贝塞尔函数的有关公式.doc

贝塞尔函数的有关公式.doc
贝塞尔函数的有关公式.doc

C.贝塞尔函数的有关公式

贝塞尔方程

的持解B p(z)为(柱)贝塞尔函数。有

第一类柱贝塞尔函数J p(z)

p为整数n时,J-n=(-1)n J n;

p不为整数时,J p与J-p线性无关。

第二类柱贝塞尔函数N p(z)(柱诺依曼函数)

n为整数时N-n=(-1)n N n。

第三类柱贝塞尔函数H p(z) (柱汉开尔函数):第一类柱汉开尔函数H p(1)(z)= J p(z)+j N p(z)

第二类柱汉开尔函数H p(2)(z)= J p(z)-j N p(z)

大宗量z→∞

小宗量z→0

,为欧拉常数

见微波与光电子学中的电磁理论p668

J n(z)的母函数和有关公式

函数e z(t/2-1/2t)称为第一类贝塞尔函数的母函数,或称生成函数,若将此函数在t=0附近展开成罗朗级数,可得到

在上式中作代换,令t=e j?,t=±je j?等,可得

又可得

如z=x为实数

贝塞尔函数的加法公式

J n(z)的零点μni

J’n(z)的零点γni

半整数阶贝塞尔函数

J n+1/2(z)的零点χnp

J'n+1/2(z)的零点χ'np

D.朗斯基行列式及其它关系式

E.修正贝塞尔函数有关公式

贝塞尔方程中用(j z)代换z,得到修正的贝塞尔方程

方程的两个线性无关的解为

I p(z)=j-p J p(j z).称为第一类修正的柱贝塞尔函数。

K p(z)=(π/2)j p+1H p(1)(j z).称为第二类修正的柱贝塞尔函数。

大宗量z→∞

小宗量z→0

贝塞尔函数的有关公式

贝塞尔函数的有关公式 C.贝塞尔函数的有关公式 贝塞尔方程 的持解B(z)为(柱)贝塞尔函数。有 p 第一类柱贝塞尔函数J(z) p np为整数n时,J=(,1)J; ,n n p不为整数时,J与J线性无关。 p,p 第二类柱贝塞尔函数N(z)(柱诺依曼函数) p nn为整数时N=(,1)N。 ,n n 第三类柱贝塞尔函数H(z) (柱汉开尔函数): p(1) 第一类柱汉开尔函数 H(z)= J(z)+j N(z) pp p(2)第二类柱汉开尔函数 H(z)= J(z),j N(z) pp p 大宗量z

小宗量z 0 ,为欧拉常数 见微波与光电子学中的电磁理论 p668 J(z)的母函数和有关公式 nz(t/2-1/2t)函数e称为第一类贝塞尔函数的母函数,或称生成函数,若将此函数在t=0附近 展开成罗朗级数,可得到 j j 在上式中作代换,令t=e,t= je等,可得 又可得 如z=x为实数

贝塞尔函数的加法公式 J(z)的零点,nni J’(z)的零点,nni 半整数阶贝塞尔函数 J(z)的零点,n+1/2np

J'(z)的零点,'n+1/2np D(朗斯基行列式及其它关系式 E(修正贝塞尔函数有关公式 贝塞尔方程中用(jz)代换z,得到修正的贝塞尔方程 方程的两个线性无关的解为 ,p I(z)=jJ(jz)(称为第一类修正的柱贝塞尔函数。 ppp+1(1)K(z)=(,/2)jH(jz)(称为第二类修正的柱贝塞尔函数。 pp

大宗量z 小宗量z 0 (0210)《古代散文》复习思考题 一、填空题 1(甲骨卜辞、和《易经》中的卦、爻辞是我国古代散文的萌芽。2(深于比兴、,是先秦散文的突出特点。 3(《》长于描写外交辞令。 4(《国语》的突出特点是长于。 5(“兼爱”、“非攻”是思想的核心。

贝塞尔函数

贝塞尔函数 当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。 §5.1 贝塞尔方程的引出 下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。 这个问题可以归结为求解下述定解问题: 22222 2222 22222 0(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ?=+=???=++<>???=+≤= (5.3)?????? ??? 用分离变量法解这个问题,先令 (,,)(,)() u x y t V x y T t =

代入方程(5.1)得 2 2 2 2 2 ( )V V VT a T x y ??'=+ ?? 或 2 2 2 2 2 (0)V V T x y a T V λλ??+'??= =-> 由此得到下面关于函数()T t 和(,)V x y 的方程 2 0T a T λ'+= (5.4) 2 2 2 2 0V V V x y λ??+ +=?? (5.5) 从(5.4)得 2 ()a t T t Ae λ-= 方程(5.5)称为亥姆霍兹(Helmholtz )方程。为了求出这个方程满足条件 2 2 2 0x y R V +== (5.6) 的非零解,引用平面上的极坐标系,将方程(5.5)与条件(5.6)写成极坐标形式得 22 222 110,,02, (5.7)0,02, (5.8)R V v V V R V ρλρθπρρρρθθπ=????+++=<≤≤??????=≤≤? 再令 (,)()()V P ρθρθ=Θ, 代入(5.7)并分离变量可得 ()()0θμθ''Θ+Θ= (5.9) 2 2 ()()()()0P P P ρρρρλρμρ'''++-= (5.10)

数列递推公式

递推数列的通项公式 数列是高中数学的重要内容之一,是高考的重点和难点,数列中蕴含着丰富的数学思想,而递推数列的通项公式具有很强的逻辑性,考查逻辑推理和转化能力,因此成为历年高考热点。 递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决,仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键. 【课前练习】 1. 数列{a n }满足a 1=1,a n+1=a n +2n ,求数列的通项a n =_________. 2. 数列{a n }满足a 1=1,a n+1=1 +n n a n ,求数列{a n }的通项a n = __________. 3.数列{a n }满足a 1=0,1 331+-= +n n n a a a (n ∈N *),则a 20=( ) A.0 B.3 C.-3 D.2 3 【典例分析】 一、型如 )(1n f a a n n +=+ 例1、 已知数列{}n a 满足2 1 1=a ,)1(11++=+n n a a n n ,求数列{} n a 的通项公式.

二、型如)(1n f a a n n ?=+ 例2、设{}n a 是首项为1的正项数列,且n n n a a a n 12 1)1(++++ 02=-n na (*∈N n ),求数列{}n a 的通项公式. 三、 形如q pa a n n +=+1(其中p ,q 为常数,0)1(≠-p pq ) 例3、 已知数列{}n a 中,11=a ,321+=+n n a a ,求数列{}n a 的通项公式.

三角函数诱导公式、万能公式、和差化积公式、倍角公式等公式总结及其推导

三角函数诱导公式: 诱导公式记忆口诀:“奇变偶不变,符号看象限”。 “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n?(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。 符号判断口诀: “一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。 “ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。 三角函数诱导公式- 其他三角函数知识 同角三角函数的基本关系式 倒数关系 tanα?cotα=1 sinα?cscα=1 cosα?secα=1 商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系 sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ )/(1-tanα ?tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ?tanβ) 二倍角的正弦、余弦和正切公式 sin2α=2sinαcosα

贝塞尔函数

6-2 贝塞尔函数柱函数 在用分离变量法一章介绍了拉普拉斯方程在柱坐标系下分离变量得到了一种特殊类型的常微分方程:贝塞尔方程. 通过幂级数解法得到了另一类特殊函数,称为贝塞尔函数. 贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用贝塞尔函数的正交完备性.

6.1 贝塞尔方程及其解 6.1.1 贝塞尔方程 拉普拉斯方程在柱坐标系下的分离变量得出了一般的贝塞尔方程。 考虑固定边界的圆膜振动,可以归结为下述定解问题 2 2 2 222200() (0,0)|0 (0)(,,)|(,)(,,)|(,) tt xx yy x y l t t t u a u u x y l t u t u x y t x y u x y t x y ?ψ+===?=+≤+<>? =≥?? =??=?(6.1.1 )

其中l 为已知正数,(,),(,)x y x y ?ψ为已知函数.这个定解问题宜于使用柱坐标,从而构成柱面问题.(由于是二维问题,即退化为极坐标) 设 (,,)(,,)()(,) u x y t u t T t U ρ?ρ?==)得 2 2 0a T =(6.1.2) 2 2100 U U k U ρ? ρ′′′++=(6.1.3)

再令 (,)()() U R ρ?ρ?=Φ,得到2 ν′′Φ+Φ=(6.1.4) 2 22 2 ()0 R R k R ρρρν′′++?=(6.1.5) 于是(6.1.5)得到 22 d ()0d y x x y x ν+?=(6.1.6)

边界条件为 ()|()0 l y k y kl ρρ===方程(6.1.6)称为 ν 阶贝塞尔微分方程.这里 ν x 和 可以为任意数.

(完整版)数列的递推公式教案

数列的递推公式教案 普兰店市第六中学陈娜 一、教学目标 1、知识与技能:了解数列递推公式定义,能根据数列递推公式求项,通过数列递推公式求数列的通项公式。 2、过程与方法:通过实例“观察、分析、类比、试验、归纳”得出递推公式概念,体会数列递推公式与通项公式的不同,探索研究过程中培养学生的观察归纳、猜想等能力。 3、情感态度与价值观:培养学生积极参与,大胆探索精神,体验探究乐趣,感受成功快乐,增强学习数学的兴趣,培养学生一切从实际出发,认识并感受数学的应用价值。 二、教学重点、难点和关键点 重点:数列的递推定义以及应用数列的递推公式求出通项公式。 难点:数列的递推公式求通项公式。 关键:同本节难点。 三、教学方法 通过创设问题的情境,在熟悉与未知的认知冲突中激发学生的探索欲望;引导学生通过自主探究和合作交流相结合的方式进行研究;引导学生积极思考,运用观察、试验、联想、类比、归纳、猜想等方法不断地提出问题、解决问题,再提出问题,解决问题……经历知识的发生和发展过程,并注意总结规律和知识的巩固与深化。 四、教学过程 环节1:新课引入 一老汉为感激梁山好汉除暴安良,带了些千里马要送给梁山好汉,见过宋江以后,宋江吧老汉带来的马匹的一半和另外一匹马作为回礼送给了他,老汉又去见卢俊义,把

现有的马匹全送给了他,卢俊义也把老汉送来的马匹的一半和另外一匹马作为回礼送给了老汉……… 一直送到108名好汉的最后一名段景住都是这样的,老汉下山回家时还剩下两匹马,问老汉上山时一共带了多少匹千里马? 通过这个小故事让学生感受到数学来源于生活同时又为生活所服务。同时也能引起学生的兴趣和好奇心。 环节2:引例探究 (1)1 2 4 8 16……… (2) 1 ()1cos ()1cos cos ()]1cos cos[cos ……. (3)0 1 4 7 10 13 ……. 通过设置问题的情境,让学生分析找出这些数列从第二项(或后几项)后一项与前一项的关系,从而引出数列的递推公式的定义,便于学生对于数列递推公式的理解、记忆和应用。 递推公式定义: 如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任意一项a n 与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。递推公式是数列一种的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可. 环节3:应用举例及练习 例1:已知数列{a n }的第1项是1,以后的各项由公式 (n ≥2)给出,写出这个给出,写出这个数列的前5项. 解:据题意可知:a 1=1, 1 11n n a a -=+2111112,1a a =+=+=3211311,22a a =+=+=4312511,33a a =+=+=5413811.55a a =+ =+=

三角函数公式大全81739

三角函数公式大全三角函数定义 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系:

公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系: 记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数

名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的范围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项 数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

Bessel函数介绍

第一类贝塞尔函数 图2 0阶、1阶和2阶第一类贝塞尔函数(贝塞尔J函数)曲线 (在下文中,第一类贝塞尔函数有时会简称为“J函数”,敬请读者留意。) 第一类α阶贝塞尔函数Jα(x)是贝塞尔方程当α为整数或α非负时的解,须满足在x= 0 时有限。这样选取和处理Jα的原因见本主题下面的性质介绍;另一种定义方法是通过它在x= 0 点的泰勒级数展开(或者更一般地通过幂级数展开,这适用于α为非整数): 上式中Γ(z)为Γ函数(它可视为阶乘函数向非整型自变量的推广)。第一类贝塞尔函数的 形状大致与按速率衰减的正弦或余弦函数类似(参见本页下面对它们渐进形式的介 绍),但它们的零点并不是周期性的,另外随着x的增加,零点的间隔会越来越接近周期性。图2所示为0阶、1阶和2阶第一类贝塞尔函数Jα(x)的曲线(α = 0,1,2)。 如果α不为整数,则Jα(x)和J?α(x)线性无关,可以构成微分方程的一个解系。反之若α是整数,那么上面两个函数之间满足如下关系: 于是两函数之间已不满足线性无关条件。为寻找在此情况下微分方程与Jα(x)线性无关的另一解,需要定义第二类贝塞尔函数,定义过程将在后面的小节中给出。 贝塞尔积分

α为整数时贝塞尔函数的另一种定义方法由下面的积分给出: (α为任意实数时的表达式见参考文献[2]第360页) 这个积分式就是贝塞尔当年提出的定义,而且他还从该定义中推出了函数的一些性质。另一种积分表达式为: 和超几何级数的关系 贝塞尔函数可以用超几何级数表示成下面的形式: 第二类贝塞尔函数(诺依曼函数) 图3 0阶、1阶和2阶第二类贝塞尔函数(贝塞尔Y函数)曲线图 (在下文中,第二类贝塞尔函数有时会简称为“Y函数”,敬请读者留意。)

(完整版)三角函数诱导公式一览表(打印)

三角函数有关诱导公式一览表 公式 ) ( tan ) 2 tan( cos ) 2 cos( sin ) 2 sin( .1Z k k k k ∈ ? ? ? ? ? = + = + = + α α π α α π α α π ? ? ? ? ? = + - = + - = + α α π α α π α α π tan ) tan( cos ) cos( sin ) sin( .2 ? ? ? ? ? - = - = - - = - α α α α α α tan ) tan( cos ) cos( sin ) sin( .3 ? ? ? ? ? - = - - = - = - α α π α α π α α π tan ) tan( cos ) cos( sin ) sin( .4 ? ? ? ? ? = - = - α α π α α π sin ) 2 cos( cos ) 2 ( sin .5 ? ? ? ? ? - = + = + α α π α α π sin ) 2 cos( cos ) 2 ( sin .6 ? ? ? ? ? - = - - = - α α π α α π sin ) 2 3 cos( cos ) 2 3 ( sin .7 口诀函数名不变,符号看象限函数名改变,符号看先象限 图形 简记结合图形,7组公式可用口诀概括为:“奇变偶不变,符号看象限” 说明①公式的推导思路:前面4组通过找角的终边位置关系—坐标关系—三角函数关系而得出(后面3组通过角的变换,进而借助前面的有关公式转化得到)②各组诱导公式都可用含角度的形式

③在应用诱导公式解题时,基本思路是:“负化正,大化小,化成锐角再求值”。 一定要记清特殊角的三角函数值,根据问题做到准确应用,正确求解。

几类递推数列通项公式的常见类型及解法

几类递推数列通项公式的常见类型及解法 递推数列问题成为高考命题的热点题型,对于由递推式所确定的数列通项公式问题,通常可对递推式的变形转化为等差数列或等比数列.下面将以常见的几种递推数列入手,谈谈此类数列的通项公式的求法. 一、a a d n n +=+1型 (d 为常数) 形如)(1n f a a n n +=+的递推数列求通项公式,将此类数列变形得a a d n n +-=1,再由 等差数列的通项公式()a a n d n =+-11可求得a n . 例1 已知数列{}a n 中()a a a n N n n 1123==+∈+,,求n a 的通项公式. 解:∵a a n n +=+13 ∴a a n n +-=13 ∴ {}a n 是以a 12=为首项,3为公差的等差数列. ∴()a n n n =+-=-21331为所求的通项公式. 二、)(1n f a a n n +=+型 形如)(1n f a a n n +=+的递推数列求通项公式,可用差分法. 例2 已知数列{}a n 中满足a 1=1,n a a n n -=+1,求n a 的通项公式. 解:作差n a a n n -=-+1,则 2a -1a = -1,3a -2a = -2,4a -3a = -3,……,)1(1--=--n a a n n , 将上面n -1个等式相加得 +-+-+-=-)3()2()1(1a a n ……+[)1(--n ] ∴ n a =2 2 2++-n n 为所求的通项公式. 三、n n a q a ?=+1型 形如n n a q a ?=+1的递推数列求通项公式,将此类数列变形得 q a a n n =+1 ,再由等比数列的通项公式11-?=n n q a a 可求得a n . 例3 已知数列{}a n 中满足a 1=1,n n a a 21=+,求n a 的通项公式. 解:∵n n a a 21=+ ∴ 21 =+n n a a

贝塞尔函数及其应用

题目:贝塞尔函数及其应用

摘要 贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程时得到的,因此它在波动问题以及各种涉及有势场的问题的研究中占有非常重要的地位。贝塞尔函数是贝塞尔方程的解。它在物理和工程中,有着十分广泛的应用。 本文首先通过一个物理问题引入贝塞尔方程,并求出贝塞尔方程的解,即贝塞尔函数。其次列出了贝塞尔函数的几个重要的结论,如递推公式,零点性质等,并对他们进行了深入的分析。第二部分主要介绍了傅里叶-贝塞尔级数,通过matlab编程对函数按傅里叶-贝塞尔级数展开之后的图像进行分析,得到了它们的逼近情况。最后一部分介绍了贝塞尔函数的几个重要应用,一个是在物理光学中的应用,着重分析了贝塞尔函数近似公式的误差;一个是在信号处理中调频制的应用,得到了特殊情况下的公式算法。 关键词:贝塞尔函数,傅里叶-贝塞尔级数,渐近公式

目录 一、起源.......................................................................................................... 错误!未定义书签。 (一)贝塞尔函数的提出...................................................................... 错误!未定义书签。 (二) 贝塞尔方程的引出?错误!未定义书签。 二、贝塞尔函数的基本概念.......................................................................... 错误!未定义书签。 (一)贝塞尔函数的定义........................................................................ 错误!未定义书签。 1. 第一类贝塞尔函数....................................................................... 错误!未定义书签。 2. 第二类贝塞尔函数 (6) 3. 第三类贝塞尔函数?错误!未定义书签。 4. 虚宗量的贝塞尔函数................................................................... 错误!未定义书签。 (二)贝塞尔函数的递推公式?错误!未定义书签。 (三)半奇数阶贝塞尔函数?错误!未定义书签。 (四) 贝塞尔函数的零点?错误!未定义书签。 (五) 贝塞尔函数的振荡特性................................................................ 错误!未定义书签。 三、 Fourier-Bessel级数?错误!未定义书签。 (一) 傅里叶-贝塞尔级数的定义?错误!未定义书签。 (二) 将函数按傅里叶-贝塞尔级数展开?错误!未定义书签。 四、贝塞尔函数的应用?错误!未定义书签。 (一)贝塞尔函数在光学中的应用...................................................... 错误!未定义书签。 (二)贝塞尔函数在调频制中的应用.................................................... 错误!未定义书签。附录 ................................................................................................................... 错误!未定义书签。

贝塞尔函数

n阶第一类贝塞尔函数() J x n 第二类贝塞尔函数,或称Neumann函数() Y x n 第三类贝塞尔函数汉克尔(Hankel)函数,(1)() H x n 第一类变形的贝塞尔函数() I x n 开尔文函数(或称汤姆孙函数)n阶第一类开尔文(Kelvin)第五章贝塞尔函数 在第二章中,用分离变量法求解了一些定解问题。从§2.3可以看出,当我们采用极坐标系后,经过分离变量就会出现变系数的线性

常微分方程。在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。 §5.1 贝塞尔方程的引出 下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。设有半径 其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。 这个问题可以归结为求解下述定解问题: 用分离变量法解这个问题,先令

或 (5.4) (5.5) 从(5.4)得 方程(5.5)称为亥姆霍兹(Helmholtz )方程。为了求出这个方程满足条件 (5.6) 的非零解,引用平面上的极坐标系,将方程(5.5)与条件(5.6)写成极坐标形式得 再令

代入(5.7)并分离变量可得 (5.9) (5.10) 5.10)得 (5.11) 这个方程与(2.93)相比,仅仅是两者的自变量和函数记号有差别, 若再作代换 并记

(完整版)三角函数诱导公式总结

三角函数诱导公式与同角的三角函数 【知识点1】诱导公式及其应用 公式一: sin()-sin αα-=; cos()cos αα-= ; tan()tan αα-=- 公式二: ααπ-sin sin(=+); ααπ-cos cos(=+); ααπtan tan(=+). 公式三: ααπsin sin(=-); ααπ-cos cos(=-); ααπtan tan(-=-) 公式四: sin(2sin παα-=-); cos(2cos παα-=); tan(2tan παα-=-) 公式五: sin( 2π-α) = cos α; cos(2π -α) = sin α. 公式六: sin(2π+α) = cos α; cos(2π +α) =- sin α. 公式七: sin(32π-α)=- cos α; cos(32π -α) = -sin α. 公式八: sin(32π+α) = -cos α; cos(32 π +α) = sin α. 公式九:απαsin )2sin(=+k ; απαcos )2cos(=+k ; απαtan )2tan(=+k .(其中Z ∈k ). 方法点拨: 把α看作锐角 一、前四组诱导公式可以概括为:函数名不变,符号看象限 公式(五)到公式(八)总结为一句话:函数名改变,符号看象限(原函数所在象限) 二、奇变偶不变,符号看象限 将三角函数的角度全部化成απ +?2 k 或是απ-? 2 k ,符号名该不该变就看k 是奇数还是偶数,是奇数就改变函 数名,偶数就不变

例1、求值(1)29cos( )6π= __________. (2)0tan(855)-= _______ ___. (3)16 sin()3 π-= __________. 的值。 求:已知、例)sin(2)4cos() 3sin()2cos( , 3)tan( 2απααπαπαπ-+-+--=+ 例3、 )2cos()2sin(21++-ππ【 】 A .sin2-cos2 B .cos2-sin2 C .±(sin2-cos2) D .sin2+cos2 例4、下列各式不正确的是【 】 A . sin (α+180°)=-sin α B .cos (-α+β)=-cos (α-β) C . sin (-α-360°)=-sin α D .cos (-α-β)=cos (α+β) 例5、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于【 】 A .-23 m B .-32 m C .23 m D .3 2 m 例6、已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为【 】 A .5 B .-5 C .6 D .-6 例7、试判断 sin(2)cos() (9tan (5) 2αππαα παπα-+??+- ??? ··cos 为第三象限角)符号 例8、化简3 sin(3)cos()cos(4) 25 tan(3)cos()sin() 22 πααππαπαπααπ-?-?+-?+?- 例9、已知方程sin(α - 3π) = 2cos(α - 4π),求 ) sin()2 3sin(2) 2cos(5)sin(α--α-π α-π+α-π 例10、若1sin()3 πθ-= ,求 []cos() cos(2) 3 3 cos()1cos sin()cos()sin() 22 πθθππθθ θπθπθπ+-+ --?-?--+的值. 提示:先化简,再将1sin 3 θ=代入化简式即可.

贝塞尔函数释疑

数理方程中与贝塞尔函数有关的问题 据百度百科介绍: 贝塞尔(1784——1846)是德国天文学家,数学家,天体测量学的奠基人。20岁时发表了有关彗星轨道测量的论文。1810年任新建的柯尼斯堡天文台台长,直至逝世。1812年当选为柏林科学院院士。贝塞尔的主要贡献在天文学,以《天文学基础》(1818)为标志发展了实验天文学 ,还编制基本星表 ,测定恒星视差, 预言伴星的存在,导出用于天文计算的贝塞尔公式,较精确地计算出岁差常数等几个天文常数值,还编制大气折射表和大气折射公式,以修正其对天文观测的影响。他在数学研究中提出了贝塞尔函数,讨论了该函数的一系列性质及其求值方法,为解决物理学和天文学的有关问题提供了重要工具。此外,他在大地测量学方面也做出一定贡献,提出贝塞尔地球椭球体等观点。(图片来自维基百科) 一、 贝塞尔方程与贝塞尔函数 二、 贝塞尔方程与欧拉方程比较 三、 贝塞尔函数与伽马函数 四、 贝塞尔函数与几个常用函数的台劳级数比较 右图来自网页“维基百科——自由的百科全书”中贝塞尔 函数介绍。贝塞尔函数的一个实例:一个紧绷的鼓面在中心受到敲击后的二阶振动振型,其振幅沿半径方向上的分布就是一个贝塞尔函数(考虑正负号)。实际生活中受敲击的鼓面的振动是各阶类似振动形态的叠加 一、贝塞尔方程与贝塞尔函数 Bessel 方程是二阶线性变系数齐次常微分方程 0)(222 22 =-++y v x dx dy x dx y d x 其中,v 是常数,称为Bessel 方程的阶(不一定是整数),可取任何实或复数。该方程 的解无法用初等函数表现。数理方程教科书采用第一类Bessel 函数和第二类Bessel 函数的线性组合表示方程的标准解函数。贝塞尔函数也被称为圆柱函数或圆柱谐波。通常所说的贝塞尔函数是指第一类Bessel 函数 m v m m v x m v m x J 20)2 ()1(!)1()(+∞ =∑++-=Γ 贝塞尔方程是在圆柱坐标或球坐标下使用分离变量法求解拉普拉斯方程和亥姆霍兹方程时得到的(在圆柱域问题中得到的是整阶形式;在球域问题中得到的是半奇数阶形式),因此贝塞尔函数在波动问题以及各种涉及有势场的问题中占有非常重要的地位,典型的问题有:在圆柱形波导中的电磁波传播问题;圆柱体中的热传导问题;圆形(或环形)薄膜的振动模态分析问题;在其他一些领域,贝塞尔函数也相当有用。如在信号处理中的调频合成(FM synthesis )或凯泽窗(Kaiser window )的定义中,都要用到贝塞尔函数。 在教科书中Bessel 方程来源 1. 在圆柱坐标系下解二维热传导方程; ?? ? ????=+=<+=><++=2222 222222,0),,()0,,(0,),(R y x u R y x y x y x u t R y x u u a u yy xx t ? 用分离变量法,令u (x ,y ,t ) = V (x ,y )T (t ),代入方程整得

数列递推公式的九种方法

求递推数列的通项公式的九种方法 利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一. 一、作差求和法 例1 在数列{}中,31 =a , ) 1(11++ =+n n a a n n ,求通项公式. 解:原递推式可化为:1 111 +- + =+n n a a n n 则, 2 11112 -+=a a 3 12123-+ =a a 4 13134-+ =a a ,……,n n a a n n 1111--+ =-逐项相加得:n a a n 111- +=. 故n a n 14- =. 二、作商求和法 例 2 设数列{}是首项为1的正项数列,且 0)1(12 2 1 =+-+++n n n n a a na a n (n=1,2,3…) ,则它的通项公式是=▁▁▁(2000年高考15题) 解:原递推式可化为: ) ]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0, 1 1+=+n n a a n n 则 ,4 3,32,21342312===a a a a a a ……,n n a a n n 11 -= - 逐项相乘得: n a a n 1 1=,即=n 1. 三、换元法 例3 已知数列{},其中9 13,3421 == a a ,且当n ≥3时, ) (3 1 211----=-n n n n a a a a ,求通项公式(1986年高考文科第八

题改编). 解:设1 1 ---=n n n a a b ,原递推式可化为: } {,3 1 21n n n b b b --=是一个等比数列,9 1 3491312 1 =-= -=a a b ,公比为3 1.故n n n n b b )3 1 ()31(91)31(2211 ==?=---.故n n n a a )3 1 (1=--.由逐差法可得: n n a )3 1(2123-= . 例4已知数列{},其中2,12 1 ==a a ,且当n ≥3时,122 1 =+---n n n a a a ,求通项公式。解 由122 1 =+---n n n a a a 得:1)()(2 1 1 =------n n n n a a a a ,令1 1 ---=n n n a a b ,则上式为12 1 =---n n b b ,因此是一个等差数列,1121=-=a a b ,公差为1.故n b n =.。 由于112312121-=-++-+-=+++--n n n n a a a a a a a b b b ΛΛ 又2 )1(12 1 -= +++-n n b b b n Λ 所以)1(2 1 1-= -n n a n ,即)2(2 12 +-= n n a n 四、积差相消法 例5设正数列,,…,,…满足2 -n n a a 2 1---n n a a = ) 2(≥n 且11 ==a a ,求的通项公式. 解 将递推式两边同除以2 1--n n a a 整理得:122 1 1=----n n n n a a a a 设= 1 -n n a a ,则0 11 a a b = =1,1 21=--n n b b ,故有 1 212=-b b ⑴122 3 =-b b ⑵ … … … …

数列的递推公式练习

课时作业5 数列的递推公式(选学) 时间:45分钟 满分:100分 课堂训练 1.在数列{a n }中,a 1=1 3,a n =(-1)n ·2a n -1(n ≥2),则a 5=( ) A .-16 3 C .-83 【答案】 B 【解析】 由a n =(-1)n ·2a n -1知a 2=23,a 3=-2a 2=-4 3,a 4=2a 3 =-83,a 5=-2a 4=163. 2.某数列第一项为1,并且对所有n ≥2,n ∈N ,数列的前n 项之积为n 2,则这个数列的通项公式是( ) A .a n =2n -1 B .a n =n 2 C .a n =n 2 n -12 D .a n =n +12 n 2 【答案】 C 【解析】 ∵a 1·a 2·a 3·…·a n =n 2,a 1·a 2·a 3·…·a n -1=(n -1)2,∴两式相除,得a n =n 2 n -12 . 3.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N +,则a 2 009=________,a 2 014=________. 【答案】 1 0 【解析】 考查数列的通项公式.

∵2 009=4×503-3,∴a 2 009=1, ∵2 014=2×1 007,∴a 2 014=a 1 007, 又1 007=4×252-1,∴a 1 007=a 4×252-1=0. 4.已知数列{a n },a 1=0,a n +1=1+a n 3-a n ,写出数列的前4项,并归 纳出该数列的通项公式. 【解析】 a 1=0,a 2=1+a 13-a 1=13,a 3=1+a 23-a 2=1+13 3-13=1 2,a 4=1+a 33-a 3 =1+12 3-12 =3 5. 直接观察可以发现,把a 3=12写成a 3=2 4, 这样可知a n =n -1 n +1(n ≥2,n ∈N +). 当n =1时,1-1 1+1=0=a 1, 所以a n =n -1 n +1 (n ∈N +). 课后作业 一、选择题(每小题5分,共40分) 1.已知数列{a n }满足:a 1=-14,a n =1-1 a n -1(n ≥2),则a 4=( ) C .-14 【答案】 C

[最新]贝塞尔公式

[最新]贝塞尔公式 样本标准差的表示公式 数学表达式: , S-标准偏差(%) , n-试样总数或测量次数,一般n值不应少于20-30个 , i-物料中某成分的各次测量值,1,n; [编辑] 标准偏差的使用方法 , 在价格变化剧烈时,该指标值通常很高。 , 如果价格保持平稳,这个指标值不高。 , 在价格发生剧烈的上涨/下降之前,该指标值总是很低。[编辑] 标准偏差的计算步骤

标准偏差的计算步骤是: 2 步骤一、(每个样本数据 , 样本全部数据之平均值)。 步骤二、把步骤一所得的各个数值相加。 步骤三、把步骤二的结果除以 (n - 1)(“n”指样本数目)。 步骤四、从步骤三所得的数值之平方根就是抽样的标准偏差。 [编辑] [1]六个计算标准偏差的公式 [编辑] 标准偏差的理论计算公式 设对真值为X的某量进行一组等精度测量, 其测得值为l、l、……l。令12n测得值l与该量真值X之差为真差占σ, 则有σ = l ? X 1i σ = l ? X 22 …… σ = l ? X nn 我们定义标准偏差(也称标准差)σ为 (1) 由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。 [编辑] 标准偏差σ的常用估计—贝塞尔公式 由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值

来代表真值。理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。 于是我们用测得值l与算术平均值之差——剩余误差(也叫残差)V来代ii替真差σ , 即 设一组等精度测量值为l、l、……l 12n 则 …… 通过数学推导可得真差σ与剩余误差V的关系为 将上式代入式(1)有 (2) 式(2)就是著名的贝塞尔公式(Bessel)。 它用于有限次测量次数时标准偏差的计算。由于当时, ,可见贝塞尔公式与σ的定义式(1)是完全一致的。 应该指出, 在n有限时, 用贝塞尔公式所得到的是标准偏差σ的一个估计值。它不是总体标准偏差σ。因此, 我们称式(2)为标准偏差σ的常用估计。为了强调这一点, 我们将σ的估计值用“S ” 表示。于是, 将式(2)改写为

相关文档
最新文档