三个连续的自然数总和是150

三个连续的自然数总和是150
三个连续的自然数总和是150

一、(43分)

1、三个连续的自然数总和是150,这三个连续的自然数分别是()()()。

2.()54÷5,要使商是三位数,()里最小能填几( ).

1.小明6分钟走了358米,每分钟大约走()米。

2.一个数除以6,商是32,余数最大是(),这时被除数是()。

3.被除数与除数的和是320,商是7,被除数是()。

4.甲书架有76本书,乙书架有44本书,从甲书架拿( )本书放到乙书架上,两个书架的书一样多。

5.甲乙两数的平均数是91,甲数是80,乙数是()。

6.要使664÷()的商是三位数,()里最大填()。

7.妈妈今年39岁,她出生于()年。

8.阳阳每天早上六点起床,她应该晚上()时睡觉才睡足9小时。

9.纺织工人晚上11时30分上班,第二天上午7时30分下班。他们工作了()小时。

10.某超市促销活动于6月13日举行,6月25日结束,本次促销活动共经历了()天。

11.一页书有21行,每行28个字,一页大约有()个字。

12.一个正方形花圃的周长是80米,这个花圃的面积是()。

13.一条长12米,宽6米的走廊,要在地面铺面积是4平方分米的方砖。需要()块这样的方砖。

14.一个长方形,如果长增加4厘米,面积就增加32平方厘米,如果宽增加1厘米,那面积就增加9平方厘米,这个长方形原来的面积是()。

15.在()里填上适当的单位。

一张邮票的面积是6()课桌的面积约42()

小华家住房面积是98()黑板的周长是8()

一个果园的面积约15()中国的领土面积大约是960万()18.680平方厘米=()平方分米()平方厘米

5日=()时17时是下午()时

19.小李叔叔身高178厘米,写成小数是()米。

20.与7.5相邻的两个一位小数分别是()、()。

21.小民读一个数时,由于粗心没有看到小数点,结果读成了四万一千零九,读原来小数时也要读出一个零,这个小数时(),读作()。

22.一个游泳池长25米,小明有了2个来回,他共游了()米。

23.三(1)班参加语文兴趣小组的有18人,参加数学小组的有16人,其中有5人两个兴趣小组都参加了,三(1)班共有()人参加兴趣小组。

24. + =80 = + + =()=()

25. - =40 = + + + + =()=()

26.丽丽的今年7岁,爷爷的年龄是她的9倍,明年爷爷的年龄是她的()倍。

27.用5个边长是1厘米的小正方形拼成一个长方形,这个长方形的周长是(),面积

是()。

二、1.春节期间公园挂满了小灯笼,依次按红黄蓝绿的顺序排列,那么第104只灯笼是什么颜色?的190只呢?

2.下面是三年级四个班的人数统计表,不小心撕掉一块,你能知道四班有多少人吗?

班级平均1班2班3班4班

人数50 52 48 51

3.小亮看一本课外书,他前5天平均每天看38页,后4天一共看了143页。这几天平均每天看多少页?

4.小方早上7:30到学校,上午11:20回家,下午2:00又到学校,直到16:30放学回家,小方一天在学校多长时间?

5.明明在图书馆借了一本120页的课外读物,借期6天。

(1)他平均每天要看多少页才能按时归还?

(2)由于某种原因,明明第二天没有按计划读书,那么第三天起,他平均每天读多少页才能保证部超过归还时间?

求连续自然数平方和的公式

求连续自然数平方和的公式 前面,在“求连续自然数立方和的公式”一中,介绍了用列表法推导公式的过程。这种方法浅显易懂,有它突出的优越性。在“有趣的图形数”一文中,也曾经用图形法推出过求连续自然数平方和的公式: 12+22+32…+n 2=6 ) 12)(1(++n n n 这里用列表法再来推导一下这个公式,进一步体会列表法的优点。 首先,算出从1开始的一些连续自然数的和与平方和,列出下表: n 1 2 3 4 5 6 …… 1+2+3+…+n 1 3 6 10 15 21 …… 12+22+32+…+n 2 1 5 14 30 55 91 …… 然后,以连续自然数的平方和为分子,连续自然数的和为分母,构成分数 A n =n n ++++++++ 3213212 222, 再根据表中的数据,算出分数A n 的值,列出下表: n 1 2 3 4 5 6 …… A n 1 35 37 3 311 313 …… 观察发现,A n 的通项公式是3 1 2+n 。 既然A n =n n ++++++++ 3213212222,而它的通项公式是3 1 2+n ,于是大胆猜想 n n ++++++++ 3213212222=3 1 2+n 。 因为分母1+2+3+…+n =2 ) 1(+n n , 所以 2)1(3212222+++++n n n =31 2+n 。 由此得到 12+22+32…+n 2= 2)1(+n n ×312+n =6 ) 12)(1(++n n n 。 即 12+22+32…+n 2= 6 ) 12)(1(++n n n 。

用数学归纳法很容易证明等式的正确性,这样就轻而易举地推出了求连续自然数平方和的公式。 这个妙不可言的推导过程是数学家波利亚的杰作,关键之处是他运用了“猜想—证明”的思路。联想到当年著名文学家胡适也曾经有过“大胆假设,小心求证”的名言。看来,无论数学也好,文学也好,追求真理的道路是相通的。 这件事对我们教师有什么启示吗?有,那就是:切莫轻视了对学生观察、类比和猜想能力的培养,这往往是培育创新思维的有效途径。

连续自然数的和

题目描述 对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M。例子:1998+1999+2000+2001+2002 = 10000,所以从1998到2002的一个自然数段为 M=10000的一个解。 输入格式 包含一个整数的单独一行给出M的值(10 <= M <= 2,000,000)。 输出格式 每行两个自然数,给出一个满足条件的连续自然数段中的第一个数和最后一个数,两数之间用一个空 格隔开,所有输出行的第一个按从小到大的升序排列,对于给定的输入数据,保证至少有一个解。样例输入 样例输出 试验程序: multimap> Continuation(int n) { multimap> mm; vector temp,nn; int i,j,k; for(i=1;i<=n/2;i++) { k=i; temp.clear(); temp.push_back(i); for(j=i+1;j<=(n/2+1);j++) { k+=j; temp.push_back(j);

if(k==n) { nn.push_back(*temp.begin()); nn.push_back(*(--temp.end())); mm.insert(pair>(temp.size(),nn)); nn.clear(); break; } else if(k>n) break; } } return mm; } 主函数调用为: #include"stdafx.h" #include"example24_apply_offer2.h" void main() { multimap> cc; multimap>::iterator pos; vector kk; vector::iterator kkpos; cc=Continuation(10000); for(pos=cc.begin();pos!=cc.end();++pos) { for(kkpos=(pos->second).begin();kkpos != (pos->second).end();++kkpos) cout<<*kkpos<<" "; cout<

自然数平方数列和立方数列求和公式

自然数平方数列和立方数列求和公式怎么推导?即: (1) 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 (2) 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 推导过程如下: 一. 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n) n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+... +n) n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 故:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 二. 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 证明如下: (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1)

连续自然数的立方和

连续自然数立方和的公式 “图形法“ 早在公元100年前后,毕达哥拉斯学派的继承人尼科马霍斯,在他的著作《算术入门》中就曾经用非 常简单的方法推导过这个公式。 奇数列1,3,5,7,9,11,13,…有一个性质,很容易验证: 请你自上而下仔细观察这一系列等式的左端: 第1个等式左端,结束于第1个奇数; 第2个等式左端,结束于第3个奇数; 第3个等式左端,结束于第6个奇数; 第4个等式左端,结束于第10个奇数; 第5个等式左端,结束于第15个奇数; …… 结果发现,这些奇数的序数1,3,6,10,15,…原来是“三角形数”,它的每一项等于从1开始的连 续自然数的和。第1项是1,第2项是1+2=3,第3项是1+2+3=6,第4项是1+2+3+4=10,第5 项是1+2+3+4+5=15,……第n项是1+2+3+…+n=n(n+1)/2。即,第n个等式左端,结束于第n(n +1)/2个奇数。 然后,对上面这一系列等式的左右两端,分别求和: 右端是连续自然数的立方和13+23+33+…+n3。 左端是连续奇数的和。我们知道,求连续奇数的和,求到第几个奇数,就等于第几个奇数的平方。现在,求到第n(n+1)/2个奇数,当然等于[n(n+1)/2]2。 这样就得到求连续自然数立方和的公式: 这种方法思路清晰论证简单。尼科马霍斯之所以能够想到这个方法,显然跟毕达哥拉斯学派对图形数的 宠爱有关。图形数是自然数的形象化,自然数是众数之源,自然数真是一个取之不尽用之不竭的宝藏。

“列表法” 这里再介绍一种列表法,同样可以推出这个公式,并且更简单,更好理解。 第一步:列一个表,在第一行填入一个因数1、2、3、4、5,在第一列填入另一个因数1、2、3、4、5。 第二步:在右下方的空格里分别填入对应的两个因数的积。 显然,所有乘积的和等于 这5块依次是:

最新自然数幂次方和公式

1 2 自然数幂次方和的另一组公式 3 摘要:一般的自然数幂次方和公式是用n 的p+1次方的多项式表示,考虑到任 4 一多项式均可用k n C 表示,本文给出了自然数幂次方和用k n C 表示的方法,并且给 5 出了相应的系数完整表达式。这比多项式表达方便得多,因为多项式表达的系数 6 至今仍是递推公式表达。 7 8 9 由笔者的文章(注【1】)知,自然数幂次方和可以用关于n 的多项式表达,而 10 每一个多项式均可用k n C 表示的,因此可猜想自然数幂次方和也可以用k n C 表达出 11 来。 12 假设自然数幂次方和可以写成以下形式 13 ∑∑=++===p k k n k n k p n C A k S 1 111 。。。。。。(1) 14 那么同理可应有: 15 ∑∑=++--=-==p k k n k n k p n C A k S 1 11)1(1 1 1 16 那么: 17 ∑∑=+=++--=-=p k k n k p k k n k n n p C A C A S S n 1 1 1 11 1 18

[ ]∑∑==+++=-=p k k n k p k k n k n k p C A C C A n 1 1 111 19 20 ∑== p k k n k p C A n 1 21 因为对于充分大的自然数n 均使得上述式子成立,所以上式对应的应该是一个22 关于n 的p 次多项式,其中: 23 )1).....(1(k n n n C k n -+-= 24 这仅仅是一个多项式的写法,与排列组合无关, n 可为任意的数。 25 分别令n=1,2,3, 。。。。p-1时就有: 26 01 1 1 1 +=+ ==∑∑∑∑=+===t k k t k p t k k t k t k k t k p k k t k p C A C A C A C A t 27 ∑==t k k t k p C A t 1 )1...3,2,1(-=p t 。。。。。。。。 28 (2) 29 ∑-=-=1 1t k k t k p t C A t A )1...3,2,1(-=p t 。。。。。。。。 30 (3) 31 这是一个递推的数列,其中A 1=1 , 很显然,通过它可以求出所有的系数t A ,32 仿照笔者的文章(注【1】)可证明,由(3)式求出的系数t A ,使得公式(1)33 成立,即自然数幂次方和的公式由(1)(3)给出了。 34 其中(3)式是递推公式,那么能不能直接写出系数A t 的表达式呢,下35 面给出这个结论。 36

自然数幂求和公式的存在与规律探讨

本科毕业论文 自然数幂求和公式的存在与规律探讨 SUM FORMULA OF POWER OF NATURAL NUMBER'S EXISTENCE AND REGULARITY 学院(部):理学院 专业班级:08-2数学与应用数学 学生姓名:张兴刚 指导教师:范自强 2012年6 月1 日

自然数幂求和公式的存在与规律探讨 摘要 自然数幂求和是一个古老的数学问题,本文从线性空间入手,提出关于多项式的自然线性空间的概念,利用了线性空间的简单性质,证明了任意正整数的自然数幂求和公式的存在和简单规律;归纳出自然数幂求和公式中一条精彩的结论,系数定理,一劳永逸的解决并揭示了自然数幂求和问题的内涵;本文亦从线性空间的角度,提出自由空间概念,为自然数幂求和问题带来了一种新的视角。 关键字:自然数幂求和、自然线性空间、多项式、系数定理、自由线性空间

Sum formula of power of natural number 's existence and regularity Abstract Natural number power sum is an ancient mathematical problems, this article from the linear space sets out, put forward on polynomial natural linear space, linear space of the simple nature, it is proved that for any positive integer sum formula of power of natural number exists, and the simple rule; summarize sum formula of power of natural number in a wonderful conclusion coefficient theorem, put things right once and for all solutions and reveals the natural number power sum problem connotation; this paper also from linear spatial angle, put forward the concept of free space, is a natural number power sum problem brought a new perspective. Keywords: natural number power sum, natural linear space, polynomial coefficient theorem, free linear space

7.连续数问题

杭州青少年活动中心11年春季五年级“1+1”数学俱乐部练习 (7)《连续数问题》 教室;学号 ;姓名 ;成绩 [讨论2]在2至2011这2010个数中,与1234相加时,至少有一个数位发生进位的数有多少个? [讨论3].三个小于5000连续自然数,它们从小到大依次是9、10、11的倍数,这三个连续自然数中(除10外),是11的倍数的最大是多少? [讨论4]. 已知三个连续自然数,它们都小于2011,其中最小的一个自然数能被13整除,中间的一个自然数能被15整除,最大的一个自然数能被17整除,那么最小的一个自然数是多少? [讨论5]在小于5000的自然数中,能被11整除,并且数字和13的数共有多少个? [讨论6]有15位同学,每位同学都有一个编号,依次是1至15号.1号的同学写了一个五位数,2号的同学说:"这个数能被2整除",3号的同学说:"这个数能被3 整除";4号的同学说:"这个数能被4整除";……15号的同学说:"这个数能被15整除".1号的同学一一作了验算,只有编号连续的两位同学说的不对,其他同学都说得对. (1)说得不对的两位同学的编号个是多少? (2)这个五位数最小是多少? [讨论1]有些数既能表示成3个连续自然数量的和,又能表示成4个连续自然数的和,还能表示成5个连续自然数的和。请你在700至1000之间找出所有满足上述条件的数。 试一试:把105分成10个连续自然数的和,这10个自然数分别是多少?

【小试身手】 1.★84分拆成2个或2个以上连续自然数的和,有几种?分别是多少? 2.★三个连续自数数的后面两个数的积与前面两个数的积之差是114 ,那么这三个数的和是多少? 3.★★在15个连续自然数中最多有多少个素数,最少有多少个素数? 4.★★有四个连续自然数,它们都小于2005,第一个数(四个数中最小的数)是5的倍数;第二个数是7的倍数;第三个数是9的倍数;第四个数(四个数中最大的数)是11的倍数。请问这四个数中最小的数是多少。 5.★★★已知三个连续自然数,它们都小于3000,其中最小的能被11整除,中间的能被16整除,最大的能被21整除。写出这样的最小的三个连续自然数。 6.★★★甲有三个连续自然数,从小到大依次分别能被17,15,13整除,写出一组这样的三个连续自然数。 7.★★★有10个连续的两位数,按从小到大的顺序从左到右排成一行,其中每一个两位数的两个数字的和都能被它所排的序号整除(即序号n能整除第n个两位数的数字和)。那么,这10个两位数中,最大的两位数的两个数字的和是多少?

推导自然数立方和公式两种方法

推导213)1(21??????+=∑=n n k n k 的两种方法 通化市第一中学校 刘天云 邮编 134001 方法一:拆项累加相消求和 已知:)12)(1(6 112++= ∑=n n n k n k 而)]2)(1()1()3)(2)(1([4 1)2)(1(++--+++=++k k k k k k k k k k k 则:∑=+++= ++n k n n n n k k k 1 )3)(2)(1(41)]2)(1([ 所以:∑∑∑∑====--++=n k n k n k n k k k k k k k 1 1121323)]2)(1([ )1(2 12)12)(1(613)3)(2)(1(41+?-++?-+++=n n n n n n n n n 2)1(21?? ????+=n n 另外:∑=+++= ++n k n n n n k k k 1)3)(2)(1(4 1)]2)(1([还可以作如下证明: )2)(1(432321++++??+??n n n )(6323433++++=n C C C )3)(2)(1(4 1643+++==+n n n n C n 方法二:构造群数列推导 构造奇数列,并按第n 群中含有个奇数的方式分群,即 1 / 3,5 / 7,9,11 / 13,15,17,19 / …… 我们用两种方法研究前n 群的所有数的和. 1、第n 群最末一个数是数列的第)1(2 1+n n 项,而且该项为 11)1(2 122)1(21 -+=-+?=+n n n n a n n

那么,第n 群最初一个数是数列的第1)1(2 1+-n n 项,而且该项为 111)1(21221)1(21 +-=-?? ????+-?=+-n n n n a n n 所以,第n 群的n 个数的和为:322)]1()1[(2 1n n n n n n =-+++-. 则前n 群的所有数的和可记作∑=n k k 13. 2、前n 群所有数的和为该奇数列的前)1(21+n n 项的和,即2 )1(21??????+n n 因此:2 13)1(21??????+=∑=n n k n k

VB 第4课 连续自然数求和

第4课连续自然数求和 在运用VB6.0进行程序设计时,经常会发现某一段代码是需要反复执行的,我们把用以实现此种需求的程序结构称为循环结构。在VB6.0中提供的循环结构有两种,一种是For…Next循环;另一种是Do…Loop循环。本节课中,我们将依托一个“连续自然数求和”小程序来引出For...Next循环,并针对其进行简单讨论。 编写意图 流程控制语句是VB6.0程序设计中极其重要的一环,可以说理解并掌握了VB6.0编程中流程控制语句的使用方法,就相当于打开了一扇通往计算机程序设计世界的大门。流程控制语句的学习其实更是一种逻辑思维模式的学习,是一种较为复杂的因果判定思想的形成过程,这种思想在所有的编程语言中也都是通用的。 初中四年级的学生经过多年的学习生活,已经具备了较好的逻辑思维能力和自学能力,所以,本节课我们设计了制作“连续自然数求和”小程序这样一个学习任务,通过这个任务的完成,引出流程控制语句中的For...Next循环结构,同时学习了列表框控件属性的修改方法。 内容分析 课文中出示的“连续自然数求和”小程序共主要涉及到了:修改控件属性、For...Next 循环结构以及简单循环程序的编写、卸载当前窗体四个知识点,其中隐含当前窗体,本节侧重修改控件属性的方法和循环程序的编写这两个知识点地学习。 教学目标 1.知识与技能 ◆理解For...Next循环结构的作用,掌握其语法形式和使用其进行简单循环程序的编写地方法,进而初步形成程序设计中循环程序的概念; ◆列表框控件的属性设置方法。 2.过程与方法 ◆通过学生自读教材和上机对比操作演练,结合前面学习过的控件属性知识,使其能够自行发现并总结出控件属性的修改方法; ◆通过学生自读教材,使学生在对“连续自然数求和”小程序进行分析的过程中理解并掌握For...Next循环结构及运用For...Next语句进行循环程序设计地方法。 3.情感态度与价值观 ◆使学生因自行探究并总结出了控件属性的修改方法而感受探究成功的快乐的同时,进一步增强其自学能力、树立自信心、克服其对计算机编程的恐惧心理; ◆使学生通过对连续自然数进行传统的累加运算与应用循环程序设计“连续自然数求和”程序的对比中认识到计算机程序设计在生活中的作用和意义。

涉及三个连续自然数的整除问题

涉及三个连续自然数的整除问题 陕西省小学教师培训中心王凯成赵熹民 题1 在100至200之间,有三个连续的自然数,其中最小的能被3整除,中间的能被5整除,最大的能被7整除,写出这样的三个连续自然数。 题2 有三个连续的自然数,其中最小的能被15整除,中间的能被17整除,最大的能被19整除,写出一组这样的三个连续自然数。 题1、题2都是涉及三个连续自然数的整除问题。如何解决这类问题呢? 例1见题1 解:能够被5整除数的特征是:个位数字是0或5。以中间数的个位数字是0或5为突破口。 谁乘以7的个位数是1或6呢?只有□3×7或□8×7的个位数是1或6。 100÷7=14……2,因为14>13,用23试验。 23×7=161, 161-1=160是5的倍数,160-1=159是3的倍数。 故159、160、161是符合条件的一组数。 在100至200之间还有没有其它符合条件的三个连续自然数呢? 3、5、7的最小公倍数是105,而100<159+105k<200与100<161+105k<200的k只能取0,故159、160、161是唯一符合条件的一组数。 例2 见题2 0或5。 解:能被 随便取一个数试验。 88×19=1672,因最小的数要被3整除,但3不整除1670,调整,给1672增加190的若干倍(因1672+190m,仍然能被19整除),1672+190=1862,3整除1860,但17不整除1861。再调整,给1862增加190×3=570的若干倍(因1862+570k能被19整除,而1860+570k能被15整除)。 1862+570=2432,此时恰好17整除2431。 故2430、2431、2432是符合条件的一组数。 由15、17、19的最小公倍数是4845知:2430+4845k、2431+4845k、2432+4845k (k=0,1,2,……) 是符合条件的任意一组数。 例3 有大于400的三个连续自然数,其中最小的能被6整除,中间的能被5整除,最大的能被7整除,写出一组这样的三个连续自然数。 解:由被5整除数的特征知,最小数、中间数、最大数的个位数依次是4、5、6(为什

幂级数求和函数方法概括与总结

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

数列的求和问题(规律总结)

数列的求和问题 知识点一:数列的前项和的相关公式 1.任意数列的第项与前项和之间的关系式: 2.等差数列的前项和公式: (为常数) 当d≠0时,S n是关于n的二次式且常数项为0; 当d=0时(a1≠0),S n=na1是关于n的正比例式. 3.等比数列的前项和公式: 当时,,, 当时,或 知识点二:求数列的前项和的几种常用方法 1.公式法: 如果一个数列是等差或者等比数列,求其前项和可直接利用等差数列或等比数列的前项和公式求和; 2.分组转化法: 把数列的每一项拆分成两项或者多项,或者把数列的项重新组合,或者把整个数列分成两部分等等,使其转化成等差数列或者等比数列等可求和的数列分别进行求和。例如对通项公式为a n=2n+3n的数列求和。 3.倒序相加法: 如果一个数列,与首末两项等距的两项之和等于首末两项之和,可以采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和.例如等差数列前项和公式的推导。对 通项公式为的数列求和。

4.错位相减法: 如果一个数列的通项是由一个非常数列的等差数列与等比数列的对应 项乘积组成的,求和的时候可以采用错位相减法.即错位相减法适用于通项为 (其中是公差d≠0的等差数列,是公比q≠1的等比数列)(也称为“差比数列”) 的数列求前项和.例如对通项公式为的数列求和。 一般步骤: ,则 所以有 注意: ①错位相减法是基于方程思想和数列规律的一种方法。一般都是把前项和的两边都乘以等比数列的公 比q后,再错位相减求出其前项和; ②在使用错位相减法求和时一定要注意讨论等比数列中其公比q是否有可能等于1,若q=1,错位相减法 会不成立. 5.裂项相消法: 把数列的通项拆成两项之差,然后把数列的每一项都按照这种方法拆成两项的差,以达到在求和的时候隔项正负相抵消的目的,使前n项的和变成只剩下若干少数项的和的方法. 例如对通项公式为的数列求和。 常见的拆项公式: ①; ②若为等差数列,且公差d不为0,首项也不为0,则; ③若的通项的分子为非零常数,分母为非常数列的等差数列的两项积的形式时, 则. ④;.

斯特林数和自然数前m项n次方的求和公式

斯特林数和自然数前m 项n 次方的求和公式 将 n 个元素,分成 k 个非空子集,不同的分配方法种数,称为斯特林数(Stirling Number ),记为),(k n S ,n k ≤≤1。 例如,将4个物体d c b a ,,,分成3个非空子集,有下列6种方法: )}(),(),,{(d c b a ,)}(),(),,{(d b c a ,)}(),(),,{(c b d a , )}(),(),,{(d a c b ,)}(),(),,{(c a d b ,)}(),(),,{(b a d c 。 所以,6)3,4(=S 。 斯特林数),(k n S 的值列表如下: 容易看出,有 1),()1,(==n n S n S ,12)2,(1 -=-n n S ,2 )1,(2 = =-C n n S n 。定理1 当 n k ≤≤2 时,有 ),()1,(),1(k n kS k n S k n S +-=+ 。 证 把1+n 个元素分成k 个非空子集,有),1(k n S +种不同分法。 把1+n 个元素分成k 个非空子集,也可以这样考虑:或者将第1+n 个元素单独作为1个子集,其余n 个元素分成1-k 个非空子集,这种情况下有)1,(-k n S 种不同做法;或者先将前n 个元素分成k 个非空子集,有),(k n S 种分法,再将第1+n 个元素插入这k 个子集,有k 种选择,这种情况下有k ),(k n S 种不同做法。所以共有),()1,(k n kS k n S +-种分法。 两种考虑,结果应该是一样的,因此有 ),()1,(),1(k n kS k n S k n S +-=+ 。 如果规定当1时,0),(=k n S ,则公式 ),()1,(),1(k n kS k n S k n S +-=+对 任何正整数n 和任何整数k 都成立。

小学数学解题方法:连续自然数求和的解题技巧

小学数学解题方法:连续自然数求和 一、解题方法归纳: 1.连续自然数求和的方法:头尾两数相加的和×加数的个数÷2 2.连续自然数逢单时求和的方法:中间的加数×加数的个数。 二、范例解析 例1 比一比,看谁算得快。 1+2+3+4+5+6+7+8+9 = ? 解法1 4个10加上5等于45。 解法2 5个9等于45。 解法3 得到9个10,即90,它是和数的2倍,即90÷2 = 45。 说明解法1是利用“凑整”技巧进行简算; 解法2是利用“0”的神奇性配对进行速算; 解法3是常说的高斯求和法速算。 你听说过数学家高斯小时候的故事吗?有一次老师出了一道数学题: “求1+2+3+4+……+100的和”。老师的话音刚落,高斯就举手说:等于5050。 高斯是怎样算的?他将这100个数倒过来,每相对两数的和等于101,共有100个101,将101乘以100后再除以2,结果等于5050。 我们由此得到启发,一组连续自然数相加时,可用下面的公式求和。 头尾两数相加的和×加数的个数÷2 例2 计算下面两题。 ⑴4+5+6+7+8+9+10+11+12+13 = ? ⑵21+22+23+24+25+26+27+28 =? 解⑴4+5+6+7+8+9+10+11+12+13

=(4+13)×10÷2 = 17×10÷2 = 170÷2 = 85 ⑵21+22+23+24+25+26+27+28 =(21+28)×8÷2 = 49×8÷2 = 392÷2 = 196 说明只要的连续自然数求和,不一定要从1开始,均可用此法计算。 例3 求和:53+54+55+56+57+58+59 解法1 53+54+55+56+57+58+59 =(53+59)×7÷2 = 112×7÷2 = 784÷2 = 392 解法2 53+54+55+56+57+58+59 = 56×7 = 392 说明如果相加的连续自然数的个数逢单时,也可用下式计算和: 中间的加数×加数的个数。 例4 求和。 ⑴1+3+5+7+9+11+13+15+17 ⑵24+26+8+30+32 解⑴1+3+5+7+9+11+13+15+17 = 9×9 = 81

自然数平方和公式推导

我们把S(n)拆成数字排成的直角三角形: 1 2 2 3 3 3 4 4 4 4 …… n n …… n 这个三角形第一行数字的和为12,第二行数字和为22,……第n行数字和为n2,因此S(n)可以看作这个三角形里所有数字的和 接下来我们注意到三角形列上的数字,左起第一列是1,2,3,……,n,第二列是2,3,4,……n 这些列的数字和可以用等差数列的前n项和来算出,但是它们共性不明显,无法加以利用 如果求的数字和是1,2,3,……,n,1,2,3,……,n-1这样的,便可以像求 1+(1+2)+(1+2+3)+(1+2+3+……n)一样算出结果,那么该怎样构造出这样的列数字呢 注意上面那个直角三角三角形空缺的部分,将它补全成一个正方形的话,是这样的: 1 1 1 (1) 2 2 2 (2) 3 3 3 (3) 4 4 4 (4) …… n n n …… n 这个正方形所有的数字和为n*(1+n)*n/2=n3/2+n2/2 而我们补上的数字是哪些呢? 1 1 1 …… 1 (n-1)个的1 2 2 …… 2 (n-2)个的2 3 …… 3 (n-3)个的3 ……… n-1 又一个直角三角形,我们只需算出这个三角形的数字和T(n),再用刚才算的正方形数字和减去它,便能得到要求的S(n),即S(n)=n3/2+n2/2-T(n)。而这个三角形的每一列数字和很好算,第一列是1,第二列是1+2,第三列是1+2+3,……,

最后一列(第n-1列)是1+2+3+……+n-1,根据等差数列前n项和公式,这个三角形第n列的数字和是(1+n)*n/2=n2/2+n/2,所以T(n)相当于 (12/2+1/2)+(22/2+2/2)+(32/2+3/2)……+[(n-1)2/2+(n-1)/2] 将各个扩号内的第一项和第二项分别相加,得 T(n)=[12+22+32+……+(n-1)2]/2+(1+2+3+……+n-1)/2 =S(n-1)/2+(n-1)*n/4 =S(n-1)/2+n2/4-n/4 也就是说,S(n)=n3/2+n2/2-T(n) =n3/2+n2/2-S(n-1)-n2/4+n/4 =n3/2+n2/4+n/4-S(n-1)/2 ……① 因为S(n)=12+22+32+……+n2,S(n-1)=12+22+32+……+(n-1)2 可以看出,S(n)=S(n-1)+n2,即S(n-1)=S(n)-n2,代入①式,得到 S(n)=n3/2+n2/4+n/4-S(n)/2+n2/2 3S(n)/2=n3/2+3n2/4+n/4 3S(n)=n3+3n2/2+n/2 S(n)=n3/3+3n2/6+n/6 上面这个式子就是我们熟悉的S(n)=n(n+1)(2n+1)/6 另外一种经典的方法

三个连续的自然数总和是150

一、(43分) 1、三个连续的自然数总和是150,这三个连续的自然数分别是()()()。 2.()54÷5,要使商是三位数,()里最小能填几( ). 1.小明6分钟走了358米,每分钟大约走()米。 2.一个数除以6,商是32,余数最大是(),这时被除数是()。 3.被除数与除数的和是320,商是7,被除数是()。 4.甲书架有76本书,乙书架有44本书,从甲书架拿( )本书放到乙书架上,两个书架的书一样多。 5.甲乙两数的平均数是91,甲数是80,乙数是()。 6.要使664÷()的商是三位数,()里最大填()。 7.妈妈今年39岁,她出生于()年。 8.阳阳每天早上六点起床,她应该晚上()时睡觉才睡足9小时。 9.纺织工人晚上11时30分上班,第二天上午7时30分下班。他们工作了()小时。 10.某超市促销活动于6月13日举行,6月25日结束,本次促销活动共经历了()天。 11.一页书有21行,每行28个字,一页大约有()个字。 12.一个正方形花圃的周长是80米,这个花圃的面积是()。 13.一条长12米,宽6米的走廊,要在地面铺面积是4平方分米的方砖。需要()块这样的方砖。 14.一个长方形,如果长增加4厘米,面积就增加32平方厘米,如果宽增加1厘米,那面积就增加9平方厘米,这个长方形原来的面积是()。 15.在()里填上适当的单位。 一张邮票的面积是6()课桌的面积约42() 小华家住房面积是98()黑板的周长是8() 一个果园的面积约15()中国的领土面积大约是960万()18.680平方厘米=()平方分米()平方厘米 5日=()时17时是下午()时 19.小李叔叔身高178厘米,写成小数是()米。 20.与7.5相邻的两个一位小数分别是()、()。 21.小民读一个数时,由于粗心没有看到小数点,结果读成了四万一千零九,读原来小数时也要读出一个零,这个小数时(),读作()。 22.一个游泳池长25米,小明有了2个来回,他共游了()米。 23.三(1)班参加语文兴趣小组的有18人,参加数学小组的有16人,其中有5人两个兴趣小组都参加了,三(1)班共有()人参加兴趣小组。 24. + =80 = + + =()=() 25. - =40 = + + + + =()=() 26.丽丽的今年7岁,爷爷的年龄是她的9倍,明年爷爷的年龄是她的()倍。 27.用5个边长是1厘米的小正方形拼成一个长方形,这个长方形的周长是(),面积

自然数15次方和公式

自然数15次方和公式 S =1+2+3+4+……+n =n 2+n 2=n(n+1)2 S =12+22+32+……+n 2=2n 3+3n 2+n 6=n(n+1)(2n+1)6 S =13+23+33+……+n 3=n 4+2n 3+n 24 =n 2(n+1)24=n 2(n+1)24 S =14+24+34+……+n 4=6n 5+15n 4+10n 3-n 30=n(n+1)(2n+1)(3n 2+3n -1)30 S =15+25+35+……+n 5=2n 6+6n 5+5n 4-n 212=n 2(n+1)2(2n 2+2n -1)12 S =16+26+36+……+n 6=6n 7+21n 6+21n 5-7n 3+n 42=n(n+1)(2n+1)(3n 4+6n 3-3n +1)42 S =17+27+37+……+n 7=3n 8+12n 7+14n 6-7n 4+2n 224=n 2(n+1)2(3n 4+6n 3-n 2-4n+2)24 S =18+28+38+……+n 8=n(n+1)(2n+1)(5n 6+5n 5+5n 4-15 n 3-n 2+9n-3)90 S =19+29+39+……+n 9=n 2(n+1)2(2n 6+6n 5+n 4-8n 3+n 2+6n-3)20 S =110+210+310+……+n 10 =6n 11+33n 10+55n 9-66n 7+66n 5-33n 3+5n 66 S =111+211+311+……+n 11 =2n 12+12n 11+22n 10-33n 8+44n 6-33n 4+10n 224 S =112+212+312+……+n 12 =210n 13+1365n 12+2730n 11-5005n 9+8580n 7-9009n 5+4550n 3-691n 2730 S =113+213+313+……+n 13 =30n 14+210n 13+455n 12-1001n 10+2145n 8-3003n 6+2275n 4-691n 2 420 S =114+214+314+……+n 14 =6n 15+45n 14+105n 13-273n 11+715n 9-1287n 7+1365n 5-691n 3+105n 90 S =115+215+315+……+n 15 =3n 16+24n 15+60n 14-182n 12+572n 10-1287n 8+1820n 6-1382n 4+420n 248

趣味数学134:连续自然数立方和公式探源

连续自然数立方和公式探源 前面,在“有趣的图形数”和“求连续自然数立方和的公式”两篇文章中,曾经两次推导过求连续自然数立方和的公式: 13+23+33+…+n3=[n(n+1)/2]2 一次用的是“图形法”,一次用的是“列表法”。其实,早在公元100年前后,毕达哥拉斯学派的继承人尼科马霍斯,在他的著作《算术入门》中就曾经用非常简单的方法推导过这个公式。 现在,让我们按照他的思路,重复一下这个公式的推导过程。 过程大体上是这样的: 首先,从奇数列的一个性质入手。 奇数列1,3,5,7,9,11,13,…有一个性质,很容易验证: 1=13 3+5=23 7+9+11=33 13+15+17+19=43 21+23+25+27+29=53 …… 请你自上而下仔细观察这一系列等式的左端: 第1个等式左端,结束于第1个奇数; 第2个等式左端,结束于第3个奇数; 第3个等式左端,结束于第6个奇数; 第4个等式左端,结束于第10个奇数; 第5个等式左端,结束于第15个奇数; …… 结果发现,这些奇数的序数1,3,6,10,15,…原来是“三角形数”,它的每一项等于从1开始的连续自然数的和。第1项是1,第2项是1+2=3,第3项是1+2+3=6,第4项是1+2+3+4=10,第5项是1+2+3+4+5=15,……第n项是1+2+3+…+n=n(n+1)/2。即,第n个等式左端,结束于第n(n+1)/2个奇数。 然后,对上面这一系列等式的左右两端,分别求和:

右端是连续自然数的立方和13+23+33+…+n3。 左端是连续奇数的和。我们知道,求连续奇数的和,求到第几个奇数,就等于第几个奇数的平方。现在,求到第n(n+1)/2个奇数,当然等于[n(n+1)/2]2。 这样就得到求连续自然数立方和的公式: 13+23+33+…+n3=[n(n+1)/2]2 这种方法思路清晰论证简单。尼科马霍斯之所以能够想到这个方法,显然跟毕达哥拉斯学派对图形数的宠爱有关。图形数是自然数的形象化,自然数是众数之源,自然数真是一个取之不尽用之不竭的宝藏。

自然数求和公式及其应用

自然数求和公式及其应用 聪明的高斯在九岁时就在短时间内算出了1+2+3+-----+100的和,关于此公式的几种简单代数证明有好几种,本文将从几何的角度对此公式给出证明,然后举例说明此公式在生活中的广泛应用。 一:探究自然数求和公式与梯形面积之间的关系 如图我们可以把左边圆圈的个数问题转化为右边梯形面积的计算问题。梯形的面积是S=21n(n+1),所以左边圆圈的个数是2 1n(n+1),所以1+2+3+-----+n=21n(n+1) 此即自然数求和公式。 利用梯形面积公式,我们还可以求出不是从“1”开始的自然数或等差数列的求和公式。而此时求和的重点在于确定梯形的“高”。 例1、求13+14+15+-----+887的值。 我们可以仿照上面的图形解释把此问题转化为求一个梯形的面积。已知此上底是13,下底是887,难点在于确定梯形的“高”,即从13到887中自然数的个数。

我们可以从最简单开始 所以这个两底是13和887的梯形的高就是887-13+1=875。所以此梯形的面积是: 21(13+887)×875=393750,所以13+14+15+-----+887=2 1(13+887)×875=393750 更一般的,我们还可以通过这种列表探寻规律的方法来求出等差不是“1”的自然数的求和规律。(以等差为3的自然数为例) 计算11+15+19+------+411 分析,我们可以把它看做一个两底边分别是11和411,(等差为4),高为4 1(411-11)+1的梯形的面积既是所求11+15+19+------+411的值 即11+15+19+------+411= 21(11+411)×[41(411-11)+1]=21311 二、自然数求和公式的应用 例1、50个同窗好友见面两两握手,共握手多少次? 我们把50个同学编上从1——50的号码。那么1号同学要与其余49人握手49次,1号同学完成任务后2号同样与余下的48个同学握手共握手48次------最后是49号和50号同学握手1次。于是这50个同学握手的问题就转化为了1+2+3+------+50的自然数求和问题。 所以握手的总次数是1+2+3+------+49=2 1 (1+49)×50=1250(次)

相关文档
最新文档