基于单片机的智能冰箱温度控制器的设计

基于单片机的智能冰箱温度控制器的设计
基于单片机的智能冰箱温度控制器的设计

基于单片机的智能冰箱温度控制器的设计

摘要

随着生活水平的提高,科技的发展,电冰箱已经成为每个家庭必备的家用电器。同时,随着人们的不同需求,电冰箱的样式在多样化,功能也在智能化,给人们的生活带来了很多方便。

本文首先介绍了电冰箱的国内外发展情况,其次对设计的硬件部分和软件部分进行详细的描述。电冰箱温度控制系统是利用温度传感器DS18B20采集电冰箱冷藏室和冷冻室的温度以及蒸发器表面温度。通过INTEl公司的高效微控制器MCS-51单片机进行数字信号处理,从而达到智能控制的目的。本系统可实现电冰箱冷藏室和冷冻室的温度设置、电冰箱自动除霜、开门报警等功能。

通过对直冷式电冰箱制冷系统的改进和采用模糊控制技术,实现了电冰箱的双温双控,使电冰箱能根据使用条件的变化迅速合理地调节制冷量,且节能效果良好。

关键词:电冰箱,单片机,温度传感器,温度控制

DESIGN OF THE INTELLIGENT REFRIGERATOR TEMPERATURE CONTROLLER BASED ON

MICROCONTROLLER UNIT

ABSTRACT

With the improvement of living standards, technological development, refrigerators have become an essential household appliances .At the same time , as people’s different needs and refrigerators in the diversity of style, functionality is also intelligent, it has brought a lot of convenience to people’s life.

This paper describes the development of the temperature controller ,followed by the design of hardware and software parts described in detail.The electric refrigerator temperature control system is uses the temperature sensor DS18B20 gathering electric refrigerator cold-storageroom and the freezing room temperature with cvaporating surface temperature monolithic integrated circuit carries on the digital signal processing through INTEL corporation's highly effective micro controller MCS-C51,thus achieves the intelligent control the goal.This system may realize the electric refrigerator cold-storageroom and the freezing room temperature establishment,the electric refrigerator automatically defrosts,opens the gate to report to the police and so on the function .

By improving the refrigerating system of refrigerator and applying the vague-control technology the goal of double-temperature double-control has been realized;it makes possible for the refrigerator to regulate the amount of cold air in a speedy and rational way. Thus,power saving is available.

KEY WORDS: The temperature sensor ,The one-chip computer,The electric refrigerator,Temperature control

目录

前言 (1)

第1章绪论 (1)

1.1温度控制器的发展状况 (2)

1.2课题研究必要性 (2)

1.3现代控制系统相对传统控制系统的优势 (3)

1.4课题设计特点和应用领域 (4)

1.5智能温度控制器的课题主要内容 (4)

第2章智能冰箱控制器系统硬件设计 (6)

2.1系统的硬件设计方案 (6)

2.2高效微控制器MCS-51 (7)

2.2.1 MCS-51单片机 (7)

2.2.2 MCS-51系列单片机引脚介绍 (8)

2.2.3 MCS-51单片机的复位方式和复位电路 (11)

2.3数字温度传感器DS18B20 (13)

2.3.1 DS18B20简介 (13)

2.3.2 DS18B20的测温原理 (15)

2.3.3 DS18B20的操作指令 (16)

2.3.4 DS18B20接线说明 (19)

2.4部分硬件电路 (19)

2.4.1显示电路 (19)

2.4.2键盘电路 (21)

2.4.3时钟振荡电路 (21)

2.4.4报警电路 (22)

2.4.5过欠电压检测电路 (23)

第3章系统的软件设计 (23)

3.1主程序 (24)

3.2初始化子程序 (24)

3.3 定时器T0中断程序 (25)

3.4 T1中断服务程序 (27)

3.5 DS18B20测温子程序 (29)

第4章调试与分析 (30)

4.1系统调试 (31)

4.2性能分析 (31)

结论 (32)

谢辞 (33)

参考文献 (34)

附录 (35)

外文资料翻译 (39)

前言

在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。其中,温度控制也越来越重要。在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。采用单片机对温度进行控制不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的控制问题。

温度控制系统在国内各行各业的应用虽然己经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。成熟的温控产品主要以“点位”控制及常规的PID控制器为主,它们只能适应一般温度系统控制,而用于较高控制场合的智能化、自适应控制仪表,国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。随着我国经济的发展及加入WTO,我国政府及企业对此都非常重视,对相关企业资源进行了重组,相继建立了一些国家,企业的研发中心,开展创新性研究,使我国仪表工业得到了迅速的发展。

目前,温度控制器产品从模拟、集成温度控制器发展到智能数码温度控制器。智能温控器(数字温控器)是微电子技术、计算机技术和自动测试技术的结合,特点是能输出温度数据及相关的温度控制量,适配各种控制器,并且它是在硬件的基础上通过软件来实现控制功能的,其智能化程度也取决于软件的开发水平,现阶段正朝着高精度高质量的方向发展,相信以我国的实力,温控技术在不久的将来一定会为于世界前列!

第1章绪论

1.1温度控制器的发展状况

温度是表征物体冷热程度的物理量,是工业生产和日常生活中经常测量的物理量,也是人类研究最早测量方法最多的物理量之一。因而温度检测仪应用领域之广,使用数量之多,一直高居各类测量仪之首。近百年来,温度传感器的发展大致经历了以下三个阶段:传统的分立式温度传感器(含敏感元件);模拟集成温度传感器/控制器;智能温度传感器(即数字温度传感器)。

1. 分立式温度传感器

传统的热电偶、热电阻、热敏电阻及半导体温度传感器,均属于分立式温度传感器,传感器本身就是一个完整的、独立的感温元件。此类传感器通常要配温度变送器,以获得标准的模拟量(电压或电流)输出信号。

2. 模拟集成温度传感器/控制器

集成传感器是采用硅半导体集成工艺而制成的,因此亦称硅传感器或单片集成传感器。可完成温度测量及模拟信号输出功能的专用IC,它属于一种简单的集成温度传感器,适合远距离测量、控温,不需要进行非线性校准,典型产品有AD590、AD592等。

模拟集成温度控制器主要包括温控开关、可编程温度控制器,典型产品有LM56、AD22105和MAX6509。

3. 智能温度传感器

智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。智能温度传感器是微电子技术、计算机技术和自动测试技术的结晶,它也是集成温度传感器领域中最具活力和发展前途的一种新产品。目前,国际上许多著名的集成电路生产厂已经开发出上百种智能温度传感器产品。

1.2课题研究必要性

随着电子技术和微型计算机的迅速发展,微机测量和控制技术得到了迅速的发展和广泛的应用。单片机具有处理能强、运行速度快、功耗低等

优点,应用在温度测量与控制方面,控制简单方便,测量范围广,精度较高。温度是工业生产中常见并且十分重要的参数之一,特别是在冶金、石油、食品、印染等工厂中。由于不同的工艺所需的温度变化曲线各不相同,而现有的温度控制仪大多只能进行恒温控制。因此许多生产过程中加热、保温、降温以及自然降温等操作都是由人工操作的,这就不可避免地产生各种误差,进而影响产品质量,个别采用的温度自动控制系统由于造价较高、操作复杂等原因又限制了在中小企业的应用,因此研究和开发一种实用的温度控制系统成为当务之急。在工业生产过程中需要实时测量控制温度,尤其是在高危生产行业,如花炮生产,煤矿行业等。但依靠人工检测控制既浪费时间,物力,人力,又有一定的危险性,且数据也不准确,因此研究自动的温度测量控制方法和装置具有重要的意义。

1.3现代控制系统相对传统控制系统的优势

传统的控制系统主要由测量电路和控制电路组成,所具备的功能较少,也比较弱,而且结构很复杂。计算机技术的迅速发展,使得传统的控制系统发生了根本性的变革,即采用微机作为控制系统的核心,代替传统的控制系统的传统的电子线路,从而成为新一代的微机化控制系统。将微机技术引入控制系统中,不仅可以解决传统控制系统不能解决的问题,而且还能简化电路、增加或增强功能、提高控制精度和可靠性,显著增强测控系统的自动化、智能化程度,而且可以缩短系统研制周期、降低成本、易于升级和维护。因此,现代控制系统设计,特别是高精度、高性能的控制系统,目前已很少不采用计算机技术的了。计算机技术的引入,可以为控制系统带来以下一些新特点和新功能:

1. 自动调零功能在每次采样前对传感器的输出值自动清零,从而大大降低因控制系统漂移变化造成的误差。

2. 数字滤波功能利用已算机软件对测量数据进行处理,可以抑制各种干扰和脉冲信号。

3. 数据处理功能利用计算机技术可以实现传统仪器无法实现的各种复杂的处理和运算功能。

4. 复杂控制规律利用计算机技术不仅可以实现经典的PID控制,还可

以实现各种复杂的控制规律,例如,自适应控制、模糊控制等。

5. 自我诊断功能采用计算机技术后,可对控制系统进行监测,一旦发现故障则立即进行报警,并可显示故障部位或可能的故障原因,对排除故障的方法进行提示。微机化的控制系统是以微机为核心、测量控制一体化的系统,这种系统对被控对象的控制是依据对被控对象的测量结果决定的。

1.4课题设计特点和应用领域

课题采用的是单总线数字温度传感器DS18B20,可直接将温度转换值以16位数字码的方式串行输出:将温度转化为数字编码只需1秒左右。而且它具有独特单线接口方式,即与微处理器接口时仅需占用1个I/O口;支持多节点;测温时无需任何外部元件,可以通过数据线直接供电,具有超低功耗工作方式。测温范围为—55℃~+125℃,测温度精度可达到0.0625℃。由于传送的是串行放大器和A/D转换器可以统统被省却,因而这种测温方式大大提高了各种温度测控系统的可靠性,降低了成本,缩小了体积。其测温系统结构简单,硬件少,成本低,测温精度高,转换速度快,实用性高,应用范围广泛,市场前景好,经济效益可观。

系统可以应用于温度要求在—55℃~+125.9℃之间的任何领域。比如:铁路,粮库,水果,蔬菜存储仓库的温度控制,以及多路温度测控仪,各种养殖场的温度控制监测。由于本系统的测温精度可达0.0625℃,因而对于温度要求特别严格的环境来说,本系统是一个较为理想的监控系统。

1.5智能温度控制器的课题主要内容

课题的任务是应用单片机及DS18B20单总线器件设计一套温度检测系统,实现对温度的测量及显示,并通过按键人为设定温度上下限!而且在温度超上限价或下限量有控制功能,系统以高性能/价格比的89S52为核心,完成对数据的分析、处理、显示、温度上下限设置、超限自动控制,采用单线数字温度传感器DS18B20来完成对温度的采样和转换。

由于课题是完成对温度的实时监测,因而系统的核心部分就是如何实现温度采集。系统采用的是美国DALLAS公司继DS1820之后推出的一种改

进型智能温度传感器DS18B20来完成这一任务的。DS18B20与传统的热敏电阻相比,它能够直接读出被测温度并且可根据实际要去通过简单的编程实现9-12位的数字值读数方式,可分别在93.75ms和750ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅从一根口线,温度变换功率来源于数据总线,总线本身可以为所接的DS18B20供电,而无需外电源。

DS18B20需在严格的时序控制下才能进行正常操作。对DS18B20的操作包括初始化操作、读/写时间片。总线上的所有操作均从初始化开始,初始化或对RAM、ROM操作。主CPU通过“时间片”来写入或读出DS18B20中的数据。概括说,主CPU经过单线接口访问DS18B20的工作流程为:对DS18B20进行初始化→ROM操作命令→存储器(包括RAM和EERAM)操作命令→数据处理。主CPU对ROM操作完毕,即发出控制操作命令,使DS18B20完成温度测量并将测量结果存入高速暂存器中,然后单片机可读出此温度转换值,并随之进行数据处理、送显示等操作。

第2章智能冰箱控制器系统硬件设计

2.1系统的硬件设计方案

系统硬件结构如图所示。系统的硬件电路有89C51单片机、温度传感器DS18B20、复位电路、直流电源供电电路、键盘、显示电路、电压检测和报警电路组成的。

图2-1 89C51单片机控制电冰箱的原理框图

应用89C51单片机控制电冰箱的原理框图如图2-1,MCS-51单片机的典型芯片是89C51,其内部基本组成为:一个8位的中央处理器(CPU),256byte片内RAM单元,4Kbyte掩膜式ROM,2个16位的定时器/计数器,四个8位的并行I/O口(P0,P1,P2,P3),一个全双工串行口,5个中断源,一个片内振荡器和时钟发生电路。其中2路温度输入P1.0和,一路状态电平输入,三路键盘输入;其中故障报警和冷藏室温度公用一个端口。

采用温度传感器测得冷冻室温度,通过单线与单片机通信,单片机将此温度值进行保存后,通过控制版面的按键输入某一冷冻温度设定值(电冰箱出厂时候,已经输入了一个比较合适的温度值,或叫做隐含值),这个设定的温度值由单片机送往右边四位数码显示的同时,还不断与实测的冷

冰箱冷藏室温度智能控制系统(DOC)

目录 摘要 (1) 1 引言 (1) 2 设计思路 (2) 2.1 设计任务 (2) 2.2 设计的理论基础 (2) 2.3 冰箱的系统组成 (2) 2.3.1 蒸汽式压缩机电冰箱 (2) 2.3.2 直冷式电冰箱 (3) 2.4 总体设计方案选择 (3) 2.5 方案总体介绍 (4) 3 硬件系统设计 (4) 3.1 系统总体结构 (4) 3.2 温度采集模块 (5) 3.2.1 温度采集模块的选择 (5) 3.2.2 DS18B20测温电路 (6) 3.2.3 测量数据的比较 (7) 3.3 单片机系统及液晶模块 (7) 3.3.1 微处理器(单片机) (7) 3.3.2 显示电路的设计 (8) 3.4 输出控制模块 (9) 4 软件设计 (9) 4.1 主程序流程框图 (10) 4.2 DS18B20工作的流程图 (12) 5 调试与实验 (12) 5.1 使用说明 (12) 5.1.1 Keil单片机模拟仿真 (12) 5.2 功能测试 (14) 5.2.1 温度测量分辨率 (14) 5.3 晶振的选择 (14) 附录1 硬件原理图 (15)

冰箱冷藏室温度智能控制系统 摘要:本智能温度控制主要由温度采集模块、液晶显示模块、单片机智能控制模块和输出控制模块组成。此次设计相比于传统的冰箱温度控制器,温度信号更加精确,利用单片机控制冷藏室温度在1℃~5℃之间,当温度低于1℃,继电器不工作;当温度高于5℃,继电器开始工作,并且利用液晶显示冷藏室温度的变化。 关键词:温度采集;液晶显示;温度控制 1 引言 随着集成电路的发展,单片机的功能也越发的多样。单片机因为他本是的诸多优点,比如功能强、体积小、可靠性高、开发的周期短,成为各种检测控制方面被广泛应用的元器件,在电子工业生产中变为不可缺少的存在,特别是在我们日常的生活生产中也发挥了很多的作用[1]。而在日常生活中,冰箱已经成了家庭生活中不可缺少的一部分,就此对于冰箱的性能要求也越来越高。在这其中冰箱的智能温度控制是现今市场上冰箱重要选择。 现在市面上的冰箱大多都包含着两部分,分别是冷藏室和冷冻室。其中冷藏室用于冷藏食物,要求有一定的保鲜作用,不可冻伤食物;冷冻室一般用于对食物的冷冻作用。 现代信息技术的三大基础是信息采集(即传感器技术)、信息传输(通用技术)和信息处理(计算机技术)。目前信息技术中前端的产品就是传感器,而其中被广泛应用在工业生产、科学研究方面的传感器就是温度传感器,在这些领域中温度传感器的应用是位于各种传感器的第一位[2]。 智能温度传感器最早是出现在20世纪90年代的中期,在其内部就应用了A/D转换器,但他测量的温度范围比较低,而且也只有1℃的分辨率。到了21世纪以后,智能温度传感器正在迅速的朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向发展[3]。 传统电冰箱的温度一般是由冷藏室控制。冷藏室、冷冻室之间不同的温度是通过调节蒸发器在两室的面积大小来实现的,温度的调节完全是依靠压缩机的开停来控制。但是影响冰箱内部温度的因素有很多种:如放到冰箱内的食物

基于单片机的冰箱温度智能控制系统的设计

编号:_______________ 商丘工学院 毕业论文(设计) 题目冰箱温度控制系统设计 系别机电工程学院 专业电气自动化 学生姓名梁子鹏 成绩 指导教师吴德刚 2012年04月

冰箱温度控制系统设计 摘要 单片机即单片微型计算机,是集CPU,RAM,ROM,定时,计数和多种接口于一体的微控制器。其中51单片机是各种单片机中最为典型和最有代表性的一种,广泛应用于各个领域。 本课题设计的电冰箱的电控系统主要应用AT89C51单片机作为核心控制元件进行分析和设计,对各部分的软件编程、硬件电路设计、及调试进行了介绍。电冰箱温度控制系统是利用温度传感器DS18B20采集电冰箱冷藏室和冷冻室的温度,通过INTEL公司的高效微控制器MCS-C51单片机进行数字信号处理,从而达到智能控制的目的。本系统可实现电冰箱冷藏室和冷冻室的温度设置、电冰箱自动除霜、开门报警等功能。 本文在第一章介绍了电冰箱的系统组成及工作原理,第二章论述了本控制系统的硬件设计部分。第三章论述了系统的软件设计部分。 通过对直冷式电冰箱制冷系统的改进和采用模糊控制技术,实现了电冰箱的双温双控,使电冰箱能根据使用条件的变化迅速合理地调节制冷量,且节能效应明显。 关键词:AT89C51单片机A/DC0809智能仪器

目录 前言 (3) 第一章电冰箱的系统概述 (2) 1.1电冰箱的设计原理 (2) 1.2工作过程的设计.............................................................................错误!未定义书签。 1.3冷冻室冷藏室温度检测采样电路.................................................错误!未定义书签。第二章硬件部分设计 (4) 2.1系统结构 (4) 2.2冷冻室冷藏室温度检测采样原理 (4) 2.2.1主要特性 (4) 2.2.2管脚说明 (5) 2.2.3振荡特性 (6) 2.2.4计算器 (6) 2.3过欠压保护电路 (6) 2.4电压检测装置的设计....................................................................错误!未定义书签。 2.5功能按键的设计 (7) 2.6开门报警点路 (8) 第三章软件部分的设计 (9) 3.1主程序的设计 (9) 3.2始化程序的设计 (9) 3.3关闭压缩机的设计 (10) 结论 (11) 参考文献 (12)

基于单片机的温控器

天津理工大学 课程设计报告 题目:基于单片机的温控器设计 学生姓名李天辉学号 20101009 届 2013 班级电气4班 指导教师专业电气工程及其自动化

说明 1. 课程设计文本材料包括设计报告、任务书、指导书三部分,其中 任务书、指导书由教师完成。按设计报告、任务书、指导书顺序装订成册。 2. 学生根据指导教师下达的任务书、指导书完成课程设计工作。 3. 设计报告内容建议主要包括:概述、系统工作原理、系统组成、设计内容、小结和参考资料。 4. 设计报告字数应在3000-4000字,采用电子绘图、采用小四号宋 体、1.25倍行距。 5.课程设计成绩由平时表现(30%)、设计报告(30%)和提问成绩(40%) 组成。

课程设计任务书、指导书 课程设计题目: Ⅰ.课程设计任务书 一、课程设计的内容和要求(包括原始数据、技术要求、工作量) 当今社会,温控器已经广泛应用于电冰箱、空调和电热毯等领域中。其优点是控制精度高,稳定性好,速度快自动化程度高,温度和风速全自动控制,操作简单可靠,对执行器要求低,故障率低,效果好。目前国内外生产厂家正在研究开发第三代智能型室温空调温控器,应用新型控制模型和数控芯片实现智能控制。现在已有国内厂家生产出了智能型室温空调温控器,并已应用于实际工程。 本课程设计要求设计温度控制系统,主要由温度数据采集、温度控制、按键和显示、通讯等部分组成。温度采集采用NTC或PTC热敏电阻(或由电位器模拟)或集成温度传感器、集成运算放大器构成的信号调理电路、AD转换器组成。温控部分采用交流开关BT136通过改变导通角进行调压限流达到控制加热丝温度的目的。 温度控制算法采用PID控制,可以采用普通PID或模糊PID。对控制PID参数进行整定,进行MATLAB仿真,说明控制效果。进行程序编制。 设计通讯协议,并能够通过RS485总线将数据传回上位机。2.课程设计的要求 1、选择相应元器件设计温度控制系统原理图并绘制PCB版图。 2、进行PID控制算法仿真,设计PID参数,或模糊PID规则。 3、系统功能要求:a要能够显示实时温度;b能够进行温度设置;c 能够进行PID参数设定;d能够把数据传回上位机;e可以设定本机地址。F温度控制范围0~99.9度。 4、编制程序并调试通过,并有程序流程图。

电冰箱自动控制系统的设计

目录 1.引言 (2) 2 设计要求及分析 (3) 2.1电冰箱温度自动调节功能 (3) 2.3电源过欠压保护功能 (3) 2.4压缩机开启延时功能 (3) 2.5故障报警功能 (3) 3. 自动控制系统硬件结构设计 (4) 3.1主要部件选择与功能实现 (4) 3.1.1 单片机选型及功能介绍 (4) 3.1.2 A/D转换器选型及功能介绍 (5) 3.1.3 74LS373简介 (5) 3.2检测及控制电路 (6) 3.2.1 传感器的选择与温度自动调节功能的实现 (6) 3.2.2 电冰箱的过欠压保护电路及功能实现 (8) 3.2.3 电冰箱的开启延时电路及功能的实现 (9) 3.2.4 自动除霜功能的实现 (10) 3.2.5 报警器 (11) 总结 (13) 参考文献 (14)

电冰箱自动控制系统的设计 1.引言 冰箱自动控制系统在正常工况下工作,当运行过程中需要进行自动调节时,系统能通过预设程序进行调节,要求控制系统应有一定的应变能力。 对于冰箱性能的主要调节指标是箱体温度由此实现的功能有自动温度调节,自动除霜等。 要求维持冰箱的冷藏冷冻室温度维持在预先设定的数值,当箱内温度高于或低于这一值时判断启动或关闭压缩机,使温度回归。 系统还要求累计压缩机运行时间和检测环境温度,来判断是否满足化霜条件,当满足化霜条件时,接通化霜加热丝,同时断开压缩机和风机,当完成化霜工作后恢复压缩机风机的工作。 另外当运行达到安全极限时,要求系统能采取一些相应的保护措施,促使运行离开安全极限,返回到正常情况,以防事故。 属于生产保护性措施的有两类:一类是硬保护措施;一类是软保护措施。 例如电源的过欠压保护,压缩机开启延时,故障自检报警等. 本系统通过监控环境温度,冰箱的冷冻,冷藏室温度,电源电压等数据,通过处理判断调整冰箱的运行以达到预期的运行效果。使冰箱在节能,储藏效果,安全方面都能进行自动有效的控制。

冰箱温度控制器CAREL IR33

快速查阅手册

界面说明 1. ON/OFF 开关键– UP (向上)键增加温度值 2. DOWN(向下)键降低数值–激活/停止手动除霜 3. 设定温度键 4. Prg/mute编程/消音键 5. 故障或错误报警图标 6. 高/低温警告图标 7. 化霜开始时此图标亮起 8. 压缩机起动时此图标亮起 9. 蒸发器风机起动时此图标亮起 10. 当辅助输出激活时图标亮起 控制器的主要功能

关机 当控制器关闭时,显示屏上显示OFF ,所有的内部继电器停止工作(不得电) 开机 当控制器打开时,有个特别的步骤测试显示器和按键。显示器亮起2秒钟。 三条横杠 “---“ 在屏幕上显示2秒钟,控制器就可以操作了。 压缩机图标闪烁,表示压缩机延迟起动,处于安全保护时间内 冰箱内温度设定 显示或设定温度,按以下步骤: 保持SET 按键按住超过1秒钟。控制器显示温度值; 通过上/下键增加或降低设定值,直到达到设定值; 再次按SET 按键,确认新的温度值。 常用参数(类别F ) 按Prg/mute 键超过5秒钟,控制器显示常用参数代码(类别F )。 –如果激活了报警,按下此键,可以先将蜂鸣器消音。 常用参数列表: St, rd, rt, rH, rL, dI, dt1, dt2, dP1, dP2, dd, d8, d/1, d/2, AL, AH, Ad, F1, Fd 配置参数 配置参数由密码保护,以防止出现不应该的修改,或者由未经授权的人员擅自修改。 (类别C ) 1. 同时按住Prg/Mute 和Set 按键3秒钟以上,显示屏显示闪烁的数字“0”,是 输入密码的提示符 2. 按UP 键设定密码– CAREL 温度控制器的密码设置为11(通过这个密码可以进入 配置参数 3. 按Set 键进入程序模式,通过上下键滚动找到相应的参数 4. 显示屏上显示优先调节参数项(类别C 参数)/2

单片机智能温控器课程设计

单片机课程设计 说明书 专业:机械设计制造及其自动化 设计题目:智能温控器 设计者: 指导老师: 设计时间:

一、课题名称:一个基于51单片机的智能温控器课程 设计 二、主要技术指标及工作内容和要求:本设计以MCS-51系列单片机为核心,采用常用电子 器件设计,一个电源开关,两个控制温度设定按键(增大/减小),四位数码管分别显示设 定温度和实际温度,量程为0~99度,打开电源开关后设定温度初始化为26度。 1,按键输入采用中断方式,两个按键分别接INT0和INT1。 2,采用铂电阻(Pt100)温度传感器进行温度测量,模数转换采用ADC0809。 3,单片机根据设定温度S和实测温度P控制继电器R的动作,死区设为2度:当P<=S-1时,控制R接通电加热回路; 当P>S+1时,控制R断开电加热回路; 当S-1

电冰箱温度控制系统设计样本

电冰箱温度控制系统设计 一、引言 电冰箱是每个家庭现代化厨房必备的家用电器之一, 它是利用电能在箱体内形成低温环境,用于冷藏冷冻各种食品和其它物品的家用电器设备。它的主要任务就是控制压缩机、化霜加热等来保持箱内食品的最佳温度达到食品保鲜的目的, 即保证所储存的食品在经过冷冻或冷藏之后保持色、味、水分、营养基本不变。从19 世界上第一台电机压缩式电冰箱研制成功, 随着科学技术的飞速发展电冰箱也在不断的演变和更新特别是近年来高新技术的迅猛崛起更使得电冰箱的发展日新月异。现代社会每一个家庭都处在快节奏的生活中人们大多已无闲暇的时间和精力花费在经常性的采购日常生活用品上。因此集中时间大量采购的新型生活方式已为越来越多的人所接受从而决定了大容量电冰箱将是一种国际化的发展趋势。传统的机械式直冷式电冰箱的控制原理是根据蒸发器的温度控制制冷压缩机的启、停,使电冰箱内的温度保持在设定温度范围内。一般,当蒸发器温度升至3~5℃时启动压缩机制冷;当温度低于-10 ~ -20℃时停止制冷,关断压缩机。 随着微机技术的飞速发展,单片机以其体积小、价格低、应用灵活等优点在家用电器、仪器仪表等领域中得到了广泛的应用。

采用单片机进行控制,能够使电冰箱的控制更准确、灵活、直观。 本次所设计的就是基于51单片机的电冰箱温度控制系统, 以AT89C51单片机为核心控制压缩机的启动和停止, 解决了传统电冰箱控制系统存在的不足, 能够使控制更准确、更灵活。 本次设计的目的是设计一个温度控制系统, 要求: 1.利用键盘分别控制冷藏室、冷冻室温度( 0~5℃, -7 ~ -18℃) ; 2.显示各室的温度值; 3.制冷压缩机运行后若突然断电要有30秒延时; 4.各个门开后超过2分钟要报警。 本次设计的意义是经过此次设计加深对测控系统原理与设计课程的理解, 掌握微机化测控系统设计的思路, 了解一般设计过程。 二、电冰箱温度控制系统硬件电路设计 1. 总体设计方案 以AT89S51单片机为核心, 来实现各个模块的功能。温度传感器模块、键盘输入模块作为系统的输入模块, 液晶显示模块、温度控制器模块、报警模块作为系统的输出模块, 构成基本电路, 原

冰箱温度智能控制系统的设计

冰箱温度智能控制系统的设计 目录 第一章概论..................................... 错误!未定义书签。 一.电冰箱的系统组成 (2) 二.工作原理: (3) 三.本系统采用单片机控制的电冰箱主要功能及要求 (4) 第二章硬件部分 (4) 一.系统结构图 (4) 二.微处理器(单片机) (5) 三.温度传感器 (8) 四.电压检测装置 (8) 五.功能按键 (9) 六.压缩机,风机、电磁阀控制 (9) 七.故障报警电路 (9) 第三章软件部分 (10) 一、主程序:MAIN (10) 二、初始化子程序:INTI1 ......................... 错误!未定义书签。 三、键盘扫描子程序:KEY ......................... 错误!未定义书签。 四.打开压缩机子程序:OPEN (13) 五.关闭压缩机:CLOSE (15) 六.定时器0中断程序:用于压缩机延时............ 错误!未定义书签。 七.延时子程序.................................. 错误!未定义书签。第四章分析与结论.................................. 错误!未定义书签。

电冰箱温度测控系统设计 目前市场销售的双门直冷式电冰箱,含有冷冻室和冷藏室,冷冻室通常用于冷冻的温度为-6~-18℃;冷藏室用于在相对冷冻室较高的温度下存放食品,要求有一定的保鲜作用,不能冻伤食品,室温一般为0~10℃. 传统的电冰箱温度一般是由冷藏室控制,冷藏室、冷冻室的不同温度是通过调节蒸发器在两室的面积大小来实现的,温度调节完全依靠压缩机的开停来控制.但是冰箱内的温度受诸多因素的影响,如放入冰箱物品初始温度的高低、存放品的散热特性及热容量、物品在冰箱的充满率、环境温度的高低、开门的频繁程度等.因此对这种受控参数及随机因素很多的温度控制,既难以建立一个标准的数学模型,也无法用传统的PID调节来实现.一台品质优良的电冰箱应该具有较高的温度控制精度,同时又有最优的节能效果,而为了达到这一设计要求采用模糊控制技术无疑是最佳的选择. 一.电冰箱的系统组成 液体由液态变为气态时,会吸收很多热量,简称为“液体汽化吸热”,电冰箱就是利用了液体汽化的过程中需要吸热的原理来制冷的。 蒸气压缩式电冰箱制冷系统原理图如图1-1所示,主要由压缩机、冷凝器、干燥过滤器、毛细管、蒸发器等部件组成,其动力均来自压缩机,干燥过滤器用来过滤赃物和干燥水分,毛细管用来节流降压,热交换器为冷凝器和蒸发器。制冷压缩机吸入来自蒸发器的低温低压的气体制冷剂,经压缩后成为高温高压的过热蒸气,排入冷凝器中,向周围的空气散热成为高压过冷液体,高压过冷液体经干燥过滤器流入毛细管节流降压,成为低温低压液体状态,进入蒸发器中汽化,吸收周围被冷却物品的热量,使温度降低到所需值,汽化后的气体制冷剂又被压缩机吸入,至此,完成一个循环。压缩机冷循环周而复始的运行,保证了制冷过程的连续性。

基于51单片机的多功能温度控制器的设计

基于51单片机的多功能温度控制器的设计 在某些工业生产过程中,如恒温炉、仓库储藏、花卉种植、小型温室等领域都对温度有着严格的要求,需要对其加以检测和控制。传统的温度测量方法是将温度传感器输出的模拟信号放大后送至远端A/D转换器,最后单片机对A/D转换后的数据进行分析处理。这种方法的缺点是模拟信号在传输的过程中存在损耗并且容易受到外界的干扰,导致测量的温度精度不高。 文中以STC89C52RC单片机为控制核心,利用美国Dallas公司最新推出的单总线数字温度传感器DSl8820测量温度,单片机处理后对温度进行控制,并将温度显示在LCDl602上,还可通过按键设置温度上下限值实现温度超限报警等功能。 1 系统的组成和工作原理 多功能温度控制系统的结构,系统由六部分组成:控制核心部分、温度数据采集部分、加热装置控制部分、液晶显示部分、按键输入部分和报警提示部分。单片机启动温度采集电路完成温度的一次转换,然后读出转换后的数字量并转化成当前的温度呈现在显示模块中,并将当前的温度与通过按键输入电路设定的保持恒温度数进行比较,以实现温度的控制。还可以通过按键设置温度的上下限值以实现超温或低温报警提示功能。本系统的设计目标要对温度的控制精度达到0.1℃。 1.1 报警电路 报警电路采用蜂鸣器作为发声装置,当温度高于设定的上限值或低于下限值,给蜂鸣器送周期为1s,占空比为50%的方波,报警的时间可以持续1分钟或等待按键解除报警,这由软件控制实现。 1.2 按键电路 采用2×3的小键盘,键盘的识别可以采用两种方法:行扫描法和行反转法。两种方法都要注意消除按键的抖动。文中采用行扫描法并做成子程序,出口参数为按键的键值。定义键K1设置TH,K2设置TL,K3调高TH或TL,K4调低TH或TL,K5对TH或TL的数值进行确认。 1.3 温度检测电路 温度检测电路采用智能温度传感器DSl8820,它与单片机相连只需要3线,减少了外部的硬件电路。DSl8820主要性能特点如下: (1)测温的范围为-55~125℃,最大分辨率可以达到0.0625℃; (2)电源电压范围为3.0~5.5V; (3)供电模式:寄生供电和外部供电; (4)封装形式有两种:3脚的TO-92封装和8脚的SOIC封装; (5)可编程的温度转换分辨率,分辨率为9~12位(包括1位符号位),由配置寄存器决定具体位数,配置寄存器的格式如表1所示。 其中RlR0是用来设定分辨率的,分辨率的定义如表2所示。 由表2可以看出,分辨率设定得越高,温度转换所需要的时间就越长,因此应根据实际应用的需要来选择合适的分辨率。本文中选取12位分辨率,每隔1秒检测一次温度。12位分辨率的温度数据值格式如下: 当S=0表示测得的温度为正值,当S=l表示测得的温度为负值。 1.3.1 DSl8820的存储器结构 DSl8820的存储器有高速暂存RAM和非易失性电擦写EEPROM。高速暂存RAM的内容从低

基于单片机的电冰箱温度控制器设计 韩凯(DOC)

课程设计大纲 学院名称电气工程与自动化学院课程名称传感器原理 开课系(或教研室)测控技术与仪器 执笔人韩凯 审定人孙凯 修(制)订日期2013年1月13日

山东轻工业学院 课程设计任务书 学院电气工程与自动化学院专业测控技术与仪器 姓名韩凯班级10-2 学号201002051071 题目基于单片机的电冰箱温度控制器设计 主要内容、基本要求、主要参考资料等: 一、主要内容 利用51单片机、温度传感器DS18B20、过欠电压检测电路等设计出冰箱温控器 二、基本要求 掌握51单片机的使用,掌握温度传感器与相关电路的工作原理与设计关键点。本系统可实现电冰箱温度设置、电冰箱过欠压检测、开门显示、压缩机开启延时等功能。 三、参考文献 [1] 求是科技.8051系列单片机C程序设计完全手册[M].北京:人民邮电出版社,2006 [2] 张鑫等.单片机原理及应用[M].北京:电子工业出版社,2006 [3] 谭浩强.C程序设计(第三版)[M].北京:清华大学出版社,2005 [4] 周兴华.单片机智能化产品——C语言设计实例详解[M].北京:北京航空航天大学出版社,2007 [5] 张齐等.单片机应用系统设计技术——基本C语言编程[M].北京:电子工业出版社,2004 [6] 王东锋,董冠强.单片机C语言应用100例[M].北京:电子工业出版社,2009 [7] 余瑾,姚燕.基于DS18B20测温的单片机温度控制系统[J].单片机开发与应用,2009,25(3-2):105-106. 完成期限:自2013 年 1 月 6 日至2013 年 1 月10 日指导教师:孙凯系(或教研室)主任:孙涛 2

冰箱温度控制器代换的方法和注意事项

冰箱温度控制器代换的方法和注意事项 案例描述:送修冰箱是一台华菱b c d-268w间冷式电冰箱,在本冰箱维修案例要掌握的是冰箱温度控制器代换技术资料以及温控器调试方法。 分析与检修;电冰箱中使用的蒸汽压力式温控器在出厂时,根据电冰箱的设计要求,通过内腔调节螺钉已将温控器的主要技术参数预调好,旋转温控器的调节旋钮是在预调的基础参数上进行具体的细调,能根据冰箱各简室温度要求进行自动控制。 冰箱温控器一般均设有温差调节螺钉和温度范围调节螺钉,温控器温差调节机构,利用两个螺钉分别控制平衡弹簧(控制温度范围)和差额调节弹簧(开停时温差)。顺时针方向旋转温差调节螺钉,可使触点升程减小,使通断温差减小,反之则温差增大。温差调节螺钉每旋转一圈,温度变化约1℃左右,每次调整应不超过一圈。顺时针旋转调节螺钉,使主弹簧拉力增大,故要使触点闭合,使压缩机启动运转,必须适当提高蒸发器温度(感温元件压力相应提高),即开机温度升高,停机温度也相应提高,从而实现了对电冰箱温度范围的调节。 在电冰箱维修的过程中,原则上不提倡对温控器的调试,如果要进行调试时.应首先断开电源,调试后接通电源的间隔应大于5分钟,如需同时调试2~3个螺钉时,应根据各螺钉的作用及相互关系确定先后顺序,每次调节螺钉1/2~1圈,检测调试结果时,须将温控器(特别是感温管)按原位置装好。当温拄器因机械零件变形过大、漏气等原因造成失灵时,一般应更换新的同型号温控器。 华凌b c d-268w电冰箱采用冷气强制循环方式,由风扇将冷气一路送入冷冻室,另外分两路沿着冰箱后侧风道,向下经由挡风门温度控制器(自动感温调节通风口的大小),送往变温室和冷藏室。由冷冻室温控器控制着压缩机的开、停,并调节整个系统的制冷情况。

冰箱温度控制器的设计

冰箱温度控制器的设计

冰箱温度控制器的设计 1 引言 家用电冰箱一般有冷冻室和冷藏室,冷冻室的温度为-6℃~-18℃左右;冷藏室的温度为0℃~10℃。在该温度范围内,食品保鲜效果较好,因此,对控制器的要求是将冷冻室和冷藏室的温度自动控制在各自的范围内。在电冰箱的控制中,温度是主要的控制对象,控制的好就有显著的节能效果。但冰箱内要受诸如环境温度的高低、冰箱本身的容积、冰箱中食物的多少、以及食物的种类和性质、存放物品的初始温度、散热特性及其热容量、物品的充满率及开门的频繁程度等控制。冰箱内的温度场分布极不均匀,要想建立电冰箱温度变化的精确数学模型是很困难的,因此采用模糊控制技术才能达到最佳的控制效果。 2 模糊控制系统概述

2.1 普通电冰箱的结构 普通电冰箱的箱体是用隔热材料分割成几个空间,可有单门冷藏式、单门冷冻式、双门冷藏、冷冻式和三门冷冻、冷藏式。 (1)冷冻室和冷藏室 冰箱是利用冷却剂周期性循环的物态变化吸热而致冷。用于吸热的蒸发器就设在冷冻室,蒸发器冷却的冷气循环到冷藏室,使之降温。由于这种结构的安排,冷冻室的温度降得较快,而冷藏室的温度降得较慢。 (2)除霜加热器 因为在冰箱降温过程中,空气和食物中所含的水分会凝聚到蒸发器和食物上而结成霜,当蒸发器表面结霜后,其热交换能力下降,而影响致冷效果;当霜层过厚时,还可能引起压缩机故障。除霜加热器包括门框加热器和蒸发器上的化霜加热器。 2.2 模糊控制电冰箱系统结构 家用电冰箱的发展,除了无氟、大容量外,主要是多门分体结构,一套制冷装置、多通道风冷式。为了适应这一情况,达到高精度、智能化

控制的目的,本系统主要实现温度控制和智能化霜。温度控制就是要把握冰箱内存放的食物的温度和热容量,控制压缩机的开停、风扇转速和风门开启度等,使食物达到最佳保存状态。这就需要用传感器来检测环境温度和各室温度,并运用模糊推理来确定食物温度和热容量。智能除霜就是要根据霜层厚度,选择门开启次数最少的时间段,即温度变化率最小时快速除霜,这样对食物影响最小,有益于保鲜。运用模糊推理来确定着霜量和考虑门开启状况,经模糊推理确定除霜指令。此外,本系统还具有故障自诊及运行状态的显示等功能。控制电路框图如图1所示。 2.2.1 系统硬件组成 该系统采用8位87C552单片机为控制器8KROM,256字节的RAM为传感器,主要有冷冻室、冷藏室、冰温室及环温等传感器,采用价格低廉的热敏电阻。在门状态检测电路中,为了减少输入线数,简化装配工艺,多个状态开关共用一根输入线。通过输入线状态变化和箱内温度变化来决策时冷冻室箱门打开,还是冷藏室箱门打开。显示电路由LED显示和数码显示两部分组成。LED显示电冰箱运行状态,数码显示

基于51单片机的温控智能电风扇

浙江理工大学 《单片机系统设计及应用实验》 设计报告 题目:基于51单片机的温控智能电风扇专业:机械电子工程 班级:机电11(1)班 姓名:叶惠芳 学号:2011330300302 指导教师:袁嫣红 机械与自动控制学院 2014 年7 月3 日

目录 摘要 (4) 第一章课程设计的目标及主要内容 (5) 1.1课程设计的目标及意义 (5) 1.2温控智能电风扇的主要内容和技术关键 (5) 1.2.1课程设计的主要内容 (5) 1.2.2技术关键 (5) 第二章温控智能电风扇控制系统硬件设计 (6) 2.1课程设计总体硬件设计 (6) 2.2芯片及主要器件选择 (6) 2.2.1控制核心的选择 (6) 2.2.2温度传感器的选用 (7) 2.2.3显示电路 (7) 2.3芯片及器件介绍 (7) 2.3.1 AT89C51单片机 (7) 2.3.2 L298芯片介绍 (8) 2.3.3 DS18B20温度传感器 (9) 2.3.4LED数码管简介 (11) 2.4主要硬件电路 (12) 2.4.1温度检测电路设计 (12) 2.4.2 电机调速电路设计 (12) 2.4.3 PWM调速原理 (13) 2.4.4 LED数码管显示电路及按键电路 (13) 第三章温控智能电风扇控制系统软件设计与实现 (14) 3.1 主程序 (14) 3.2 数字温度传感器模块 (14) 3.3电机调速与控制子模块 (16) 第四章调试结果与总结 (16) 4.1 调试结果 (16)

4.2 课程设计总结 (20) 参考文献 (21) 附录一 (23) 附录二 (24) 附录三 (25)

智能冰箱温度控制(最终版)

摘要 (1) 1、智能冰箱温度控制器设计任务要求 (3) 2、冰箱的硬件系统 (3) 2.1、冰箱的硬件组成及工作原理 (3) 2.2、控制芯片 (4) 2.3、温度传感器 (4) 2.4、键盘 (5) 2.5、电源模块 (5) 2.6、电机驱动 (6) 2.7、声音报警 (6) 2.8、显示 (6) 3、PID 简介 (7) 3.1、PID控制的原理和特点 (8) 3.2、数字PID 的实现 (9) 3.3温度控制PID 算法设计 (11) 3.4、温度控制实现 (12) 4、系统程序设计 (13) 4.1、系统流程图 (13) 4.1.1、温度比较处理流程图 (13) 4.1.2、主程序流程图 (14) 4.2、系统关键子程序设计 (15) 4.2.1、获取温度子程序 (15) 4.2.2、PID温度控制子程序 (16) 4.2.3、温度比较处理子程序 (16) 4.2.4、PWM子程序 (18) 4.2.5、LCD显示子程序 (18) 总结 (22) 参考文献 (22) 附录 (23)

摘要 一个优良的电冰箱,应该具有较高的温度控制精度和较好的控制效果。本设计主要从冰箱的硬件电路和PID控制两个方面,以PID控制算法为主线,对冰箱的温度控制过程进行描述。具体分为硬件结构框图及各功能电路的介绍、PID控制算法、软件程序框图、关键子程序等四部分。由于冰箱的温度控制过程离不开控制器的控制算法,因此本报告对温度控制器的PID控制算法进行详细阐述。关键词:温度控制,PID算法,单片机,温度显示,报警

Abstract A good refrigerators, should be high temperature control precision and better control effect. This design is mainly from the hardware circuit and PID control two aspects with PID control algorithm as the main line, the temperature control of the refrigerator to describe the process. Specific hardware structure diagram and divided into each function of the circuit is introduced, PID control algorithm, software program diagram, key procedure and so on four parts. Because of the refrigerator temperature control process cannot leave the controller control algorithm, so the temperature controller reports on PID control algorithm is described in detail. Keywords:temperature control, PID algorithm, a single-chip microcomputer, temperature display, call the police

毕业设计-电冰箱的制冷控制系统

前言 众所周知,电冰箱是现代家庭中必不可少的家用电器。而目前我国市场销售的冰箱大多采用传统的机械式温控,其控制精度差,功能单一,控制方式简单难以满足冰箱发展的要求。随着经济的发展和人民生活水平的进一步提高,人们对多功能的发展要求越来越高。由于单片机性能好,控制功能强,工作可靠,成本低等优点,现在已经在家电产品中得到了广泛的应用。面临国内电冰箱发展的现状,在技术上还与其他发达国家有一定的差距,我们在原有的基础上对电冰箱进行了一定的改进,使其适应当代个性时尚、节能环保、智能高端、精确温控的发展方式,使人们体验闻所未闻的个性化感受,快捷与原汁原味不再是梦想。新一代产品在控制上还增加了人工智能,使家电性能更优异,使用更方便可靠。 本次设计基于大量的市场调查和理论研究。首先,我对传统电冰箱控制系统进行了分析。调查了10多个品牌的电冰箱的控制系统,研究了他们制冷的优缺点,吸收了一些比较好的设计思想。其后,我又查阅了大量的资料文献,其中最多的是国内外最新发表的关于制冷方面的论文,丰富了我们的理论依据。然后,根据我拥有的材料用单片机实现电冰箱控制系统的硬件设计,最后在硬件设计的基础上实现了其软件设计。 第1章电冰箱系统概述 1.1 单片机概述 自从1971年微型计算机问世以来,随着大规模集成电路技术的进一步发展,导致微型计算机正向两个方向发展:一是高速度、高性能、大容量的高档微型计算机及其系列化,向大、中型计算机挑战;另一个是稳定可靠、小而廉、能适应各种领域需要的单片机。 单片机是指把中央处理器、随机存储器、只读存储器、定时器/计数器以及I/O 接口电路等主要部件集成在一块半导体芯片上的微型计算机。虽然单片机只是一个芯片,但从组成和功能上看,它已经具有了微型计算机系统的含义,从某种意义上来说,一块单片机就是一台微型计算机。

冰箱冷藏室温度智能控制系统

- . - 目录 摘要 (1) 1 引言 (1) 2 设计思路 (2) 2.1 设计任务 (2) 2.2 设计的理论基础 (2) 2.3 冰箱的系统组成 (2) 2.3.1 蒸汽式压缩机电冰箱 (2) 2.3.2 直冷式电冰箱 (3) 2.4 总体设计方案选择 (3) 2.5 方案总体介绍 (4) 3 硬件系统设计 (4) 3.1 系统总体结构 (4) 3.2 温度采集模块 (5) 3.2.1 温度采集模块的选择 (5) 3.2.2 DS18B20测温电路 (6) 3.2.3 测量数据的比较 (7) 3.3 单片机系统及液晶模块 (7) 3.3.1 微处理器(单片机) (7) 3.3.2 显示电路的设计 (8) 3.4 输出控制模块 (9) 4 软件设计 (9) 4.1 主程序流程框图 (10) 4.2 DS18B20工作的流程图 (12) 5 调试与实验 (12) 5.1 使用说明 (12) 5.1.1 Keil单片机模拟仿真 (12) 5.2 功能测试 (14) 5.2.1 温度测量分辨率 (14) 5.3 晶振的选择 (14) 附录1 硬件原理图 (15)

冰箱冷藏室温度智能控制系统 摘要:本智能温度控制主要由温度采集模块、液晶显示模块、单片机智能控制模块和输出控制模块组成。此次设计相比于传统的冰箱温度控制器,温度信号更加精确,利用单片机控制冷藏室温度在1℃~5℃之间,当温度低于1℃,继电器不工作;当温度高于5℃,继电器开始工作,并且利用液晶显示冷藏室温度的变化。 关键词:温度采集;液晶显示;温度控制 1 引言 随着集成电路的发展,单片机的功能也越发的多样。单片机因为他本是的诸多优点,比如功能强、体积小、可靠性高、开发的周期短,成为各种检测控制方面被广泛应用的元器件,在电子工业生产中变为不可缺少的存在,特别是在我们日常的生活生产中也发挥了很多的作用[1]。而在日常生活中,冰箱已经成了家庭生活中不可缺少的一部分,就此对于冰箱的性能要求也越来越高。在这其中冰箱的智能温度控制是现今市场上冰箱重要选择。 现在市面上的冰箱大多都包含着两部分,分别是冷藏室和冷冻室。其中冷藏室用于冷藏食物,要求有一定的保鲜作用,不可冻伤食物;冷冻室一般用于对食物的冷冻作用。 现代信息技术的三大基础是信息采集(即传感器技术)、信息传输(通用技术)和信息处理(计算机技术)。目前信息技术中前端的产品就是传感器,而其中被广泛应用在工业生产、科学研究方面的传感器就是温度传感器,在这些领域中温度传感器的应用是位于各种传感器的第一位[2]。 智能温度传感器最早是出现在20世纪90年代的中期,在其内部就应用了A/D转换器,但他测量的温度X围比较低,而且也只有1℃的分辨率。到了21世纪以后,智能温度传感器正在迅速的朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向发展[3]。 传统电冰箱的温度一般是由冷藏室控制。冷藏室、冷冻室之间不同的温度是通过调节蒸发器在两室的面积大小来实现的,温度的调节完全是依靠压缩机的开停来控制。但是影响冰箱内部温度的因素有很多种:如放到冰箱内的食物

基于-单片机的烘箱温度控制器设计

基于单片机的烘箱温度控制器设计 目录 1.项目概述 (1) 1.1.该设计的目的及意义 (1) 1.2.该设计的技术指标 (2) 2.系统设计 (3) 2.1.设计思想 (3) 2.2.方案可行性分析 (4) 2.3.总体方案 (5) 3.硬件设计 (6) 3.1.硬件电路的工作原理 (6) 3.2.参数计算 (7) 4.软件设计 (8) 4.1.软件设计思想 (8) 4.2.程序流程图 (9) 4.3.程序清单 (10) 5.系统仿真与调试 (11) 5.1.实际调试或仿真数据分析 (11) 5.2.分析结果 (13) 6.结论 (12) 7.参考文献 (13) 8.附录 (14)

1.项目概述: 1.1.该设计的目的及意义 温度的测量及控制,随着社会的发展,已经变得越来越重要。而温度是生产过程和科学实验中普遍而且重要的物理参数,准确测量和有效控制温度是优质,高产,低耗和安全生产的重要条件。在工业的研制和生产中,为了保证生产过程的稳定运行并提高控制精度,采用微电子技术是重要的途径。它的作用主要是改善劳动条件,节约能源,防止生产和设备事故,以获得好的技术指标和经济效益。 而本设计正是为了保证生产过程的稳定运行并提高控制精度,采用以51系列单片机为控制核心,对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标。 通过本设计的实践,将以往学习的知识进行综合应用,是对知识的一次复习与升华,让以往的那些抽象的知识点在具体的实践中体现出来,更是对自己自身的挑战。 1.2.该设计的技术指标 设计并制作一个基于单片机的温度控制系统,能够对炉温进行控制。炉温可以在一定围由人工设定,并能在炉温变化时实现自动控制。若测量值高于温度设定围,由单片机发出控制信号,经过驱动电路使加热器停止工作。当温度低于设定值时,单片机发出一个控制信号,启动加热器。通过继电器的反复开启和关闭,使炉温保持在设定的温度围。 (1) 1KW 电炉加热(电阻丝),最度温度为120℃(软件实现) (2)恒温箱温度可设定,温度控制误差≦±2℃(软件实现PID) (3)实时显示温度和设置温度,显示精度为1℃(LED)。 (4)温度超过设置温度±5℃,发出超限报警,升温和降温过程不作要求。 (5)升温过程采用PID算法,控制器输出方式为PWM输出方式,降温采用自然冷却。 (6)功率电路220 VAC供电,强弱电气电隔离 2.系统设计 2.1.设计思想 以87C51单片机为整个温度控制系统的核心,为解决系统出现一时的死机的问题,需构建复位电路,来重新启动整个系统。要想控制温度,首席必须能够测量温度,就需要一温度传感器,将测量得到的温度传给单片机,经单片机处理后,去控制继电器等器件实现电炉的断与通来达到温度期望值,当温度超过设定上下限值时,可以通过中断信号,控制指示灯的亮灭,来提醒温

基于单片机的冰箱温度智能控制系统的设计

基于单片机的冰箱温度智能控制系 统的设计 摘要: 近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善。 电冰箱温度控制系统是利用温度传感器DS18B20采集电冰箱冷藏室和冷冻室的温度,通过INTEL公司的高效微控制器MCS-C51单片机进行数字信号处理,从而达到智能控制的目的。本系统可实现电冰箱冷藏室和冷冻室的温度设置、电冰箱自动除霜、开门报警等功能。 本文在第一章介绍了电冰箱的系统组成及工作原理,第二章论述了本控制系统的硬件设计部分。第三章论述了系统的软件设计部分。 通过对直冷式电冰箱制冷系统的改进和采用模糊控制技术,实现了电冰箱的双温双控,使电冰箱能根据使用条件的变化迅速合理地调节制冷量,且节能效果良好。

目录 第一章概论 (3) 一.电冰箱的系统组成 (3) 二.工作原理: (5) 三.本系统采用单片机控制的电冰箱主要功能及要求: (5) 第二章硬件部分 (6) 一.系统结构图 (6) 二.微处理器(单片机) (6) 三.温度传感器 (11) 四.电压检测装置 (15) 五.功能按键 (15) 六.压缩机,风机、电磁阀控制 (16) 七.故障报警电路 (16) 第三章软件部分 (16) 一、主程序:MAIN (17) 二、初始化子程序:INTI1 (21) 三、键盘扫描子程序:KEY (22) 四.打开压缩机子程序:OPEN (25) 五.关闭压缩机:CLOSE (26) 六.定时器0中断程序:用于压缩机延时 (27) 七.延时子程序 (28) 第四章分析与结论 (28) 致谢 (29) 参考文献: (30)

相关文档
最新文档