高中物理的数学方法

高中物理的数学方法

人们常说,数理不分家。学好数学知识是解决物理问题的重要基础,这一点在高中物理中显得尤为突出。现行高考《物理考试大纲》中对学生的能力考核有五个方面,其中第四种能力为应用数学处理问题的能力,要求能够根据具体问题列出物理量之间的关系式,进行推导和求解,并根据结果得出物理结论,必要时能运用几何图形、函数图像进行表达、分析。由此可见,数学知识在物理解题中的重要性。

近年来,由于高考命题多为大学教师为主,而大学物理教材基本上都是通过数学来表达和处理的。另一方面,高考命题又负担着为高校选拔人才的使命,所以在物理学科命题时加大数学知识,拉开档次,更有利于理科方面人才的选拔。故用数学方法处理物理问题的能力在近年的高考中表现得日益突出。

多年的教学发现,在中学阶段,多数考生往往不是数学学得不好,而缺乏的是运用数学思想(数学方法)处理物理问题的意识。其实,任何一个物理公式就是一个函数,只要将物理公式中的自变量、因变量、常量与数学函数相应的解析式对应,分析起来自然很清楚,问题也能很容易得到正确解决,但学生很难有这种转换思维。这就要求教师在对学生的平时训练中引导学生树立函数思想,遇到一些较为复杂的物理问题要敢于和善于转换为函数或函数图像来

解决。本文就是想通过一些典型例题,起到“抛砖引玉”的作用,期望对学生的物理学习有所指引和帮助。

(完整word版)高中物理竞赛的数学基础

普通物理的数学基础 选自赵凯华老师新概念力学 一、微积分初步 物理学研究的是物质的运动规律,因此我们经常遇到的物理量大多数是变量,而我们要研究的正是一些变量彼此间的联系。这样,微积分这个数学工具就成为必要的了。我们考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的。所以我们在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要。至于更系统和更深入地掌握微积分的知识和方法,读者将通过高等数学课程的学习去完成。 §1.函数及其图形 本节中的不少内容读者在初等数学及中学物理课中已学过了,现在我们只是把它们联系起来复习一下。 1.1函数自变量和因变量绝对常量和任意常量 在数学中函数的功能是这样定义的:有两个互相联系的变量x和y,如果每当变量x取定了某个数值后,按照一定的规律就可以确定y的对应值,我们就称y是x的函数,并记作 y=f(x),(A.1) 其中x叫做自变量,y叫做因变量,f是一个函数记号,它表示y和x数值的对应关系。有时把y=f(x)也记作y=y(x)。如果在同一个问题中遇到几个不同形式的函数,我们也可以用其它字母作为函数记号, 如 (x)、ψ(x)等等。① 常见的函数可以用公式来表达,例如 e x等等。 在函数的表达式中,除变量外,还往往包含一些不变的量,如上面 切问题中出现时数值都是确定不变的,这类常量叫做绝对常量;另一类如a、b、c等,它们的数值需要在具体问题中具体给定,这类常量叫做任意常量。

在数学中经常用拉丁字母中最前面几个(如a、b、c)代表任意常量,最后面几个(x、y、z)代表变量。 当y=f(x)的具体形式给定后,我们就可以确定与自变量的任一特定值x0相对应的函数值f(x0)。例如: (1)若y=f(x)=3+2x,则当x=-2时y=f(-2)=3+2×(-2)=-1. 一般地说,当x=x0时,y=f(x0)=3+2x0. 1.2函数的图形 在解析几何学和物理学中经常用平面 上的曲线来表示两个变量之间的函数关系, 这种方法对于我们直观地了解一个函数的 特征是很有帮助的。作图的办法是先在平面 上取一直角坐标系,横轴代表自变量x,纵 轴代表因变量(函数值)y=f(x).这样一 来,把坐标为(x,y)且满足函数关系y=f (x)的那些点连接起来的轨迹就构成一条 曲线,它描绘出函数的面貌。图A-1便是上 面举的第一个例子y=f(x)=3+2x的图形,其中P1,P2,P3,P4,P5各点的坐标分别为(-2,-1)、(-1,1)、(0,3)、(1,5)、(2,7),各点连接成一根直线。图A-2是第二个例子 各点连接成双曲线的一支。 1.3物理学中函数的实例 反映任何一个物理规律的公式都是表达变量与变量之间的函数关系的。下面我们举几个例子。 (1)匀速直线运动公式 s=s0+vt,(A.2) 此式表达了物体作匀速直线运动时的位置s随时间t变化的规律,在这里t相当于自变量x,s相当于因变量y,s是t的函数。因此我们记作s=s(t)=s0+vt,(A.3) 式中初始位置s0和速度v是任意常量,s0与坐标原点的选择有关,v对于每个匀速直线运动有一定的值,但对于不同的匀速直线运动可以取不同的值。

高中物理重要方法典型模型突破7-数学方法(5)--微元法

专题七 数学方法(5) 微元法 【重要方法点津】 在物理学的问题中,往往是针对一个对象经历某一过程或出于某一状态来进行研究,而此过程或状态中,描述此研究对象的物理量有的可能是不变的,而更多的则可能是变化的,对于那些变化的物理量的研究,有一种方法是将全过程分为很多短暂的微小过程或将研究对象的整体分解为很多微小局部,这些微小过程或者是微小的局部常被称为“微元”,而且每个微元所遵行的规律是相同的,取某一微元加以分析,然后在将微元进行必要的数学方法或物理思想处理归纳出适用于全过程或者是整体的结论,这种方法被称为“微元法”。微元法是物理学研究连续变化量的一种常用方法。 微元可以是一小段线段、圆弧、一小块面积、一个小体积、小质量、一小段时间……,但应具有整体对象的基本特征。这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题得到求解。利用“微元法”可以将非理想模型转化为理想模型,将一般曲线转化为圆甚至是直线,将非线性变量转化为线性变量甚至是恒量,充分体现了“化曲为直”、“化变为恒”的思想。 应用“微元法”解决物理问题时,采取从对事物的极小部分(微元)入手,达到解决事物整体的方法,具体可以分以下三个步骤进行:(1)选取微元用以量化元事物或元过程; (2)把元事物或元过程视为恒定,运用相应的物理规律写出待求量对应的微元表达式;(3)在微元表达式的定义域内实施叠加演算,进而求得待求量。微元法是采用分割、近似、求和、取极限四个步骤建立所求量的积分式来解决问题的。 【典例讲练突破】 【例1】 设某个物体的初速度为0v ,做加速度为a 的匀加速直线运动,经过时间t ,则物 体的位移与时间的关系式为2012 x v t at =+,试推导。 【总结】这是我们最早接触的微元法的应用。总结应用微元法的一般步骤:(1)选取微元,时间t ?极短,认为速度不变,“化变为恒”,(2)写出所求量的微元表达式,微元段的意义是位移,写出位移表达式i i x v t =?,(3)对所求物理量求和,即对微元段的位移求和, i i x x v t =∑=∑?。

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

学好高中数学及物理

如何学好高中数学及物理

————————————————————————————————作者:————————————————————————————————日期: 2

如何学好高中数学: 树立学好高中数学的信心,培养良好的学习习惯 进入高中就必须树立正确的学习目标和远大的理想,加强学习习惯的培养。学生可以阅读一些数学历史,体会数学家的创造所经历的种种挫折、数学家成长的故事和他们在科学技术进步中的卓越贡献,也可请高二、高三的优秀学生讲讲他们学习数学的方法,以此激励自己积极思维,勇于进取,培养学习数学的兴趣,树立学好数学的信心。 进入高中就要有一定的紧迫感。提倡课前预习,学会提出问题、分析问题和独立解决问题。课堂上要求积极主动的投入到老师的教学过程中,参与提出问题、思考问题、分析问题、解决问题,并及时总结本节课的教学内容。课后通过反复阅读书本,查阅有关资料,以强化对基本概念、原理、整个知识网络的理解与记忆并独立完成本节课的作业。每学完一单元、章节的内容都应仔细阅读课本的小结,养成归纳、总结的习惯。学习上要团结互助,形成集体的合力解决问题。 重视自身的学习经验总结,改进原有的学习方法 为了解决好高一数学学习“开头难”的特点,学习中要注意几点: ①、制订一个合理的计划。开学前可以先阅读一下课本,认真制定好本学期的学习计划,心理上有一个准备。 ②、做好新旧知识的对比。应力求做到新的概念、定理,都要先复习初中已学过的相关知识,把它贯穿在高中课程中,使新旧知识互相促进,共同巩固,达到知识的深化与能力的培养。 ③、重视数学概念的学习。对高一接触到抽象的集合语言、函数语言等概念第一章就有概念38个,数学符号22个。由于概念之间的联系紧密,后一个概念往往是建立在前一个概念的基础上,逻辑性强,所以要透彻每一个概念,对于概念中的关键字眼要反复推敲,找出其关键点,逐渐由感性认识上升到理性认识。如集合的学习中,集合的元素的选择应该广泛化,而不单单以纯数学模型(数、形、式)为元素;集合的并、交、补集运算,可用文氏图、数轴、坐标系等工具加以分析。 ④、新的知识要转化为自己的再发现、再创造。要充分的动脑、动口、动手,积极参与实践,主动获取知识。课堂上对教师讲解的重、难点内容,积极参与师生讨论、发表自己的见解,不断更新自己的学习体会。对“似懂而非全懂”、“似会而非全会”、“想知又未全知”、“跳一跳,够得着”的题目或知识,要勇于探索,在解题中发现自己的学习成效,体会探研知识的乐趣,提高独立或集体归纳知识规律与解题规律的能力。 培养优秀的数学思维品质,提高数学解决问题的能力 与初中数学相比高中数学在思维形式的灵活性、可拓展性等方面的要求较高。所以学习中加强思维训练,积极开展思维活动,努力克服思维惰性,提高自身的分析问题解决问题的能力。 大都数高中数学概念的引入、形成、深化等思维过程中能提高自己的观察能力和抽象、概括能力。“过程”是数学学习的重点,定义、定理、公式、法则等前人思维活动的经验成果,通过自己的观察、联想、对比、分析等“过程”的思维活动,形成数学家发现这个结论同样的艰辛和喜悦。 高中数学教材中的定理的证明、公式法则的推导以及例题的解答,一般要先思考,独立或集体讨论解决方法,然后与教材对照,看有什么异同。要体会由特殊到一般、由直觉发现到逻辑推理(证明)的这样一个解决问题的过程。一些较难问题用综合分析的方法去研究题目的条件、结论以及这二者之间的联系,层层分析问题,步步逼近减少思维发展上的障碍以求得正确的解题途径。

高中物理学习中常用的数学知识专题

高中物理学习中常用的数学知识专题 1、角度的单位——弧度(rad ) ①定义:在圆中,长度等于半径的弧长所对的圆心角为1弧度(1rad )。 ②定义式:l r θ= 1rad=57.30 ③几个特殊角的弧度值: a. 30 (rad)6 π = o b. 45 (rad)4π = o c. 60 (rad)3 π = o d. 90 (rad)2π=o e. 2120 (rad)3π=o f. 5150 (rad)6 π=o g. 180 (rad)π=o h. 3270 (rad)2 π=o I. 3602 (rad)π=o 2、三角函数知识: ①几种三角函数的定义: 正弦:sin a c θ= 余弦:cos b c θ= 正切:tan a b θ= 余切:cot b a θ= ②关系:2 2 sin cos 1θθ+= sin tan cos θ θθ = cos cot sin θθθ= 1 tan cot θθ = ③诱导公式: sin(-θ)=sin θ cos(-θ)=-cos θ tan(-θ)= -tan θ cot (-θ)= -cot θ sin(900-θ)=cos θ cos(900-θ)=sin θ tan(900-θ)=cot θ cot (900-θ)=tan θ sin(1800-θ)=sin θ cos(1800-θ)=-cos θ tan(1800-θ)= -tan θ cot (1800-θ)= -cot θ ④几个特殊角的三角函数值: θ a b c

⑤二倍角公式:(含万能公式) θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ⑥半角公式:(符号的选择由 2 θ 所在的象限确定) 2cos 12 sin θθ -± = 2 cos 12sin 2θθ-= 2cos 12cos θθ+±= 2cos 12 cos 2 θθ += 2sin 2cos 12θθ=- 2 cos 2cos 12θθ=+ 2 sin 2cos )2sin 2(cos sin 12θ θθθθ±=±=± θ θθθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg ⑦和差角公式 βαβαβαsin cos cos sin )sin(±=± βαβαβαsin sin cos cos )cos(μ=±

高中物理数学物理法(一)解题方法和技巧及练习题及解析

高中物理数学物理法(一)解题方法和技巧及练习题及解析 一、数学物理法 1.如图所示,ABCD是柱体玻璃棱镜的横截面,其中AE⊥BD,DB⊥CB,∠DAE=30°, ∠BAE=45°,∠DCB=60°,一束单色细光束从AD面入射,在棱镜中的折射光线如图中ab所示,ab与AD面的夹角α=60°.已知玻璃的折射率n=1.5,求:(结果可用反三角函数表示) (1)这束入射光线的入射角多大? (2)该束光线第一次从棱镜出射时的折射角. 【答案】(1)这束入射光线的入射角为48.6°; (2)该束光线第一次从棱镜出射时的折射角为48.6° 【解析】 试题分析:(1)设光在AD面的入射角、折射角分别为i、r,其中r=30°, 根据n=,得: sini=nsinr=1.5×sin30°=0.75 故i=arcsin0.75=48.6° (2)光路如图所示: ab光线在AB面的入射角为45°,设玻璃的临界角为C,则: sinC===0.67 sin45°>0.67,因此光线ab在AB面会发生全反射 光线在CD面的入射角r′=r=30° 根据n=,光线在CD面的出射光线与法线的夹角: i′="i=arcsin" 0.75=48.6° 2.一玩具厂家设计了一款玩具,模型如下.游戏时玩家把压缩的弹簧释放后使得质量m=0.2kg的小弹丸A获得动能,弹丸A再经过半径R0=0.1m的光滑半圆轨道后水平进入光滑水平平台,与静止的相同的小弹丸B发生碰撞,并在粘性物质作用下合为一体.然后从平台O点水平抛出,落于水平地面上设定的得分区域.已知压缩弹簧的弹性势能范围为

p 04E ≤≤J ,距离抛出点正下方O 点右方0.4m 处的M 点为得分最大值处,小弹丸均看作 质点. (1)要使得分最大,玩家释放弹簧时的弹性势能应为多少? (2)得分最大时,小弹丸A 经过圆弧最高点时对圆轨道的压力大小. (3)若半圆轨道半径R 可调(平台高度随之调节)弹簧的弹性势能范围为p 04E ≤≤J ,玩家要使得落地点离O 点最远,则半径应调为多少?最远距离多大? 【答案】(1)2J (2) 30N (3) 0.5m ,1m 【解析】 【分析】 【详解】 (1)根据机械能守恒定律得: 2 1p 012 2E v mg R m = +? A 、B 发生碰撞的过程,取向右为正方向,由动量守恒定律有: mv 1=2mv 2 200122gt R = x =v 2t 0 解得: E p =2J (2)小弹丸A 经过圆弧最高点时,由牛顿第二定律得: 2 1N v F mg m R += 解得: F N =30N 由牛顿第三定律知: F 压=F N =30N (3)根据 2 p 1122 E mv mg R = +? mv 1=2mv 2 2R =1 2gt 2, x =v 2t

高中物理解题方法---整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环 质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连, 并在某一位置平衡,如图。现将P 环向左移一小段距离,两环再 A O B P Q

高中物理中常用的三角函数数学模型!!!

高中物理中常用的三角函数数学模型 数学作为工具学科,其思想、方法和知识始终渗透贯穿于整个物理学习和研究的过程中,为物理概念、定律的表述提供简洁、精确的数学语言,为学生进行抽象思维和逻辑推理提供有效方法.为物理学的数量分析和计算提供有力工具。 高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上是一个将物理问题转化为数学问题经过求解再次还原为物理结论的过程。高考物理考试大纲对学生应用数学工具解决物理问题的能力作出了明确要求。 一、三角函数的基本应用 在进行力的分解时,我们经常用到三角函数的运算.虽然三角函数学生初中已经学过,但笔者在多年的教学过程中发现,有相当一部分学生经常在这里出问题,还有一部分学生一直到高三都没把这部分搞清楚.为此,本人将自己的一些体会写出来,仅供大家参考. (一)三角函数的定义式 (二)探寻规律 1.涉及斜边与直角边的关系为“弦”类,涉及两直角边的关系为“切”类; 2.涉及“对边”为“正”类,涉及“邻边”为“余”类; 3.运算符:由直角边求斜边用“除以”,由斜边求直角边用“乘以”,为更具规律性,两直角边之间互求我们都用“乘以”. (三)速写 第一步:判断运算符是用“乘以”还是“除以”; 第二步:判断用“正”还是用“余”; 第三步:判断用“弦”还是用“切”. 即 (边)=(边)(运算符)(正/余)(弦/切) 1、由直角边求斜边 2、由斜边求直角边 3、两直角边互求 (四)典例分析 经典例题1 如图1所示,质量为m 的小球静止于斜面与竖直挡板之间,斜面倾角为θ,求小球对挡板和对斜面的压力大小分别是多少? 【解析】 2所示。 θtan 1?=mg F 经典例题2 如图3所示,质量为,挡 挡板和使球压紧斜面,重力的分解如图4所示。 二、三角函数求物理极值 因正弦函数和余弦函数都有最大值(为1) 本形式,那么我们可以通过三角函数公式整理出正弦(或余弦)函数的基本形式,然后在确 定极值。现将两种三角函数求极值的常用模型归纳如下: 1.利用二倍角公式求极值 图 3 图 4

高中物理-常考题型与解题方法全汇总

高中物理-常考题型与解题方法全汇总 题型1 直线运动问题 题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题。 思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系. 题型2 物体的动态平衡问题 题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题. 思维模板:常用的思维方法有两种. (1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。 题型3 运动的合成与分解问题 题型概述:运动的合成与分解问题常见的模型有两类,一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解。 思维模板: (1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。 (2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。 题型4 抛体运动问题 题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都

(完整版)高中物理学习中常用的数学知识

高中物理学习中常用的数学知识 1、角度的单位——弧度(rad ) ①定义:在圆中,长度等于半径的弧长所对的圆心角为1弧度(1rad )。 ②定义式:l r θ= 1rad=57.30 ③几个特殊角的弧度值: a. 30 (rad)6 π = o b. 45 (rad)4π = o c. 60 (rad)3 π = o d. 90 (rad)2π=o e. 2120 (rad)3π=o f. 5150 (rad)6 π=o g. 180 (rad)π=o h. 3270 (rad)2 π=o I. 3602 (rad)π=o 2、三角函数知识: ①几种三角函数的定义: 正弦:sin a c θ= 余弦:cos b c θ= 正切:tan a b θ= 余切:cot b a θ= ②关系:2 2 sin cos 1θθ+= sin tan cos θ θθ = cos cot sin θθθ= 1 tan cot θθ = ③诱导公式: sin(-θ)=sin θ cos(-θ)=-cos θ tan(-θ)= -tan θ cot (-θ)= -cot θ sin(900-θ)=cos θ cos(900-θ)=sin θ tan(900-θ)=cot θ cot (900-θ)=tan θ sin(1800-θ)=sin θ cos(1800-θ)=-cos θ tan(1800-θ)= -tan θ cot (1800-θ)= -cot θ θ a b c

θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ⑥半角公式:(符号的选择由 2 θ 所在的象限确定) 2cos 12 sin θθ -± = 2cos 12sin 2θθ-= 2cos 12cos θθ+±= 2cos 12 cos 2 θθ += 2sin 2cos 12θθ=- 2 cos 2cos 12θθ=+ 2 sin 2cos )2sin 2(cos sin 12θ θθθθ±=±=± θ θθθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg ⑦和差角公式 βαβαβαsin cos cos sin )sin(±=± βαβαβαsin sin cos cos )cos(μ=± β αβ αβαtg tg tg tg tg ?±= ±μ1)( )1)((βαβαβαtg tg tg tg tg ?±=±μ γ βγαβαγ βαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ?-?-?-??-++= ++1)( 其中当A+B+C=π时,有:

高中物理八大解题方法之七:逆向思维法

高中物理解题方法之逆向思维法 江苏省特级教师 戴儒京 内容提要:本文通过几道物理题的解法分析,阐述逆向思维解题方法的几种应用:一、在解题程序上逆向思维;二、在因果关系上逆向思维;三、在迁移规律上逆向思维。 所谓“逆向思维”,简单说来就是“倒过来想一想”。这种方法用于解物理题,特别是某些难题,很有好处。下面通过高考物理试卷中的几道题的解法分析,谈谈逆向思维解题法的应用的几种情况。 一、 在解题程序上逆向思维 解题程序,一般是从已知到未知,一步步求解,通常称为正向思维。但有些题目反过来思考,从未知到已知逐步推理,反而方便些。 例1.如图1所示, 图1 一理想变压器的原副线圈分别由双线圈ab 和cd (匝数都为n 1)、ef 和gh (匝数都为n 2)组成。用I 1和U 1表示输入电流和电压,用I 2和U 2表示输出电流和电压。在下列四种接法中,符合关系1 2212121,n n I I n n U U ==的有: (A ) b 与c 相连,以a 、d 为输入端;f 与g 相连,以e 、h 为输入端。 (B ) b 与c 相连,以a 、d 为输入端;e 与g 相连、f 与h 相连作为输入端。 (C ) a 与c 相连,b 与d 相连作为输入端;f 与g 相连,以e 、h 为输出端。 (D ) a 与c 相连,b 与d 相连作为输入端;e 与g 相连、f 与h 相连作为输出端。 析与解:一般的选择题,是从题干所给的已知条件去求解,解出结果与选项比较,哪个正确选哪个。但本题我们不能根据两个公式去求解法,而只能逐一选项讨论哪种解法能得出题干给出的公式。 对(A ),初级ab 和cd 两线圈串联,总匝数为2 n 1,次级ef 和gh 两线圈亦串联,总

(完整版)高中物理解题技巧

物理快速解题技巧 技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所 示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木 块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块 有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解 木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2 所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置 用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻 绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的 θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

(完整版)高中物理中常用的三角函数数学模型(强烈推荐)

高中物理中常用的三角函数数学模型 数学作为工具学科,其思想、方法和知识始终渗透贯穿于整个物理学习和研究的过程中,为物理概念、定律的表述提供简洁、精确的数学语言,为学生进行抽象思维和逻辑推理提供有效方法.为物理学的数量分析和计算提供有力工具。 高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上是一个将物理问题转化为数学问题经过求解再次还原为物理结论的过程。高考物理考试大纲对学生应用数学工具解决物理问题的能力作出了明确要求。 一、三角函数的基本应用 在进行力的分解时,我们经常用到三角函数的运算.虽然三角函数学生初中已经学过,但笔者在多年的教学过程中发现,有相当一部分学生经常在这里出问题,还有一部分学生一直到高三都没把这部分搞清楚.为此,本人将自己的一些体会写出来,仅供大家参考. (一)三角函数的定义式 斜边对边正弦= 邻边 对边正切= 斜边邻边余弦= 对边 邻边余切= (二)探寻规律 1.涉及斜边与直角边的关系为“弦”类,涉及两直角边的关系为“切”类; 2.涉及“对边”为“正”类,涉及“邻边”为“余”类; 3.运算符:由直角边求斜边用“除以”,由斜边求直角边用“乘以”,为更具规律性,两直角边之间互求我们都用“乘以”. (三)速写 第一步:判断运算符是用“乘以”还是“除以”; 第二步:判断用“正”还是用“余”; 第三步:判断用“弦”还是用“切”. 即 (边)=(边)(运算符)(正/余)(弦/切) 1、由直角边求斜边 正弦 对边斜边= 余弦邻边斜边= 2、由斜边求直角边 正弦斜边对边?= 余弦斜边邻边?= 3、两直角边互求 正切邻边对边?= 余切对边邻边?= (四)典例分析 经典例题1 如图1所示,质量为m 的小球静止于斜面与竖直挡板之间,斜面倾角为θ,求小球对挡板和对斜面的压力大小分别是多少? 【解析】小球受到的重力产生的效果是压紧挡板和使球压紧斜面,重力的分解如图2所示。 θtan 1?=mg F

高中物理解题方法大全(完整版)

" 高中物理解题方法指导 (完整版) 物理题解常用的两种方法: 分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。 综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。 综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。 实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。 正确解答物理题应遵循一定的步骤 - 第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白不可能都不明白,不懂之处是哪哪个关键之处不懂这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。 若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。 第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。 第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。 一、静力学问题解题的思路和方法 1.确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 ^ 4.对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。 5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。 静力学习题可以分为三类: ①力的合成和分解规律的运用。 ②共点力的平衡及变化。 ③固定转动轴的物体平衡及变化。

高中物理涉和到的数学知识

高中物理涉及到的数学知识 (一)锐角三角函数的主要性质: 1. 三角函数值只是一个比值,由角的大小唯一确定,与直角三角形的边长无关。 2.Sinα、Cosα、tanα、cotα均为正值。 3.当0<α<90°时,正弦与正切函数为增函数;余弦与余切函数为减函数 4.对于同一个角α,存在如下的关系: ①平方和关系: ②比值的关系: ③倒数关系: 5. 若α、β互为余角,则有: Sinα=Cosβ,Cosα=Sinβ,tanα=cotβ,cotα=tanβ

(二)0-90°之间的特殊角的各三角函数值: 高中物理计算中经常用到0、30°、37°、45°、53°、60°、90°的角的三角函数的值。现把这些值列在下面的表格中,这些值都是要求记忆的。其它角度的三角函数的值可以查数学用表或用计算器来算 表格中的370和530角同学们在初中很少遇到, 但我们在高中物理中经常要用到它们。其实这 两个角也是大家很熟悉的,还记得“勾3股4弦必 5”吧?在这个直角三角形中,长为5的边所对的 是直角,长为3的边所对的锐角就是370,长为4 的边对的角就是530。

三、正余弦定律 四、直线方程 五、一元二次函数

五、角的弧度制表示 1.弧度制——另一种度量角的单位制 角的单位,除了我们熟知的“度、分、秒”以外,还可以用另一个单位—— 弧度。它的单位是“弧度”,记作 在一个圆中,圆心角的弧度 值等于圆弧的长度除以圆的半径。 所以,当圆弧的长度等于圆的半 径长度时,这段圆弧所对的圆心 角称为1弧度的角。如图:

∠AOB=1rad ∠AOC=2rad 2、角度制与弧度制的换算 显然,一个平角是,对应的弧长就是一个“半圆”,如果这个圆的半径是R,那么这段弧长就是πR,所以,180°的角用弧度做单位就是180°=Rπ/R =π弧 度πrad。这个关系式可以作为角度与弧度的换算关系式。 由上述关系式可知: 今后在具体运算时,“弧度”二字和单位符号“rad”可以省略不写。例如:3 表示3rad sinπ表示πrad角的正弦 一些特殊角的度数与弧度数的对应值应该记住。你能自己推出30°、45°、60°、90°、120°、150°分别等于多少rad了吧!

高中物理解题中涉及的数学知识

高中物理解题中涉及的数学知识 物理和数学是联系最密切的两门学科。运用数学工具解决物理问题的能力,是中学物理教学的最基本的要求。高中物理中用到的数学方法有:方程函数的思维方法,不等式法,极限的思维方法,数形结合法,参数的思维方法,统计及近似的思维方法,矢量分析法,比例法,递推归纳法,等等。现就“力学”与“电磁学”中常用数学知识进行归纳。 Ⅰ.力学部分:静力学、运动学、动力学、万有引力、功和能量与几何、代数知识相结合,从而增大题目难度,更注重求极值的方法。 Ⅱ.电磁学部分:电磁学中的平衡、加速、偏转及能量与圆的知识、三角函数,正余弦定理、相似三角形的对应比、扇形面积、二次函数求极值(配方法或公式法)、均值不等式 、正余弦函数、积化和差、和差积化、半角倍角公式、直线方程(斜率,截距)、对称性、)sin(cos sin 22?θθθ++=+b a b a a b =?tan 、数学归纳法及数学作图等联系在一起。 第一章 解三角形 三角函数 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,则有2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 变形公式: ::sin :sin :sin a b c C =A B ; 2、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 3、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:222 cos 2b c a bc +-A = 4、均值定理: 若0a >,0b >,则a b +≥,即2 a b +≥ ()2 0,02a b ab a b +??≤>> ??? ; 2 a b +称为正数a 、b a 、b 的几何平均数. 5、均值定理的应用:设x 、y 都为正数,则有 ⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值 2 4 s . ⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值 1、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r α= . 2、弧度制与角度制的换算公式:2360π= ,1180 π = . 3、若扇形的圆心角为()α α为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=, 2C r l =+,2112 2 S lr r α==. 4、角三角函数的基本关系:()221sin cos 1αα+=;()sin 2tan cos α αα =. 5、函数的诱导公式:

高中物理中的数学知识与方法选读

高中物理中的数学知识与方法(选读) 目录: 前言 概念的描述与定义 矢量与矢量的运算 极限思想的体现 待定系数法的应用 (1)认识运动方程 (2)电学实验数据处理 解方程组 变力做功-数学和物理在解题思路中的差别 图象法解题 (1)识图辨析 (2)数形结合 导数在高中物理中的应用 (1)求速度和加速度 (2)求感应电动势 带电粒子在匀强磁场中做匀速圆周运动时,半径与轨迹的关系

前言 在多年的高中教学经历中,接触到很多学生在物理上学习得很努力、很认真,虽然在时间上大量的投入,但成绩总是差强人意。造成这种现象的原因其中之一是受到数学知识的制约,而很多物理问题都得用到数学工具和方法解决;另外一个原因是数学知识掌握得不错,平时数学成绩也好,但不能灵活运用到物理学习中来,对数学和物理两个学科只是独立地进行思考与学习,不能真正地融汇贯通。 高考《考试说明》中明确提出高中生应具备应用数学处理物理问题的能力,即能够根据具体问题列出物理量之间的数学关系式,根据数学的特点、规律进行推导、求解和合理外推,并根据结果得出物理判断、进行物理解释或作出物理结论。能根据物理问题的实际情况和所给条件,恰当地运用几何图形、函数图象等形式和方法进行分析、表达。能够从所给图象通过分析找出其所表达的物理容,用于分析和解决物理问题。 数学物理方法:对一个物理问题的处理,通常需要三个步骤:(1)利用物理定律将物理问题翻译成数学问题;(2)解该数学问题,其中解数学物理方程占有很大的比重,有多种解法;(3)将所得的数学结果翻译成物理,即讨论所得结果的物理意义。 数学与物理的联系:数学是物理的表述形式之一。其学科特点具有高度的抽象性,它能够概括物理运动的所有空间形式和一切量的关系。数学是创立和发展物理学理论的主要工具。物理原理、定律、定理往往直接从实验概括抽象出来,首先是量的测定,然后再建立起量的联系即数学关系式,其中就包含着大量的数学整理工作,本身就要大量的数学运算,才能科学地整理实验所观测到的量,找出它们之间的联系。 用数学语言来描述具体物理问题的能力培养,即能将具体问题转化为数学问题的能力,以期在数学技能与具体问题之间架起桥梁.在解决实际物理问题的时候,从建立坐标开始,包括确定自变量,找出函数关系以至积分上下限的确定等,都要以物理思想来指导.例如,

高中物理解题方法

高中物理解题方法专题指导 方法专题一:图像法解题 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义 在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件.例1、在测电池的电动势和内电阻的实验中, 根据得出的一组数据作出U-I图像,如图所示, 由图像得出电池的电动势E=______ V,内电阻 r=_______ Ω. 3.挖掘交点的潜在含意 一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车?

相关文档
最新文档