3.3递推法解题

3.3递推法解题
3.3递推法解题

§3.3递推法解题

基础知识

对于某些与自然数有关的问题,我们有时可以用递推法解决,扎谓用递推法解题,就是根据题目的特点,构造出递推关系解题的一种方法,解决问题的关键在于构造递推关系。递推关系一般可以用归纳、猜想等途径获得。

利用递推法解题的一般步骤为:(1)确定初始值;(2)建立递推关系;(3)利用递推关系求通项。

递推方法是人们从开始认识数量关系时就很自然地产生的一种推理思想.例如自然数中

最小的数是1,比1大1的数是2,接下来比2大1的数是3,…由此得到了自然数数列:1,2,3,4,5,….在这里实际上就有了一个递推公式,假设第n个数为a n,则a n+1=a n+1;即由自然数中第n个数加上1,就是第n+1个数。由此可得a n+2=a n+1+1,这样就可以得到自然数数列中任何一个数.

再看一个例子:

平面上5条直线最多能把圆的内部分成几部分?平面上100条直线最多能把圆的内部分成几部分?

解:假设用a k表示k条直线最多能把圆的内部分成的部分数.这里k=0,1,2,….

a0=1

a1=a0+1=2

a2=a1+2=4

a3=a2+3=7

a4=a3+4=11

归纳出递推公式a n+1=a n+n. (1)

即画第n+1条直线时,最多增加n部分.原因是这样的:第一条直线最多把圆分成两部分,故a1=2.当画第二条直线时要想把圆内部分割的部分尽可能多,就应

和第一条直线在圆内相交,交点把第二条直线在圆内部分分成两条线段,而每条线

段又把原来的一个区域划分成两个区域,因而增加的区域数是2,正好等于第二条

直线的序号.同理,当画第三条直线时,要想把圆内部分割的部分数尽可能多,它就应和前两条直线在圆内各有一个交点.两个交点把第三条线在圆内部分成三条线段.

而每条线段又把原来一个区域划分成两个区域.因而增加的区域部分数是3,正好等

于第三条直线的序号,….这个道理适用于任意多条直线的情形.所以递推公式(1)

是正确的.这样就易求得5条直线最多把圆内分成:

a5=a4+5=11=5=16(部分)。

要想求出100条直线最多能把圆内分成多少区域,就去求通项公式。

一般来说,如果一个与自然数有关的数列中的任一项a n可以由它前面的k(≤n-1)项经过运算或其他方法表示出来,我们就称相邻项之间有递归关系,并称这个数列为递归数列.

如果这种推算方法能用公式表示出来,就称这种公式为递推公式或递推关系式.通过寻求递归关系来解决问题的方法就称为递推方法.

许多与自然数有关的数学问题都常常具有递推关系,可以用递推公式来表达它的数量关系.如何寻求这个递推公式是解决这类问题的关键之一,常用的方法是“退”到问题最简单情况开始观察.逐步归纳并猜想一般的速推公式.在小学生阶段,我们仅要求学生能拨开问题的一些表面现象由简到繁地归纳出问题的递推公式就行了,不要求严格证明.当然能证明更好.所谓证明,就是要严格推出你建立的关系式适合所有的n ,有时,仅仅在前面几项成立的关系式,不一定当n 较大时也成立。

1、 “河内塔问题”

传说在印度的佛教圣地贝拿勒斯圣庙里安放着个一个黄铜板,板上插着三根宝石针,在第一根宝石针上,从下到上穿着由大到小的64片中心有孔的金片.每天都有一个值班僧侣按下面规则移动金片:把金片从第一根宝石针移到其余的某根宝石针上.要求一次只能移动一片,而且小片永远要放在大片的上面.当时传说当64片金片都按上面的规则从第一根宝石针移到另一根宝石针上时,世界将在一声霹雳中毁灭.所以有人戏称这个问题叫“世界末日”问题(也称为“Hanoi 塔”问题),当然,移金片和世界毁灭并无联系,这只是一个传说而已,但说明这是一个需要移动很多很多次才能办到的事情.解这个问题的方法在算法分析中也常用到.究竟按上述规则移动完成64片金片需要移动多少次呢?

将此问题一般化为:

设有n 个银圈,大小不同,从大到小排列在三根金棒中的一根。这些银圈要搬到另一根金棒上,每次搬一个。第三根金棒作为银圈暂时摆放用。在搬动过程中,仍要保持大圈在下,小圈在上,问要搬动多少次,才能将所有银圈从一根棒搬到另一根,且搬完后银圈相对位置不变?

思路:寻找n a 与前面各项之间的关系,由题设条件列出等式。

解:令用n a 表所求的搬动次数,把第一棒n 个银圈的1-n 个搬到第三棒,再将最大一个银圈搬到第二棒,然后又将第三棒上的1-n 个圈搬到第二棒上,如此继续,可完成这次搬动任务。

因为搬1-n 个银圈从一棒到另一棒需1-n a 次,故可得递推式1,1211=+=-a a a n n 。 下面对递推式1,1211=+=-a a a n n 的求解。

最后,可得12-=n n a 。

典例分析

例1.用100元人民币购买物品,规定每天只能用以下三种方式之一购买物品:

(1)买甲物品1元;(2)买乙物品2元;(3)买丙物品2元

而且规定不允许不买物品。试问有多少种方式花完这100元钱?

例2.有一种用硬币下棋的游戏,棋盘上标有第0站,第1站,第2站,……,第100站。一枚棋子开始在第0站,棋手每掷一次硬币,棋子跳动一次:若掷出的是正面,棋子向前跳两站,若掷出的是反面,则棋子向前跳一站,直到棋子恰好跳到第99站(胜利大本营)或第100站(失败大本营)时,游戏结束。如果硬币出现正反面的概率都是2

1,分别求棋子跳到胜利大本营与失败大本营的概率。

例3.现有四个人做传球游戏,要求接球后马上传给别人。由甲先传球,并作为第1次传球,求经过10次传球仍回到发球人甲手中的传球方式的种数。

例4.(Bernoulli-Euler 装错信问题)某人写了n 封信,并在每个信封上写下了对应的地址和收信人的姓名。问:将所有的信都错信封的情况共有多少种?

例5.现将n 边形的边依次记为n a a a ,,,21 ,每条边都涂上红、黄、绿三种颜色中的一种,要使相邻两边的颜色互不相同,有多少种不同的涂色方法?

例6.(第五届西部竞赛题)已知20052005βα+可以表示成αββα,+为变元的二次多项式,求这个多项式的系数之和。

例7.已知函数2)1()(-=x x f ,数列}{n a 是公差为d 等差数列,数列}{n b 为公比为)1(≠q q 的等比数列,且)1(1-=d f a ,)1(3+=d f a ;)1(1-=q f b ,)1(3+=q f b 。设数列}{n c 对于任意的正整数n 都有

1332211+=++++n n n a b c b c b c b c 成立,求12531-++++n c c c c 的值。

例8.已知一列非零向量n a 满足:),(111y x a = ,),(21),(1111----+-=

=n n n n n n n y x y x y x a (2≥n ) (1)证明:{|n a |}是等比数列;

(2)求向量1-n a 与向量n a 的夹角;

(3)设向量)2,1(1=a ,把1a ,2a ,……,n a 中所有与1a

共线的向量取出按原来的顺序排成一列,组成一组新数列,记为:1b ,2b ,……,n b ,求数列{n b }的通项公式;若令

n OB =1b +2b +…+n b ,O 为坐标原点,求点列}{n B 的坐标。

六年级上册奥数第12讲 倒推法解题

第12讲倒推法解题讲义 专题简析 倒推法解题是从最后的结果出发,运用加和减、乘和除之间的互逆关系,从后往前一步一步地推算,直到找到最初的数据,这种方法又常被称为“还原法”。适合用倒推法解题的数学问题常满足以下条件:已知最后的结果和到达最后结果时的每一步具体的过程。 例1、筑路队修一段路,第一天修了全长的又100米,第二天修了余下的,还剩500米。这段公路全长多少米? 练习:1、一堆煤,上午运走,下午运的比余下的还多6吨,最后剩下14吨还没有运走。这堆煤原有多少吨? 2、用拖拉机耕一块地,第一天耕了这块地的又2公顷,第二天耕的比余下的多3公顷,还剩下35公顷没有耕。这块地共有多少公顷? 3、一批水泥,第一天用去多1吨,第二天用去余下的少2吨,还剩下16吨。原来这批水泥有多少吨?

例2、王大伯屋后有一棵桃树。他孙子每天从树上摘下一些桃子和邻居的小伙伴分着吃,第一天摘下桃子总个数的合,以后8天分别摘下当天树上现有桃子的、、、…、,摘了9天,树上还留下10个桃子。树上原来有多少个桃子? 练习:1、把一根绳子对半剪开,再取其中一段对半剪开,这样剪了四次,剩下的正好是1米。这根绳子原来长多少米? 2、《九章算术》中有一道题:“今有人持米出三关,外关三而取一,中关五而取一,内关七而取一,余米五斗。问持米几何?”题意是:有人背米过关卡,经过外关时,用全部米的纳税,过中关时用所余米的纳税,经过内关时用再余米的纳税,最后还剩下5斗米。这个人原来背多少斗米出关? 3、仓库里存粮若干吨,第一次运出总数的又4吨,第二次运出余下的又3吨,第三次运出余下的又5吨,最后还剩下12吨。这个仓库原有粮食多少吨?

小学奥数之递推法

小学奥数之递推法 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

五年级下册奥数知识点:递推方法 计数方法与技巧(递推法概念) 计数方法与技巧(递推法例题) 例1:的乘积中有多少个数字是奇数? 分析与解答: 如果我们通过计算找到答案比较麻烦,因此我们先从最简单的情况入手。 9×9=81,有1个奇数; 99×99=99×(100-1)=9900-99=9801,有2个奇数; 999×999=999×(1000-1)=99900-999=998001,有3个奇数; …… 从而可知,999…999×999…999的乘积中共有10个奇数。 例题2: 分析与解答: 这道题我们可以采用分别求出每个数的立方是多少,再求和的方法来解答。但是,这样计算的工作量比较大,我们可以从简单的情况开始研究。

例题3: 2000个学生排成一行,依次从左到右编上1~2000号,然后从左到右按一、二报数,报一的离开队伍,剩下的人继续按一、二报数,报一的离开队伍,…… 按这个规律如此下去,直至当队伍只剩下一人为止。问:这时一共报了多少次最后留下的这个人原来的号码是多少分析与解答: 难的不会想简单的,数大的不会想数小的。我们先从这2000名同学中选出20人代替2000人进行分析,试着找出规律,然后再用这个规律来解题。 这20人第一次报数后共留下10人,因为20÷2=10 ,这10人开始时的编号依次是:2、4、6、8、10、12、14、16、18、20,都是2的倍数。 第二次报数后共留下5人,因为10÷2=5 ,这5人开始时的编号依次是: 4、8、12、16、20,都是4的倍数,也就是2×2的倍数。 第三次报数后共留下2人,因为5÷2=2 ……1 ,这2人开始时的编号依次是: 8、16,都是8的倍数,也就是2×2×2的倍数。 第四次报数后共留下1人,因为2÷2=1 ,这1人开始时的编号是:16,都是8的倍数,也就是2×2×2×2的倍数。 由此可以发现,第n次报数后,留下的人的编号就是n个2的连乘积,这是一个规律。 2000名同学,报几次数后才能只留下一个同学呢?

六年级奥数专项(用倒推法解题)

用 倒 推 法 解 题 【知识与方法】: 倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。这种方法对于解答一些分数应用题同样适用。 【例题精讲】 例题1:有一条铁丝,第一次剪下它的12 又1米;第二次剪下剩下的13 又1米;此时还剩下15米。这条铁丝原来长多少米? 模仿练习1:一堆水泥,第一次用去它的12 又3吨,第二次用剩下水泥的13 又3吨,第三次又用去第二次余下的14 又3吨,这时这堆水泥正好剩下3吨。这堆水泥原来有多少吨? 例2:甲、乙两仓库各存粮若干,先将乙仓库中存粮的15 运到甲仓库,再将甲仓库此时存粮的14 运到乙仓库,这时甲仓库有粮食600吨,乙仓库有粮食720吨。那么,原来甲仓库和乙仓库中各存粮多少吨? 模仿练习2:三只猴子分一筐桃,第一只猴子分得全部桃子的27 多12个,第二

只分到余下的23 少4个,第三只分到20个。这筐桃子共有多少个?(竞赛决赛试题) 例3:李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。后来擦掉其中一个,剩下的数的平均数是10.8。那么,被擦掉的那个自然数是多少? 模仿练习3:☆黑板上写着从1开始的若干个连续自然数,擦去其中的一个后。 其余各数的平均数是35517 。擦去的数是多少?(奥赛初赛A 卷试题) 例4:有一种细胞,每秒钟分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个…在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。如果一开始就放进8个这样的细胞,要充满整个瓶的41 ,需要多少秒? 模仿练习4:一种微生物,每小时可增加一倍,现在有一批这样的微生物,10小时可增加到100万个。那么增加到25万个需要多少小时?

递推法解题

1.编写一个通用的求S=1+3+5+……+(2n-1)-1/2-1/4-……-1/2n的值的程序(其中n为100以内的自然数)。 2.某农场引进一对刚出生的新品种兔子,从出生的第二个月后,每月新生一对兔子,新生的兔子也如此繁殖,如果所有的兔子都不死去,问到第12个月时,该农场共有这种兔子多少对? 一、综合题: 一头母牛每年年初一生一头小母牛,每头小母牛从第四年头起,每年初一生一头小母牛。若所有母牛,在20年时间内都健在,问第20年时,共有多少头母牛? 2.编过程,求出1到100的自然数之和。 3.编过程,求10以内所有奇数的乘积。 4.编过程,求1×2+2×3+3×4+…+9×10的值。 5.编过程,求1+1/2+1/3+1/4+…+1/100的值。 6.一次考试,共有25个问题,答对一题得4分,答错或不答均扣1分,某同学成绩正好60分,问他答对了多少题。 7.某农场引进一对刚出生的新品种兔子,从出生的第二个月后,每月新生一对兔子,新出生兔子也如此繁殖,如果所有的兔子都不死亡,问到12个月时,该农场共有这种兔子多少对? 8.根据题意填空: 计算:1×1+2×2+3×3+…+20×20+2×4×6×…×20的值。 例3:求1×1+2×2+……+20×20+3×6×9×……×18的值。 方法一:(利用全程变量) TO A1 :X IF :X>20 STOP MAKE "S :S*:X*:X A1 :X+1 END TO A2 :X IF :X>18 STOP MAKE "S1 :S1*:X A2 :X+3 END TO A3 MAKE "S 0 MAKE "S1 1 A1 1 A2 3 (PR :S+:S1) END 执行A3 显示:527750 2.用循环命令计算1.13+1.23+1.33+……+11.33的程序。 过程名:M8

递推法解决问题

递推法解决问题 一、课程导入 递推法解决问题: 使学生初步了解递推这种数学方法。培养学生观察和归纳的能力,为学生将来的学习做准备。(自我介绍,纪律强调) 二、基础知识梳理整合 知识点: 请同学们看下面这个故事:(琼斯博士的寻宝日记)

三、解题方法探究归纳(讲练结合,突破重点、难点)综合应用题组 楼梯数方法数

1 1 2 2 3 1+2 =3 先迈出第一步,两种方法,一个或是两个。下面的方法数是一层楼梯和两层楼梯的和 43+2=5先迈出第一步,两种方法,一个或是两个。剩下三个或是两个台阶,方法数就是三层,两层台阶的和 5.3+5=8 6 5+8=13 7 8+13=21 8 13+21=34 9 21+34=55 10 34+55=89 下面同理,因为每次只能迈出一个台阶或是两个台阶,所以剩下的台阶数就是N-1个或是N-2个,那方法数位N-1和N-2层的和,所以为上面两项的和。答案为89 2. 1111122222 =(10^9+10^8+...+10^5)+2(10^4+10^3+...+10^0) =(10^4+10^3+...+10^0)(10^5+2) =11111*100002 =11111*2*3*16667 =(11111*3)*(2*16667)

=33333*33334 四、随堂检测 一.口算练习。(看谁算的又快又准) (1)12=22=32=202 =(2) 13=23=33 =…103= 二.填空,并说出理由。 (1)1、2、3、4、…、() 第100个 (2)1、3、5、7、…、() 第10个 (3)2、4、7、9、12、14、()、() (4)2、6、12、20、30、()、…、() 第10个 (5)1 2、 3 5、 8 11、 19 30、 () () 三、研究。 1、108边形的内角和是多少度? 4 1800×(n-2)2、在一个长方形里加10条直线,最多可将它分成多少块? 1 1条2=1+1 2条4=1+1+2 3条7=1+1+2+3 10条1+1+2+3+…+10=56 n条1+1+2+3+…+n

举一反三六年级-第12周-倒推法解题

第十二周 倒推法解题 专题简析: 有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。 例题1 一本文艺书,小明第一天看了全书的13 ,第二天看了余下的35 ,还剩下48页,这本书共有多少页 【思路导航】从“剩下48页”入手倒着往前推,它占余下的1-35 =25 。第一天看后还剩下48÷25 =120页,这120页占全书的1-13 =23 ,这本书共有120÷23 =180页。即 48÷(1-35 )÷(1-13 )=180(页) 答:这本书共有180页。 练习1 1. 某班少先队员参加劳动,其中37 的人打扫礼堂,剩下队员中的58 打扫操场,还剩12人打扫教室,这个班共有多少名少先队员 2. 一辆汽车从甲地出发,第一天走了全程的38 ,第二天走了余下的23 ,第三天走了250千米到达乙地。甲、乙两地间的路程是多少千米 3. 把一堆苹果分给四个人,甲拿走了其中的16 ,乙拿走了余下的25 ,丙拿走

3 4,丁拿走最后剩下的15个,这堆苹果共有多少个 这时所剩的

例题2 筑路队修一段路,第一天修了全长的15 又100米,第二天修了余下的27 ,还剩500米,这段公路全长多少米 【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-27 =57 ,第一天修后还剩500÷57 =700米,如果第一天正好修全长的15 ,还余下700+100=800米,这800米占全长的1-15 =45 ,这段路全长800÷45 =1000米。列式为: 【500÷(1-27 )+100】÷(1-15 )=1000米 答:这段公路全长1000米。 练习2 1. 一堆煤,上午运走27 ,下午运的比余下的13 还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨 2. 用拖拉机耕一块地,第一天耕了这块地的13 又2公顷,第二天耕的比余下的12 多3公顷,还剩下35公顷,这块地共有多少公顷 3. 一批水泥,第一天用去了12 多1吨,第二天用去了余下13 少2吨,还剩下16吨,原来这批水泥有多少吨

六年级奥数专题讲义:倒推法解题

六年级奥数专题讲义:倒推法解题 一、知识要点 有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。 二、精讲精练 【例题1】一本文艺书,小明第一天看了全书的1/3,第二天看了余下的3/5,还剩下48页,这本书共有多少页? 【思路导航】从“剩下48页”入手倒着往前推,它占余下的1-3/5=2/5。第一天看后还剩下48÷2/5=120页,这120页占全书的1-1/3=2/3,这本书共有120÷2/3=180页。即48÷(1-3/5)÷(1-1/3)=180(页) 答:这本书共有180页。 练习1: 1.某班少先队员参加劳动,其中3/7的人打扫礼堂,剩下队员中的5/8打扫操场,还剩12人打扫教室,这个班共有多少名少先队员? 2.一辆汽车从甲地出发,第一天走了全程的3/8,第二天走了余下的2/3,第三天走了250千米到达乙地。甲、乙两地间的路程是多少千米? 3.把一堆苹果分给四个人,甲拿走了其中的1/6,乙拿走了余下的2/5,丙拿走这时所剩的3/4,丁拿走最后剩下的15个,这堆苹果共有多少个? 【例题2】筑路队修一段路,第一天修了全长的1/5又100米,第二天修了余下的2/7 ,还剩500米,这段公路全长多少米? 【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-2/7=5/7,第一天修后还剩500÷5/7=700米,如果第一天正好修全长的1/5,还余下700+100=800米,这800米占全长的1-1/5=4/5,这段路全长800÷4/5=1000米。列式为: 【500÷(1-2/7)+100】÷(1-1/5)=1000米 答:这段公路全长1000米。 练习2: 1.一堆煤,上午运走2/7,下午运的比余下的1/3还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨? 2.用拖拉机耕一块地,第一天耕了这块地的1/3又2公顷,第二天耕的比余下的1/2多3

6.1 倒推法解题

01 倒推法解题 学习目标: 1、使学生在解决实际问题的过程中学会用“倒推”的策略寻求解决问题的思路,并能根据实际的问题确定合理的解题步骤,从而有效地解决问题。 2、使学生在对自己解决实际问题过程的不断反思中,感受“逆推”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。 3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。 教学重点: 学会用倒推的解题策略解决实际问题。 教学难点: 在正确运用策略的过程中感受“倒推”的策略对于解决特定问题的价值。 教学过程: 一、情景体验 1、路线倒推 师:前不久,学校组织大家去春游,还记得吗? 生:记得 师:游玩后一位同学写了这样的一篇数学日记。来,听一听。 (录音:我们8点从学校出发,一路经过黄鹤楼、长江大桥、归元寺,最后到达动物园。下午沿原路返回,你知道我们的返回路线吗?出示:学校→黄鹤楼→长江大桥→归元寺→动物园) 师:谁能回答? 生:返回路线是从动物园出发,经过归元寺、长江大桥、黄鹤楼,最后到学校。

(出示:学校←黄鹤楼←长江大桥←归元寺←动物园) 师:原来你是倒过来想的。 2、翻牌倒推 师:下面老师玩一个小魔术,想不想看? 生:想 师:看好了。 (出示三张牌:先第一张和第二张交换位置,再将第二张和第三张交换位置)师:要想知道原来这三张牌是怎样摆放的,怎么办? 生:(上台操作)先交换第二张和第三张位置,再交换第一张和第二张位置。师:你为什么这样操作? 生:我是倒过来想的,刚才最后交换的是第二和第三张,那我就先交换这两张,在交换第一张和第二张。 师:原来你也是倒过来想的。 3、小结 师:刚才这2个问题,大家都是怎么想的? 生:倒过来想的 师:在数学上,我们把倒过来想的方法称之为“倒推”(板书:倒推)今天这节课,我们就一起来研究怎样用倒推解决生活中的实际问题。二、思维探索(建立知识模型) 展示例题: 例1:有一个数如果用它加上6,然后乘以6,再减去6,最后除以6,所得的商等于6.求这个数。 师:你了解到哪些信息? 生:我知道一个数加上6,然后乘以6,再减去6,最后除以6,所得的商等于6。求这个数是多少? 师:你能将这些信息进行整理吗? 同座位讨论,其中一人记录。 生:(同座位讨论整理过程) 师:谁来介绍一下你们是怎么整理的?

三年级奥数专题:递推法解题习题及答案(B)

十二、递推法解题(B卷) 年级班姓名得分 一、填空题 1.某数加7,乘以5,再减去9,得51.这个数是 . 2.篮中有许多李子,如果将其中的一半又1个给第一个人,将余下的一半又2个给第二个人,然后将剩下的一半又3个给第三个人,篮中刚好一个也不剩,篮中原来有个李. 3.一个箱子里放着一些茶杯,几个小朋友从箱里往外拿茶杯,规则是每次总要拿出箱里的一半,然后又放回一个.按这样规则他拿了597次后,箱里剩2个杯,他原有个杯. 4.蜗牛沿着10米高的柱子往上爬,每天从清晨到傍晚向上共爬5米,夜间下滑4米,像这样,从某天清晨开始,它天才能爬上柱的顶端. 5.小明在一次数学考试时,把一个数除以 3.75计算成乘以 3.75,结果得337.5.那么,这题的正确结果是 . 6.一个数扩大3倍,再增加70,然后减少50,得80.这个数是 . 7.学生问陈老师今年几岁,他笑着说:“把我的年龄减去4后,被7除,加上6后乘以5,刚好是半百,”那么陈老师今年岁. 8.冰柜里的鸡蛋,第一天拿走了一半多两个,第二天拿走了余下的一半多4个,这时刚好拿完,求原来有个. 9.在做一道加法题时,小马虎把个位上的5看作3,把十位上的6看成了9,得出结果是210,正确的结果是 . 10.一捆电线,第一次用去全长一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米,这捆电线原来总长米. 二、解答题 11.有26块砖,兄弟俩拿去挑,弟弟抢在前,刚摆好姿势,哥哥赶到了.哥哥看到弟弟挑得太多,从弟弟那里抢过了一半,弟弟不服,又从哥哥那里抢回一半,哥哥不肯,弟弟只好给哥哥5块,此时哥哥比弟弟多挑2块,问最初弟弟准备挑多少块? 12.批发站有若干筐苹果,第一天卖出一半,第二天运进450筐,第三天又卖出现有苹果的一半又50筐,还剩600筐,这个批发站原有多少筐. 13.三人共有糖72粒,若甲给乙、丙各一些,使他们增加1倍.接着乙又给甲、丙各一些,使它们翻倍.最后丙也给甲、乙各一些,使他们翻倍.这时三人糖数相等,求三人原来各几粒? 14.袋子里有若干个球,小明每次拿出其中的一半,再放回一个,一共做了5次,袋中还有3个球,问原来袋中有几个球?

六年级奥数倒推法解题

倒推法解题 考点、热点分析 有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。 例题讲解 【例题1】一本文艺书,小明第一天看了全书的1/3,第二天看了余下的3/5,还剩下48页,这本书共有多少页? 练习1: 1.某班少先队员参加劳动,其中3/7的人打扫礼堂,剩下队员中的5/8打扫操场,还剩12人打扫教室,这个班共有多少名少先队员? 2.一辆汽车从甲地出发,第一天走了全程的3/8,第二天走了余下的2/3,第三天走了250千米到达乙地。甲、乙两地间的路程是多少千米?

【例题2】筑路队修一段路,第一天修了全长的1/5又100米,第二天修了余下的2/7 ,还剩500米,这段公路全长多少米? 练习2: 1.一堆煤,上午运走2/7,下午运的比余下的1/3还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨? 2.用拖拉机耕一块地,第一天耕了这块地的1/3又2公顷,第二天耕的比余下的1/2多3公顷,还剩下35公顷,这块地共有多少公顷? 【例题3】有甲、乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?

练习3: 1.小华拿出自己的画片的1/5给小强,小强再从自己现有的画片中拿出1/4给小华,这时两人各有画片12张,原来两人各有画片多少张? 2.甲、乙两人各有人民币若干元,甲拿出1/5给乙后,乙又拿出1/4给甲,这时他们各有90元,他们原来各有多少元? 【例题4】甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱? 练习4: 1.甲、乙、丙三个班共有学生144人,先从甲班调出与乙班相同的人数给乙班,再从乙班调出与丙班相同的人数到丙班。再从丙班调出与这时甲班相同的人数给甲班,这样,甲、乙、丙三个班人数相等。原来甲班比乙班多多少人?

递推法解题两例

递推法解题两例 例1.平面上有n条直线,它们中任意两条都不平行,且任意三条都不交于一点。这n条直线可以把平面分割成多少个部分? 此问题的变例(即特殊情况): 变例1:十刀最多可以把一张饼分成多少块? 变例2:一个圆形纸片,切100刀,最多可以将它分割为多少块? 对变例2 ,我们首先猜测其结论: 令S1,S2,……,S n分别表示将圆形纸片切一刀,二刀,……,n刀所得块数,则有 S1 =2=1+1 S2 =4=1+1+2 S3 =7=1+1+2+3 S4 =11=1+1+2+3+4 …… S n=1+1+2+3+4+……+n=1+(n+1)·n ∴当n=100时,有S100=1+(100+1)·100=5051(块) 解:设b n表示一条直线被n个不同的点分割后所得的分段数,则有b n=n+1. 设a n-1 为平面被符合条件的n-1条直线分割成的部分数,则当平面上插入符合条件的第n条直线时,前 n-1条直线与第n 条直线相交于n-1个不同的点,这n-1个点分第n 条直线为b n-1段,而每一分段恰分平面上一个已存在的部分为两个部分,于是,有: a n =a n-1 + b n-1(n>1,n∈N) 又:b n-1=n ∴ a n=a n-1+n=a n-2+( n-1)+ n =…… =n+( n-1)+( n-2)+……+2+a1 又:a1=2=1+1 ∴a n=n+( n-1)+( n-2 )+ ……+2+1+1

例2.有10级台阶,小王从下向上走,若每次只能跨一级或两级,他走上去共有多少种不同的走法? 解:考虑更一般的情况:在同样条件下走n级台阶,情况如何? 设a n为上n级台阶的所有不同的走法数目。若第一次走一级,则余下的n-1级有a n-1 种走法;若第一次走两级,则余下的 n-2 级有a n-2 种走法。 ∴ a n=a n-1 +a n-2 (n>2,n∈N) 显然a1=1,a2=2 ∴a3=a1+a2=3 a4=a3+a2=5 a5=a4+a3=8 a6=a5+a4=13 a7=a6+a5=21 a8=a7+a6=34 a9=a8+a7=55 a10=a9+a8=89 思考题:用8张1×2的方格纸覆盖2×8的方格纸,共有多少种不同的覆盖方式?

六年级奥数专项用倒推法解题

六年级奥数专项用倒推 法解题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

用倒推法解题 【知识与方法】: 倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。这种方法对于解答一些分数应用题同样适用。 【例题精讲】 例题1:有一条铁丝,第一次剪下它的1 2 又1米;第二次剪下剩下的 1 3 又1米;此时还 剩下15米。这条铁丝原来长多少米 模仿练习1:一堆水泥,第一次用去它的1 2又3吨,第二次用剩下水泥的 1 3又3吨,第三 次又用去第二次余下的1 4又3吨,这时这堆水泥正好剩下3吨。这堆水泥原来有多少吨 例2:甲、乙两仓库各存粮若干,先将乙仓库中存粮的1 5运到甲仓库,再将甲仓库此时 存粮的1 4运到乙仓库,这时甲仓库有粮食600吨,乙仓库有粮食720吨。那么,原来甲 仓库和乙仓库中各存粮多少吨 模仿练习2:三只猴子分一筐桃,第一只猴子分得全部桃子的2 7多12个,第二只分到余 下的2 3少4个,第三只分到20个。这筐桃子共有多少个(竞赛决赛试题) 例3:李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。后来擦掉其中一个,剩下的数的平均数是。那么,被擦掉的那个自然数是多少 模仿练习3:☆黑板上写着从1开始的若干个连续自然数,擦去其中的一个后。其余各 数的平均数是355 17。擦去的数是多少(奥赛初赛A卷试题)

例4:有一种细胞,每秒钟分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个…在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。如果一开始就放进8个这样的细胞,要充满整个瓶的4 1,需要多少秒 模仿练习4:一种微生物,每小时可增加一倍,现在有一批这样的微生物,10小时可增加到100万个。那么增加到25万个需要多少小时 【巩固与提高】 1、小明今年的岁数加上10后,再扩大5倍,然后减去5,再缩小5倍,刚好是20岁。小明今年多少岁 2、甲、乙、丙三个数,从甲数中取出17加到乙数,从乙数中取出19加到丙数,从丙数中取出15加到甲数,这时三个数都是153,甲数原来是多少 3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的17 ,第二天它吃了余下桃子的16 ,第三天它吃了余下桃子的15 ,第四天它吃了余下桃子的14 ,第五天它吃了余下桃子的13 , 第六天它吃了余下桃子的12 ,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的 总数是多少(奥赛初赛试题) 4、学校将一批糖果发给甲、乙、丙、丁四个班。先将全部糖果的13 减去23 千克给甲班, 再把余下的14 加上12 千克给乙班,又把余下的一半给丙班,最后把剩余的一半加上12 千克 给丁班,这时学校还剩5千克。这批糖果有多少千克(邀请赛试题) 5、☆小明每分钟吹一次肥皂泡,每次恰好吹出100个。肥皂泡吹出之后,经过一分钟有一半破了,经过二分钟还有二十分之一没有破,经过两分半钟全部肥皂泡破了。小明

六年级倒推法解题

第十二周倒推法解题 专题简析: 有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系, 从后到前一步一步地推算,这种思考问题的方法叫倒推法。 例题1。 1 3 一本文艺书,小明第一天看了全书的3,第二天看了余下的5,还剩下48页,这本书 共有多少页? 3 2 【思路导航】从“剩下48页”入手倒着往前推,它占余下的 1 -3 = 2。第一天看后还剩 5 5 2 1 2 2 下48-5 = 120页,这120页占 全书的1-3 = 3,这本书共有120^3 = 180 页。即 3 1 = 48+( 1 —5 )*( 1-3)= 180 (页) 答:这本书共有180页。 练习1 3 5 1. 某班少先队员参加劳动,其中7的人打扫礼堂,剩下队员中的8打扫操场,还剩12 人打扫教室,这个班共有多少名少先队员? 3 2 2. 一辆汽车从甲地出发,第一天走了全程的8,第二天走了余下的3,第三天走了250 千米到达乙地。甲、乙两地间的路程是多少千米? 1 2 3. 把一堆苹果分给四个人,甲拿走了其中的6,乙拿走了余下的5,丙拿走这时所剩的 3 4,丁拿走最后剩下的15个,这堆苹果共有多少个? 例题2。 1 2 筑路队修一段路,第一天修了全长的又100米,第二天修了余下的,还剩500米, 5 7 这段公路全长多少米? 2 5 【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-7 = 7,第一天修后还剩 5 1 500十7 = 700米,如果第一天正好修全长的5,还余下700+100 = 800米,这 1 4 4 800米占全长的1 - =-,这段路全长800 + = 1000米。列式为: 5 5 5 2 1 【500+( 1- ) +1001 + ( 1 - )= 1000 米 7 5

四年级奥数教程(六)倒推法的妙用

课题倒推法的妙用 教学目标 本节要求掌握倒推法解题的一般方法,明白倒推法是一种逆向思维,主要要在思维方式上得到新的启迪 教学重难点 重点是如何理解倒推法是一种逆运算,逆向思维 难点是那这种思维用到自己解题中去,发散解题思路 教学过程 一、本讲知识点 在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题. 用倒推法解题时要注意: ①从结果出发,逐步向前一步一步推理. ②在向前推理的过程中,每一步运算都是原来运算的逆运算. ③列式时注意运算顺序,正确使用括号. 二、教学方法 讲练结合. 三、具体安排 【经典例题】 例1 一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗? 分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题. 如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,

乘以4,结果是56.求这个数是多少?把一个数用□来表示,根据题目已知条件可得到这样的等式: {[(□-8)+10]÷7}×4=56. 如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解. 解:{[(□-8)+10]÷7}×4=56 [(□-8)+10]÷7=56÷4 答:于昆这次数学考试成绩是96分. 例2 小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁”那么,这位老爷爷今年_____岁. 分析{[(□ + 17)÷4]- 15}×10 = 100 采用逆推法,易知老爷爷的年龄为(100÷10+15) ×4-17=83(岁) 【尝试实践1】 1、某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是_____. 2、某数除以4,乘以5,再除以6,结果是615,求某数. 3、将某数的3倍减5,计算出答案,将答案再3倍后减5,计算出答案,这样反复经过4次,最后计算的结果为691,那么原数是_____.

(完整word版)六年级倒推法解题

倒推法解题 【知识点】 有些应用题如果按照一般方法,顺着题目的要求一步一步地列出算式求解,过程比较繁琐,量与量之间的关系也不好找。对于这种类型的应用题,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后往前一步一步推算,这种思考问题的方法就叫倒推法。运用这种方法,反向倒推过去,反而易于解决问题。 【练习题】 1、 张大爷提篮去卖蛋,第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个。这时,鸡蛋都卖完了。问张大爷篮中原来有鸡蛋多少个?(15) 2、三只猴子去吃篮里的桃子,第一只猴子吃了 31,第二只猴子吃了剩下的31,第三只猴子吃了第二只剩下的4 1,最后篮子里还剩下6只桃子。原有桃子多少只?(18) 3、一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米。这捆电线原有多少米?(54) 4、修一段路,第一天修全路的 21还多2千米,第二天修余下的31少1千米,第三天修余下的 41还多1千米,这样还剩下20千米没有修完,求公路的全长?(85) 5、一只猴子偷吃桃子,它第一天偷吃了树上桃子的10 1,以后的8天每天偷吃树上桃子的91、81、71 (2) 1,这时树上还剩下10个桃子。问树上原来有多少个桃子?(100)

6、 甲、乙二人分16个苹果,分完后,甲将自己所得苹果数的 31分给了乙,乙又将自己现有苹果数的31还给甲;最后甲又将自己现有苹果数的3 1给了乙,这时两人苹果数恰好相等。问:最初甲分得几个苹果?(15) 7、 一瓶酒精,第一次倒出31,然后倒回瓶中40克,第二次倒出瓶中剩下酒精的9 5,第三次倒出180克,瓶中还剩下60克。问原来瓶中有酒精多少克?(750) 8、 甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相等的钱给乙;第二次乙拿出与丙相等的钱给丙;第三次丙拿出与甲相等的钱给甲,这时,三人的钱刚好相等。问:原来甲比乙多多少元?(28) 9、 甲、乙、丙三个人各有画片若干张,要求互相赠送。先由甲送乙、丙,所送张数等于乙、丙原来的张数(即乙、丙后来的画片张数是原来的2倍)。再由乙送给甲、丙现在的张数,最后由丙送给甲、乙现在的张数,互送后每人各有32张。原来各有画片多少张?(甲52 ;乙28 ;丙16) 10、一辆汽车从甲地出发,第一天走了全程的83,第二天走了余下的3 2,第三天走了250千米到达乙地。甲、乙两地相距多少千米?(1200)

倒推法解题

倒推法解题 一、考点、热点回顾 用倒推法解题,就是根据题目的叙述过程,从最后结果入手,采用倒推的方法,逐步找到题目的答案,采用倒推法解题时,原来加的用减,原来减的用加,原来乘的用除,原来除的用乘。 二、典型例题 例1、某农妇有一筐鸡蛋,第一次卖出一半又半个,第二次卖出余下的一半又半个,第三次又卖出余下的一半又半个,这是筐里还剩下1个鸡蛋,问:筐里原来有多少个鸡蛋? 例2、一瓶酒精,第一次倒出1/3,然后又倒回瓶中40克,第二次倒出瓶中剩下酒精的5/9,第三次倒出180克,瓶中还剩下60克,原来瓶中有多少克酒精? 例3、一只猴子偷吃桃子,第一天偷吃了树上桃子的1/10,以后的8天每天偷吃当天树上的1/9,1/8,1/7,…,1/2,这时树上还剩下10个桃子,问:树上原来有多少个桃子?

例4、甲、乙二人分16个苹果,分完后,甲将自己所得苹果数的1/3分给了乙,乙又将自己苹果数的1/3还给甲,最后甲又将自己现有苹果数的1/3分给了乙,这时两人苹果数恰好相等,问:最初甲分得多少个苹果? 三、课堂练习 1、有一堆桃子,第一只猴子拿走了这堆桃子的一半多半个,第二只猴子又拿走了剩下桃子的一半多半个,第三只猴子也拿走了剩下桃子的一半多半个,桃子正好被拿完,问:这堆桃子原来有几个? 2、工地上有一堆沙子,第一次用去这堆沙子的一半多0.5吨,第二次用去剩下沙子的一半多0.5吨,第三次又用去剩下沙子的一半多0.5吨,这时工地上还有20吨沙子,工地上原来有多少吨沙子?

3、小明的存钱盒中有一些钱,小明每次用去盒中钱数的一半多1元,这样一共用了5次,盒中还剩下4元钱,小明的存钱盒中原来有多少元? 4、一瓶橘子汁,第一次倒出1/3后又倒回瓶中50克,第二次倒出瓶中剩下橘子汁的2/5,第三次倒出150克,这时瓶中还剩下120克,原来瓶中有橘子汁多少克? 5、修一段公路,第一次修了全长的1/2多2千米,第二天修了余下的1/2少1千米,这时还剩下20千米没有修,这段公路长多少千米? 6、一堆西瓜,第一次卖出总个数的1/4又6个,第二次又卖出余下的1/3又4个,第三次卖出余下的1/2又3个,这时正好卖完,这堆西瓜原来有多少个?

常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法 高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。是一类考查思维能力的好题。要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。 类型一:1()n n a a f n +=+(()f n 可以求和) ????→解决方法 累加法 例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。 解析: 121(2)n n a a n n --=-≥ ∴21324311 3 521 n n a a a a a a a a n --=??-=?? -=???-=-?? 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴= 评注:一般情况下,累加法里只有n-1个等式相加。 【类型一专项练习题】 1、已知11a =,1n n a a n -=+(2≥n ),求n a 。 2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。 3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。 4、已知}{n a 中,n n n a a a 2,311+==+,求n a 。 5、已知112a =,112n n n a a +??=+ ??? * ()n N ∈,求数列{}n a 通项公式. 6、 已知数列{}n a 满足11,a =()1 132,n n n a a n --=+≥求通项公式n a ? 7、若数列的递推公式为1* 113,23()n n n a a a n N ++==-?∈,则求这个数列的通项公式 8、 已知数列}a {n 满足3a 132a a 1n n 1n =+?+=+,,求数列}a {n 的通项公式。 9、已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 10、数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值; (II )求{}n a 的通项公式.

倒推法解题专题训练

倒推法解题专题训练

————————————————————————————————作者:————————————————————————————————日期:

倒推法解题专题训练 知识梳理 1、用倒推法解题就是根据题目的叙述过程,从最后的结果入手,采用倒推的方法,逐步找到题目的答案。 2、用倒推法解题时,要采用逆向思维和运算方式,原来加的用减,乘的用除。 例题精讲: 1、将某数的3倍减5,计算出答案,将答案再3倍后减5,计算出答案,这样反复经过4次,最后计算的结果为691,那么原数是多少? 解析:从最后的结果往前逆推,结果是691,这是一个数的3倍减5得到的,这个数应该是(691+5)÷3=232,这是经过3次后的结果; 同样可知,经过2次后的结果为(232+5)÷ 3=79; 经过1次后的结果为(79+5) ÷3=28; 因此,原数为(28+5) ÷3==11。 2、一只猴子偷吃一棵桃树上的桃子。第一天偷吃了,以后八天分别偷吃了当天现有桃子的…,最后树上还剩下10个桃子。树上原桃子多少个? 解析:可以从最后树上的10个桃子依次向前倒推: 10(1-)(1-)(1-)(1-)(1-) (1-)(1-)(1-)(1-) =10 =100(个) 3、李老师拿着一批书送给36位同学,每到一位同学家里,李老师就将所有的书的一半给他,每位同学也都还她一本,最后李老师还剩下2本书,那么李教师原来拿了几本书?

解析:最后李老师还剩2本书,因此,他到第36位同学家之前应有(2-1)×2=2本书;同样,他到35位同学家之前应有(2-1)×2=2本书;…;由上此可知,他到每位同学家之前都有2本书,故李老师原来拿了2本书。 专题特训: 1、小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁”那么,这位老爷爷今年多少岁? 2、某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是多少? 3、一块冰,每小时失去其质量的一半,八小时之后其质量为千克,那么一开始这块冰的质量是多少千克? 4、修一段公路,第一天修了全路的多2千米,第二天修了余下的少1千米,这时还剩下20米没有修,这条公路有多长? 5、甲、乙两人各有钱若干元,甲拿出给乙后,乙又拿出给甲,这时他们各有240元,两人原来各有多少钱? 6、一瓶盐水,第一次倒出后又倒回瓶中50千克,第二次倒出瓶中剩下盐水的,第三次倒出150克,这时瓶中还剩下120克盐水,原来瓶子中有多少千克盐水? 7、小明和小聪共有小球200个,如果小明取出给小聪,然后小聪又从现有球中取出 给小明,这时小明和小聪的小球一样多。原来小明和小聪各有小球多少个。

用倒推法解题教案

用倒推法解题 知识要点 “一个数加上3,乘3,再减去3,最后除以3,结果还是3,这个数是几?”像这样已知一个数的变化过程和最后的结果,求原来的数,我们通常把它叫做“还原问题”。解答还原问题,一般采用倒推法,简单说,就是倒过来想。 解答还原问题,我们可以根据题意,从结果出发,按它变化的相反方向一步步倒着推想,直到问题解决。同时,可利用线段图表格帮助理解题意。 典型例题 例1:小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。小刚的奶奶今年多少岁? 练习:1、一个数加上3,乘3,再减去3,最后除以3,结果还是3。这个数是几? 2,一个数的3倍加上6,再减去9,最后乘上2,结果得60。这个数是多少? 3,小红问王老师今年多大年纪,王老师说:“把我的年纪加上9,除以4,减去2,再乘上3,恰好是30岁。”王老师今年多少岁? 例题2 一段布,第一次剪去一半,第二次又剪去余下的一半,还剩8米。这段布原来长多少米?

练习:1,某水果店卖西瓜,第一次卖掉总数的一半,第二次卖掉剩下的一半,这时还剩10只西瓜。原有西瓜多少只? 2,某人乘船从甲地到乙地,行了全程的一半时开始睡觉,当他睡醒时发现船又行了睡前剩下的一半,这时离乙地还有40千米。甲、乙两地相距多少千米? 3,有一箱苹果,第一次取出全部的一半多1个,第二次取出余下的一半多1个,箱里还剩下10个。箱里原有多少个苹果? 例题3 李奶奶卖鸡蛋,她上午卖出总数的一半多10个,下午又卖出剩下的一半多10个,最后还剩65个鸡蛋没有卖出。李奶奶原来有多少个鸡蛋? 练习:1,竹篮内有若干个李子,取它的一半又1枚给第一人,再取余下的一半又2枚给第二人,还剩6枚。竹篮内原有李子多少枚?

几类常见递推数列的解题方法

叠加、 叠乘、迭代递推、代数转化 ——几类常见递推数列的教学随笔 已知数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜想出a n 的表达式,然后用数学归纳法证明;另一类是将已知递推关系,用代数法、迭代法、换元法,或是转化为基本数列(等差或等比)的方法求通项.第一类方法要求学生有一定的观察能力以及足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法. 一、叠加相消. 类型一:形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n )或可裂项成差的分式形式.——可移项后叠加相消. 例1:已知数列{a n },a 1=0,n ∈N +,a 1+n =a n +(2n -1),求通项公式a n . 解:∵a 1+n =a n +(2n -1) ∴a 1+n =a n +(2n -1) ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a 1-n )=0+1+3+5+…+(2n -3) = 2 1 [1+(2n -3)]( n -1)=( n -1)2 n ∈N + 练习1:⑴.已知数列{a n },a 1=1, n ∈N +,a 1+n =a n +3 n , 求通项公式a n . ⑵.已知数列{a n }满足a 1=3,)1(2 1 +=-+n n a a n n ,n ∈N +,求a n . 二、叠乘相约. 类型二:形如)(1n f a a n n =+.其中f (n ) =p p c mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或 n n a a 1+=kn (k ≠0)或n n a a 1+= km n ( k ≠ 0, 0<m 且m ≠ 1). 例2:已知数列{a n }, a 1=1,a n >0,( n +1) a 1+n 2 -n a n 2+a 1+n a n =0,求a n . 解:∵( n +1) a 1+n 2 -n a n 2+a 1+n a n =0 ∴ [(n +1) a 1+n -na n ](a 1+n +a n )= 0 ∵ a n >0 ∴ a 1+n +a n >0 ∴ (n +1) a 1+n -na n =0 ∴1 1+=+n n a a n n ∴n n n n n n n a a a a a a a a a a n n n n n n n 112 12 31 2111 23 22 11 =???--?--?-=?????=----- 练习2:⑴已知数列{a n }满足S n = 2 n a n ( n ∈N * ), S n 是{ a n }的前n 项和,a 2=1,求a n .

相关文档
最新文档