人教版高中数学数列综合专项练习讲义

人教版高中数学数列综合专项练习讲义
人教版高中数学数列综合专项练习讲义

专题 数列综合

知识梳理

1.数列的通项 求数列通项公式的常用方法:

(1)观察与归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变:

分析符号、数字、字母与项数n 在变化过程中的联系,初步归纳公式。 (2)公式法:等差数列与等比数列。 等差数列{n a }中,1(1)=+-n

a a n d ,

等比数列{n a }中,n 1n 1a a q -=? ,

(3)利用n S 与n a 的关系求n a :则???≥-==-2111

n S S n S a n n

n (注意:不能忘记讨论

1=n )

(4)逐项作差求和法(累加法);已知)2)((1≥=--n n f a a n n ,且{f(n)}的和可求,

求n a 用累加法

(5)逐项作商求积法(累积法); 已知

)2)((1

≥=-n n f a a n n

,且{f(n)}的和可求,求n a 用累乘法. (6)转化法

2 几种特殊的求通项的方法 (一) 1n n a ka b +=+型。

(1)当1k =时,{}1n n n a a b a +-=?是等差数列,1()n a bn a b =++

(2)当1k ≠时,设1()n n a m k a m ++=+,则{}n a m + 构成等比数列,求出{}n a m +的通项,进一步求出{}n a 的通项。

()()d n n na

n a a S n n 212

11-+

=+=

()()

()???

??≠--==111111

q q q a q na S n

n

(二)、1()n n a ka f n +=+型。

(1)当1k =时,1()n n a a f n +-=,若()f n 可求和,则可用累加消项的方法。 (2)当1k ≠时,可设[]1(1)()n n a g x k a g x +++=+,则{}()n a g x +构成等比数列,求出{}()n a g x +的通项,进一步求出{}n a 的通项。(注意()g x 所对应的函数类型) (三)、1()n n a f n a +=型。

(1)若()f n 是常数时,可归为等比数列。 (2)若()f n 可求积,可用累积法化简求通项。 (四)、11n n n ma a k

m a --=+型。两边取倒数,可得到111n n k k

a a m -=+,令1

n n

C a =,则{}n C 可转化为1n n a ka b +=+型

3.数列求和的常用方法:

(1)公式法:①等差数列求和公式;②等比数列求和公式

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”

先合并在一起,

再运用公式法求和.

(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性

或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).

(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的

通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前n 和公式的推导方法之一). (5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂

后相关联,那么常选用裂项相消法求和.常用裂项形式有: ①

111(1)1n n n n =-++ ②1111()()n n k k n n k

=-++ ③

1111

[](1)(2)2(1)(1)(2)

n n n n n n n =--++++

例题精讲:

例1、(1)已知数列{}n a 中,11=a ,31+=+n n a a ,求n a

(2)已知数列{}n a 中,11=a ,n a a n n 31+=+,求n a

(3)已知{}n a 中,113,2n n n a a a +==+,求{}n a 。

例2、(1)已知数列{}n a 中,11=a ,n n a a 21=+,求n a

(2)已知数列{}n a 中,11=a ,n n n a a 21=+,求n a

例3、已知数列{}n a 中,11=a ,321+=+n n a a ,求n a

例4 (1)、已知{}n a 中,112,2

n n n

a a a n +==+,求数列{}n a 通项公式。

(2)、数列{}n a 中,1

11

21,,(2)1n n n a a a n a --==≥+,求{}n a 的通项。

(3)、数列{}n a 中,1

1121,,(2)2n n n n n a a a n a --==≥+,求{}n a 的通项。

(4)、数列{}n a 中,111

1,21,(2)2

n n a a a n n -==+-≥,求{}n a 的通项公式。

(5)、 已知{}n a 中,111,22,(2)n n n a a a n -==+≥,求{}n a 。

例 5 已知等比数列{}n a 的公比1q >, 是1a 和4a 的一个等比中项,

2a 和3a 的等差中项为6,若数列{}n b 满足2log n n b a =(n ∈*N ). (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n n a b 的前n 项和n S .

例 6 在数列{}n a 中,13a =,121n n a a n -=--+ (2n ≥且*)n ∈N . ⑵ 求2a 、3a 的值;

⑵证明:数列{}n a n +是等比数列,并求{}n a 的通项公式; ⑶求数列{}n a 的前n 项和n S .

例7、已知数列{}n a 的首项3

21=a ,1

21+=

+n n

n a a a , 3,2,1=n (1)证明:数列???

???-11n a 是等比数列;

(2)求数列???

???n a n 的前n 项和n S 。

高考链接

1、数列{a n }的前n 项和为S n ,且a 1=1,11

3

n n a S +=,n =1,2,3,……,求

(I )a 2,a 3,a 4的值及数列{a n }的通项公式; (II )2462n a a a a +++

+的值.

2、已知||n a 为等差数列,且36a =-,60a =。

(Ⅰ)求||n a 的通项公式;

(Ⅱ)若等差数列||n b 满足18b =-,2123b a a a =++,求||n b 的前n 项和公式

3、数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值;

(II )求{}n a 的通项公式.

高中数学-数列公式及解题技巧

数列求和的基本方法和技巧 除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、 等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 自然数方幂和公式: 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0) 解: ∵x≠0 ∴该数列是首项为1,公比为x 2的等比数列而且有n+3项 当x 2=1 即x =±1时 和为n+3 评注: (1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本 题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论. (2)要弄清数列共有多少项,末项不一定是第n 项. 对应高考考题:设数列1,(1+2),…,(1+2+1 2 2 2-?+n ),……的前顶和为 n s ,则 n s 的值。

二、错位相减法求和 错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出 了这方面的内容。需要我们的学生认真掌握好这种方法。这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列 的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。 [例] 求和:1 32)12(7531--+???++++=n n x n x x x S ( 1≠x )………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1) 1() 1()12()12(x x x n x n S n n n -+++--=+ 注意、1 要考虑 当公比x 为值1时为特殊情况 2 错位相减时要注意末项 此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。 对应高考考题:设正项等比数列{}n a 的首项2 1 1= a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。(Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T 。 三、反序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例] 求证:n n n n n n n C n C C C 2)1()12(53210+=++???+++ 证明: 设n n n n n n C n C C C S )12(53210++???+++=………………………….. ① 把①式右边倒转过来得 113)12()12(n n n n n n n C C C n C n S ++???+-++=- (反序)

2011高考数学压轴题专题训练

2011高考数学压轴题专题训练--数列(36页WORD ) 第六章 数列 高考题 三、解答题 22.(2009全国卷Ⅰ理)在数列{}n a 中,1111 1,(1)2 n n n n a a a n ++==++ (I )设n n a b n = ,求数列{}n b 的通项公式 (II )求数列{}n a 的前n 项和n S 分析:(I )由已知有 1112n n n a a n n +=++11 2 n n n b b +∴-= 利用累差迭加即可求出数列{}n b 的通项公式: 1 122 n n b -=-(* n N ∈) (II )由(I )知1 22n n n a n -=- , ∴n S =11(2)2n k k k k -=-∑111(2)2n n k k k k k -===-∑∑ 而 1 (2)(1)n k k n n ==+∑,又11 2n k k k -=∑ 是一个典型的错位相减法模型, 易得 11 12 42 2n k n k k n --=+=-∑ ∴n S =(1)n n +1242n n -++- 评析:09年高考理科数学全国(一)试题将数列题前置,考查构造新数列和利用错位相减法求前n 项和,一改往年的将数列结合不等式放缩法问题作为押轴题的命题模式。具有让考生和一线教师重视教材和基础知识、基本方法基本技能,重视两纲的导向作用。也可看出命题人在有意识降低难度和求变的良苦用心。 23.(2009北京理)已知数集{}()1212,, 1,2n n A a a a a a a n =≤<<≥具有性质P ;对任意的 (),1i j i j n ≤≤≤,i j a a 与 j i a a 两数中至少有一个属于A . (Ⅰ)分别判断数集{}1,3,4与{}1,2,3,6是否具有性质P ,并说明理由;

高中数学数列知识点总结

数列基础知识点 《考纲》要求: 1、理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; 2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题; 3、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。 数列的概念 1 .数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或 其子集{1,2,3,……n}的函数f(n).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第项. 2.数列的通项公式 一个数列{a n }的与之间的函数关系,如果可用一个公式a n =f(n)来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{a n }中,前n 项和S n 与通项a n 的关系为: =n a ?????≥==21n n a n 4.求数列的通项公式的其它方法 ⑴公式法:等差数列与等比数列采用首项与公差(公比)确定的方法. ⑵观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式. 例1.根据下面各数列的前n 项的值,写出数列的一个通项公式. ⑴-3 12?,534?,-758?,9716?…; ⑵ 1,2,6,13,23,36,…; ⑶ 1,1,2,2,3,3, 解:⑴ a n =(-1) n )12)(12(12+--n n n ⑵ a n =)673(21 2+-n n (提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,a n -a n -1=1+3(n -2)=3n -5.各式相加得

高中数学数列综合专项练习讲义

高中数学数列综合专项 练习讲义 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

专题数 列综合 考点精要 会求简单数列的通项公式和前n 项和. 热点分析 数列的通项和求和,历来是高考命题的常见考查内容.要重点掌握错位相减法,灵活运用裂项相消法,熟练使用等差和等比求和公式,掌握分组求和法. 知识梳理 1.数列的通项求数列通项公式的常用方法: (1)观察与归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变:分析符号、 数字、字母与项数n 在变化过程中的联系,初步归纳公式。 (2)公式法:等差数列与等比数列。 (3)利用n S 与n a 的关系求n a :则???≥-==-2111 n S S n S a n n n (注意:不能忘记讨论1=n ) (4)逐项作差求和法(累加法);已知)2)((1≥=--n n f a a n n ,且{f(n)}的和可求,则求n a 可用累加法 (5)逐项作商求积法(累积法);已知 )2)((1 ≥=-n n f a a n n ,且{f(n)}的和可求,求n a 用累乘法. (6)转化法 2几种特殊的求通项的方法 (一)1n n a ka b +=+型。 (1)当1k =时,{}1n n n a a b a +-=?是等差数列,1()n a bn a b =++ (2)当1k ≠时,设1()n n a m k a m ++=+,则{}n a m +构成等比数列,求出{}n a m +的通项,进一步求出{}n a 的通项。 例:已知{}n a 满足111,23n n a a a +==-,求{}n a 的通项公式。

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

高考数学压轴题专题训练20道

高考压轴题专题训练 1. 已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

高中数学数列基础知识与典型例题

数学基础知识例题

数学基础知识与典型例题(第三章数列)答案 例1. 当1=n 时,111==S a ,当2n ≥时,34)1()1(2222-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适合34-=n a n ,∴34-=n a n ()n N +∈ 例2. 解:∵1--=n n n S S a ,∴ n n n S S 221=--,∴12 211 =---n n n n S S 设n n n S b 2= 则{}n b 是公差为1的等差数列,∴11-+=n b b n 又∵2 322111=== a S b , ∴ 212 +=n S n n ,∴12)12(-+=n n n S ,∴当2n ≥时 2 12)32(--+=-=n n n n n S S a ∴????+=-2 2 )32(3 n n n a (1)(2)n n =≥,12)12(-+=n n n S 例3 解:1221)1(----=-=n n n n n a n a n S S a 从而有11 1 -+-=n n a n n a ∵11=a ,∴312=a ,31423?=a ,3142534??=a ,3 1 4253645???=a , ∴)1(234)1()1(123)2)(1(+=???-+????--=n n n n n n n a n ,∴122+==n n a n S n n . 例4.解:)111(2)1(23211+-=+=++++= n n n n n a n ∴12)111(2)111()3 1 21()211(2+= +-=??????+-++-+-=n n n n n S n 例5.A 例6. 解:1324321-+++++=n n nx x x x S ①()n n n nx x n x x x xS +-++++=-132132 ② ①-②()n n n nx x x x S x -++++=--1211 , 当1≠x 时,()()x nx x n x nx nx x nx x x S x n n n n n n n n -++-=-+--=---=-++1111111111 ∴()() 2 1111x nx x n S n n n -++-=+; 当1=x 时,()2 14321n n n S n +=++++= 例7.C 例8.192 例9.C 例10. 解:14582 54 54255358-=-? =?==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-?=a ∴14588-=a 例11.D 例12.C 例13.解:12311=-==S a , 当2n ≥时,56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n ,1=n 时亦满足 ∴ 56-=n a n , ∴首项11=a 且 )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成等差数列且公差为6、首项11=a 、通项公式为56-=n a n 例14. 解一:设首项为1a ,公差为d 则???? ????? = ??+??++=?+1732225662256)(635421112121 11d a d d a d a 5=?d 解二:??? ??==+27 32354 奇偶偶奇S S S S ???==?162192奇偶S S 由 d S S 6=-奇偶5=?d 例15. 解:∵109181a a a a =,∴205 100 110918===a a a a 例16. 解题思路分析: 法一:利用基本元素分析法 设{a n }首项为a 1,公差为d ,则71151 76772 151415752 S a d S a d ?? =+=?????=+=??∴ 121a d =-??=? ∴ (1)22n n n S -=-+∴ 15 2222 n S n n n -=-+=-此式为n 的一次函数 ∴ {n S n }为等差数列∴ 21944n T n n =- 法二:{a n }为等差数列,设S n =An 2 +Bn ∴ 2 72 157******** S A B S A B ?=?+=??=?+=?? 解之得:12 5 2 A B ?=????=-??∴ 21522n S n n =-,下略 注:法二利用了等差数列前n 项和的性质 例17.解:设原来三个数为2,,aq aq a 则必有 )32(22-+=aq a aq ①,)32()4(22-=-aq a aq ② 由①: a a q 24+=代入②得:2=a 或9 5 =a 从而5=q 或13 ∴原来三个数为2,10,50或9 338 ,926,92 例18.70 例19. 解题思路分析: ∵ {a n }为等差数列∴ {b n }为等比数列

高中数学数列练习题及解析

数列练习题 一.选择题(共16小题) 1.数列{a n }的首项为3,{b n }为等差数列且b n =a n+1﹣a n (n ∈N * ),若b 3=﹣2,b 10=12,则a 8=( ) A . 0 B . 3 C . 8 D . 11 2.在数列{a n }中,a 1=2,a n+1=a n +ln (1+),则a n =( ) A . 2+lnn B . 2+(n ﹣1)lnn C . 2+nlnn D . 1+n+lnn 3.已知数列{a n }的前n 项和S n =n 2 ﹣9n ,第k 项满足5<a k <8,则k 等于( ) A . 9 B . 8 C . 7 D . 6 4.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n+1,则S n =( ) A . 2n ﹣1 B . C . D . 5.已知数列{a n }满足a 1=1,且,且n ∈N * ),则数列{a n }的通项公式为( ) A . a n = B . a n = C . a n =n+2 D . a n =(n+2)3n 6.已知数列{a n }中,a 1=2,a n+1﹣2a n =0,b n =log 2a n ,那么数列{b n }的前10项和等于( ) A . 130 B . 120 C . 55 D . 50 7.在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =( ) A . B . C . D . 8.在数列{a n }中,若a 1=1,a 2=,=+ (n ∈N * ),则该数列的通项公式为( ) A . a n = B . a n = C . a n = D . a n = 9.已知数列{a n }满足a n+1=a n ﹣a n ﹣1(n ≥2),a 1=1,a 2=3,记S n =a 1+a 2+…+a n ,则下列结论正确的是( ) A . a 100=﹣1,S 100=5 B . a 100=﹣3,S 100=5 C . a 100=﹣3,S 100=2 D . a 100=﹣1,S 100=2 10.已知数列{a n }中,a 1=3,a n+1=2a n +1,则a 3=( ) A . 3 B . 7 C . 15 D . 18 11.已知数列{a n },满足a n+1= ,若a 1=,则a 2014=( )

高考数学数列答题技巧解析

2019-2019高考数学数列答题技巧解析 数列是高中数学的重要内容,又是学习高等数学的基础。下面是查字典数学网整理的数学数列答题技巧,请考生学习。 高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。 有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。 探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面; (1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。 (2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。 (3)数列的应用问题,其中主要是以增长率问题为主。 试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关 问题。 2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。 单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。 3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法. 其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,

高考压轴题瓶颈系列—浙江卷数列50例

高考压轴题瓶颈系列之——浙江卷数列 【见证高考卷之特仑苏】 1. 【2014年.浙江卷.理19】(本题满分14分)已知数列{}n a 和{}n b ()()* ∈=N n a a a n b n 2 2 1 . 若 {}n a 为等比数列,且.6,2231b b a +== (Ⅰ)求 n a 与 n b ; (Ⅱ)设() * ∈-= N n b a c n n n 1 1。记数列{}n c 的前n 项和为n S . (i )求 n S ; (ii )求正整数k ,使得对任意*∈N n ,均有n k S S ≥. 2. 【2011年.浙江卷.理19】(本题满分14分)已知公差不为0的等差数列 {} n a 的首项 1a a = (a R ∈),设数列的前n 项和为n S ,且11a ,21a ,41a 成等比数列 (Ⅰ)求数列 {} n a 的通项公式及 n S (Ⅱ)记 1231111 ...n n A S S S S = ++++ , 212221111...n n B a a a a =++++,当2n ≥时,试比较 n A 与 n B 的大

3. 【2008年.浙江卷.理22】(本题14分)已知数列 {}n a ,0≥n a ,01=a , 22111() n n n a a a n N ?+++-=∈. n n a a a S +++= 21)1()1)(1(1 )1)(1(11121211n n a a a a a a T +++++++++= . 求证:当? ∈N n 时,(Ⅰ)1 +n S n ;(Ⅲ) 3

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

上海历年高考数学压轴题题选

历年高考数学压轴题题选 (2012文) 23、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分 对于项数为m 的有穷数列{}n a ,记{}12max ,,...,k k b a a a =(1,2,...,k m =),即k b 为12,,...,k a a a 中的最大值,并称数列{}n b 是{}n a 的控制数列,如1,3,2,5,5的控制数列是1,3,3,5,5 (1)若各项均为正整数的数列{}n a 的控制数列为2,3,4,5,5,写出所有的{}n a (2)设{}n b 是{}n a 的控制数列,满足1k m k a b C -++=(C 为常数,1,2,...,k m =),求证:k k b a =(1,2,...,k m =) (3)设100m =,常数1,12a ?? ∈ ??? ,若(1)22 (1) n n n a an n +=--,{}n b 是{}n a 的控制数列, 求1122()()b a b a -+-+100100...()b a +- (2012理) 23、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分 对于数集{}121,,,...,n X x x x =-,其中120...n x x x <<<<,2n ≥,定义向量集{} (,),,Y a a s t s X t X ==∈∈,若对任意1a Y ∈,存在2a Y ∈,使得120a a ?=,则称X 具有性质P ,例如{}1,1,2-具有性质P (1)若2x >,且{}1,1,2,x -具有性质P ,求x 的值 (2)若X 具有性质P ,求证:1X ∈,且当1n x >时,11x = (3)若X 具有性质P ,且11x =、2x q =(q 为常数),求有穷数列12,,...,n x x x 的通项公式

重点高中数学数列知识点总结

重点高中数学数列知识点总结

————————————————————————————————作者:————————————————————————————————日期:

定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()()11122 n n a a n n n S na d +-==+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组100 n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由1 00n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S Λ nd S S =-奇偶,1 +=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{} n a ,有 )()12(12为中间项n n n a a n S -=-, n a S S =-偶奇, 1-=n n S S 偶奇.

高中数学数列专题练习版

高中数学数列专题练习(精编版) 1. 已知数列{}()n a n N *∈是等比数列,且130,2,8.n a a a >== (1)求数列{}n a 的通项公式; (2)求证: 11111321<++++n a a a a ; (3)设1log 22+=n n a b ,求数列{}n b 的前100项和. 2.数列{a n }中,18a =,42a =,且满足21n n a a ++-=常数C (1)求常数C 和数列的通项公式; (2)设201220||||||T a a a =+++, (3) 12||||||n n T a a a =++ +,n N +∈ 3. 已知数列n n 2,n a =2n 1,n ???为奇数; -为偶数; , 求2n S 4 .已知数列{}n a 的相邻两项1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,且 11=a . (1) 求证: 数列? ?? ????-n n a 231是等比数列; (2) 求数列{}n b 的前n 项和n S . 5.某种汽车购车费用10万元,每年应交保险费、养路费及汽油费合计9千元,汽车的维修费平均为第一年2千元,第二年4千元,第三年6千元,…,各年的维修费平均数组成等差数列,问这种汽车使用多少年报废最合算(即使用多少年时,年平均费用最少)? 6. 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少5 1,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加4 1. (1)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元, 写出a n ,b n 的表达式;

高中数学50个解题小技巧

高中数学50个解题小技巧 XX:__________ 指导:__________ 日期:__________

1 . 适用条件 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。 2 . 函数的周期性问题(记忆三个) (1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。 注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。 3 . 关于对称问题(无数人搞不懂的问题)总结如下 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a, b)中心对称 4 . 函数奇偶性 (1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空 5 . 数列爆强定律 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:

S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q 6 . 数列的终极利器,特征根方程 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数) 7 . 函数详解补充 1、复合函数奇偶性:内偶则偶,内奇同外 2、复合函数单调性:同增异减 3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。 8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法 前面减去一个1,后面加一个,再整体加一个2 9 . 适用于标准方程(焦点在x轴)爆强公式 k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。 10 . 强烈推荐一个两直线垂直或平行的必杀技 已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了

2020年高考数学压轴题系列训练含答案及解析详解4

第 1 页 共 16 页 第 1 页 共 2020年高考数学压轴题系列训练含答案及解析详解4 1.(本小题满分14分) 已知f(x)= 2 22 +-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)= x 1 的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范 围;若不存在,请说明理由. 本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨 论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分. 解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 2 22) 2() 2(2+---x ax x , ∵f(x)在[-1,1]上是增函数, ∴f '(x)≥0对x ∈[-1,1]恒成立, 即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设?(x)=x 2-ax -2, 方法一: ?(1)=1-a -2≤0,

— 2 — ① ? ?-1≤a ≤1, ?(-1)=1+a -2≤0. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. 方法二: 2a ≥0, 2 a <0, ①? 或 ?(-1)=1+a -2≤0 ?(1)=1-a -2≤0 ? 0≤a ≤1 或 -1≤a ≤0 ? -1≤a ≤1. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. (Ⅱ)由 2 22 +-x a x =x 1,得x 2-ax -2=0, ∵△=a 2 +8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根, x 1+x 2=a ,

相关文档
最新文档