物的温度和热容量,控制压缩机的开停、风扇转速和风门开启度等,使食物达到最佳保存状态。这就需要用传感器来检测环境温度和各室温度,并运用模糊推理来确定食物温度和热容量。智能除霜就是要根据霜层厚度,选择门开启次数最少的时间段,即温度变化率最小时快速除霜,这样对食物影响最小,有益于保鲜。运用模糊推理来确定着霜量和考虑门开启状况,经模糊推理确定除霜指令。此外,本系统还具有故障自诊及运行状态的显示等功能。控制电路框图如图1所示。 2.2.1 系统硬件组成 该系统采用8位87C552单片机为控制器8KROM,256字节的RAM为传感器,主要有冷冻室、冷藏室、冰温室及环温等传感器,采用价格低廉的热敏电阻。在门状态检测电路中,为了减少输入线数,简化装配工艺,多个状态开关共用一根输入线。通过输入线状态变化和箱内温度变化来决策时冷冻室箱门打开,还是冷藏室箱门打开。显示电路由LED显示和数码显示两部分组成。LED显示电冰箱运行状态,数码显示

相关文档
最新文档