双曲线焦点三角形面积公式的应用

双曲线焦点三角形面积公式的应用
双曲线焦点三角形面积公式的应用

双曲线焦点三角形面积公式的应用

定理 在双曲线122

22=-b

y a x (a >0,b >0)中,焦点分别为1F 、2F ,点P 是双曲线上任意一点,θ=∠21PF F ,则2cot 221θ?=?b S PF F . 证明:记2211||,||r PF r PF ==,由双曲线的第一定义得

.4)(,2||222121a r r a r r =-∴=-

在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =-+-θ

即.4)cos 1(242212c r r a =-+θ .cos 12cos 1)(22

2221θ

θ-=--=∴b a c r r 由任意三角形的面积公式得:

2cot 2sin 22cos 2sin 2cos 1sin sin 2122

222121θθθ

θθθθ?=?=-?==?b b b r r S PF F . .2cot 221θ?=∴?b S PF F 同理可证,在双曲线122

22=-b

x a y (a >0,b >0)中,公式仍然成立. 典题妙解

例1 设1F 和2F 为双曲线14

22

=-y x 的两个焦点,P 在双曲线上,且满足?=∠9021PF F ,则△21PF F 的面积是( )

A. 1

B.

25 C. 2 D. 5 解:,145cot 2cot 221=?=?=?θb S PF F ∴选A.

例2 (03天津)已知1F 、2F 为双曲线14

22

=-y x 的两个焦点,P 在双曲线上,若△21PF F 的面积是1,则21PF PF ?的值是___________.

解: ,12cot 2cot 221==?=?θ

θb S PF F ?=∴452θ

,即.90?=θ ∴21PF ⊥,从而.021=?PF

例3 已知1F 、2F 为双曲线的两个焦点,点P 在双曲线上,且?=∠6021PF F ,△21PF F 的面积是312,离心率为2,求双曲线的标准方程. 解:由31230cot 2cot 2221=?=?=?b b S PF F θ得:.122=b 又,2122

=+=a

b e .41212=+∴a

从而.42=a ∴所求的双曲线的标准方程为112422=-y x ,或112

42

2=-x y . 金指点睛

1. 已知双曲线14

22

=-y x 的两个焦点为1F 、2F ,点P 在双曲线上,且△21PF F 的面积为3,则 21PF PF ?的值为( )

A. 2

B. 3

C. 2-

D. 3-

2.(05北京6)已知双曲线的两个焦点为)0,5(),0,5(21F F -,P 是此双曲线上的一点,且2||||,2121=?⊥PF PF PF PF ,则该双曲线的方程是( ) A. 13222=-y x B. 12

322=-y x C. 1422=-y x D. 142

2=-y x 3.(05全国Ⅲ)已知双曲线122

2

=-y x 的焦点为1F 、2F ,点M 在双曲线上,且021=?MF MF ,则点M 到x 轴的距离为( ) A.

34 B. 35 C. 332 D. 3

4. 双曲线116

922=-y x 两焦点为F 1,F 2,点P 在双曲线上,直线PF 1,PF 2倾斜角之差为,3π则 △F 1PF 2面积为( )

A .163

B .323

C .32

D .42

5. 双曲线14491622=-y x ,1F 、2F 为双曲线的左、右焦点,点P 在双曲线上,且32||||21=?PF PF ,求21PF F ∠的大小.

6. 已知双曲线122

22=-b

y a x (a >0,b >0)的焦点为1F 、2F ,P 为双曲线上一点,且021=?PF PF ,ab PF PF 4||||21=?,求双曲线的离心率.

参考答案

1. 解:32cot 2cot 221===?θθb S PF F ,∴?=?=60,302θθ. 又3sin ||||2

12121=??=?θPF PF S PF F ,∴4||||21=?PF PF . ∴21PF PF ?=22

14cos ||||21=?=??θPF PF . 故答案选A. 2. 解: ,21PF PF ⊥∴1221||||212121=?=?=

?PF PF S PF F . 又145cot 2cot 22221==?==?b b b S PF F θ,∴1=b ,而5=c ,∴2=a .

故答案选C.

3. 解: 021=?MF MF ,∴21MF MF ⊥. ∴245cot 22cot 221=?==?θb S MF F .

点M 到x 轴的距离为h ,则23||212121===??=

?h ch h F F S MF F ,∴332=h . 故答案选C.

4. 解:设θ=∠21PF F ,则3πθ=

. ∴3166cot 162cot 221===?πθb S PF F .

故答案选A. 5. 解:由1449162

2=-y x 得11692

2=-y x . 设θ=∠21PF F (?≤?1800 θ). ∴2cot 162cot

221θθ==?b S PF F . 又θθsin 16sin ||||2

12121=??=?PF PF S PF F .

∴2cot sin θ

θ=,即2

sin 2cos 2cos 2sin 2θ

θθ

θ

=

. 整理得:212sin 2=θ

,∴2

22sin =θ,?=452θ,?=90θ. 故21PF F ∠的大小为?90.

6. 解:设θ=∠21PF F , 021=?PF ∴

?=90θ. ∴22245cot 2cot

21b b b S PF F =?==?θ. 又 ab ab PF PF S PF F 242

1||||212121=?=?=?, ∴ab b 22=. 得2=a

b . ∴离心率5)(12=+=a

b e .

最全面的三角形面积公式

最全面的三角形面积公式 一提到三角形面积公式,大家都知道。 ① 已知三角形的底边长为a , 高为h ,则 三角形面积S= 底 ? 高 ÷2 2 ah = B 实际上,三角形面积公式太多啦,上面得公式是最基本的公式,根据条件不同,三角形面积公式也不同。 ②已知三角形的周长为l ,内切圆半径为r ,则三角形面积2 lr S = ③已知三角形的三边长的乘积为L ,外接圆半径为R ,则三角形面积4L S R = ④已知三角形AOB 中,向量 OA a =uu r r ,OB b =u u u r r ,则三角形面积S = 此公式也适用于空间三角形求面积。 ⑤已知在平面直角坐标系中,三角形ABC 的三顶点坐标分别为,11(,)A x y ,22(,)B x y , 33C(,)x y , 则三角形面积1 1223 31 1121 x y S x y x y = 的绝对值1223311321321 2 x y x y x y x y x y x y =++---。

特别地,当(0,0)C ,或经过平移后(0,0)C ,此时,三角形面积12211 2S x y x y =-。 ⑥海伦(Heran )公式,已知△ABC 中,1 ,,,()2 AB c BC a CA b p a b c ====++,则 三角形面积S 我国宋朝时期也有类似的三角形面积公式,即秦九韶公式,也叫三斜求积公式。 S = ⑦已知三角形两边及夹角,则三角形面积公式为 111 sin sin sin 222 S ab C bc A ca B = == ⑧已知三角形两角及夹边,则三角形面积公式为 222sin sin sin sin sin sin 2sin()2sin()2sin() c A B b A C a B C S A B A C B C === +++ ⑨已知三角形两角A 、B 及其中一边的对边a ,则三角形面积公式为 2sin()sin 2sin a A B B S A += ⑩已知空间三角形ABC 的顶点111222333(,,), (,,),(,,)A x y z B x y z C x y z 。 则三角形面积212121313131 11 22 i j k S AB AC x x y y z z x x y y z z =?=------ 的绝对值

椭圆焦点三角形面积

椭圆焦点三角形面积公式的应用 多年来,椭圆、双曲线相关的焦点?21F PF ,(为曲线上的任意一点P 21F F 与为曲线的焦点)中的边角关系是学生必须掌握的重点知识,也是 高考的热点内容之一,尤其是近几年的出题频率呈上升趋势.现列举部分典型试题说明其应用类型. 定理 在椭圆122 22=+b y a x (a >b >0)中,焦点分别为1F 、2F ,点P 是椭圆上任意一点, θ=∠21PF F ,则2 tan 2 21θ b S PF F =?. 证明:记2211||,||r PF r PF ==,由椭圆的第一定义得 .4)(,2222121a r r a r r =+∴=+ 在△21PF F 中,由余弦定理得:.)2(cos 22 212 22 1c r r r r =-+θ 配方得:.4cos 22)(2 2121221c r r r r r r =--+θ 即.4)cos 1(242 212 c r r a =+-θ .cos 12cos 1)(22 2221θ θ+=+-=∴b c a r r 由任意三角形的面积公式得: 2tan 2 cos 22cos 2 sin 2cos 1sin sin 2122 222121θθθ θ θ θθ?=?=+?== ?b b b r r S PF F . .2 tan 221θ b S PF F =∴? 同理可证,在椭圆122 22=+b x a y (a >b >0)中,公式仍然成立. 典题妙解 例1 若P 是椭圆 164 1002 2=+y x 上的一点,1F 、2F 是其焦点,且?=∠6021PF F ,求 △21PF F 的面积. 解法一:在椭圆 164 1002 2=+y x 中,,6,8,10===c b a 而.60?=θ记.||,||2211r PF r PF ==

三角形面积公式教学设计(供参考)

三角形面积教学设计 教学内容:人教版五年级上册84----85页 教材分析:三角形的面积是本单元教学内容的第二课时,是在学生掌握了三角形的特征以及长方形、正方形、平行四边形面积计算的基础上学习的,是进一步学习梯形面积和组合图形面积的基础,教材首先由怎样计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,接着根据平行四边形面积公式推导的方法提出解决问题的思路,把三角形也转化成学过的图形,通过学生动手操作和探索,推导出三角形面积计算公式,最后用字母表示出面积计算公式,这样一方面使学生初步体会到几何图形的位置变换和转化是有规律的,另一方面有助于发展学生的空间观念。学情分析:学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形、平行四边形的面积计算,学生学习时并不陌生,在前面的图形教学中,学生学会了运用折、剪、拼、量、算等方法探究有关图形的知识,在学习方法上也有一定的基础,教学时从学生的现实生活与日常经验出发,设置贴近生活现实的情境,通过多姿多彩的图形,把学习过程变成有趣的、充满想象和富有推理的活动。 教学目标:1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。 2、通过操作使学生进一步学习用转化的思想方法解决新问题。 3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。 4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。 教学重点:理解并掌握三角形面积的计算公式。 教学难点:理解三角形面积的推导过程。 教法与学法:教法:演示讲解、指导实践。 学法:小组合作、动手操作。 教学准备:三角形卡片、多媒体课件 教学过程: 一、情境引入 师:同学们,我们每天都佩戴着鲜艳的红领巾,高高兴兴地来到学校学习新的知识,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法(板书课题) [设计意图]通过情境的创设,给学生提供现实的问题情境,使学生产生解决问题的欲望,积极主动地参与到学习活动之中。 二、探究新知 1、复习平行四边形面积的求法 师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的?

焦点三角形面积公式

椭圆焦点三角形面积公式的应用 定理 在椭圆122 22=+b y a x (a >b >0)中,焦点分别为1F 、2F ,点P 是椭圆上任 意一点,θ=∠21PF F ,则2 tan 221θ b S PF F =?. 证明:记2211||,||r PF r PF ==,由椭圆的第一定义得 .4)(,2222121a r r a r r =+∴=+ 在△21PF F 中,由余弦定理得:.)2(cos 22212 22 1c r r r r =-+θ 配方得:.4cos 22)(2 21212 21c r r r r r r =--+θ 即.4)cos 1(242 212 c r r a =+-θ .cos 12cos 1)(22 2221θ θ+=+-=∴b c a r r 由任意三角形的面积公式得: 2tan 2 cos 22cos 2 sin 2cos 1sin sin 2122 222121θθθ θ θ θθ?=?=+?== ?b b b r r S PF F . .2 tan 221θ b S PF F =∴? 同理可证,在椭圆122 22=+b x a y (a >b >0)中,公式仍然成立. 典题妙解 例1 若P 是椭圆 164 10022=+y x 上的一点,1F 、2F 是其焦点,且?=∠6021PF F ,求 △21PF F 的面积. 解法一:在椭圆 1641002 2=+y x 中,,6,8,10===c b a 而.60?=θ记.||,||2211r PF r PF == 点P 在椭圆上, ∴由椭圆的第一定义得:.20221==+a r r

在△21PF F 中,由余弦定理得:.)2(cos 22212 221c r r r r =-+θ 配方,得:.1443)(21221=-+r r r r .144340021=-∴r r 从而.3 256 21= r r .3 36423325621sin 212121=??== ?θr r S PF F 解法二:在椭圆 1641002 2=+y x 中,642=b ,而.60?=θ .3 3 6430tan 642 tan 221= ?==∴?θ b S PF F 解法一复杂繁冗,运算量大,解法二简捷明了,两个解法的优劣立现! 例 2 已知P 是椭圆 19252 2=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点,若2 1 | |||2121= ?PF PF ,则△21PF F 的面积为( ) A. 33 B. 32 C. 3 D. 3 3 解:设θ=∠21PF F ,则2 1 | |||cos 2121= ?= PF PF θ,.60?=∴θ .3330tan 92 tan 221=?==∴?θ b S PF F 故选答案A. 例3(04湖北)已知椭圆 19 162 2=+y x 的左、右焦点分别是1F 、2F ,点P 在椭圆上. 若P 、1F 、2F 是一个直角三角形的三个顶点,则点P 到x 轴的距离为( ) A. 59 B. 779 C. 49 D. 49或7 79 解:若1F 或2F 是直角顶点,则点P 到x 轴的距离为半通径的长 4 9 2=a b ;若P 是直角顶点,设点P 到x 轴的距离为h ,则945tan 92 tan 2 21=?==?θ b S PF F ,又,7)2(2 1 21h h c S PF F =??= ?

双曲线中焦点三角形的探索

双曲线中焦点三角形的探索 基本条件:1:该三角形一边长为焦距2c ,另两边的差的约对值为定值2a 。 2:该三角形中由余弦定理得| |||2||||||cos 212 21222121PF PF F F PF PF PF F ?-+=∠结合定义,有 ()||||24||||2||||||||212 212 212221PF PF a PF PF PF PF PF PF ?+=?+-=+ 性质一、设若双曲线方程为22 2 2x y 1a b -=(a >0,b >0), F1,F2分别为它的左右焦点,P 为双曲线上任意一点,则有: 若 12FPF ,∠=θ则 122F PF S b cot 2θ = ;特别地,当 12FPF 90∠= 时,有122F PF S b = 。 证明:记2211||,||r PF r PF ==,由双曲线的定义得 . 4)(,2222121a r r a r r =-∴=- 在△21PF F 中,由余弦定理得:.)2(cos 22 212221c r r r r =-+θ 配方得: .4cos 22)(2 2121221c r r r r r r =-+-θ 即.4)cos 1(242 212c r r a =-+θ . cos 12cos 1)(22 2221θθ-=--=∴b a c r r 由任意三角形的面积公式得: 2cot 2sin 22cos 2 sin 2cos 1sin sin 2122 222121θ θθ θ θ θθ?=?=-?== ?b b b r r S PF F . . 2cot 221θ b S PF F =∴? 特别地,当θ=? 90时, 2cot θ =1,所以12 2 F PF S b = 同理可证,在双曲线122 2 2=-b x a y (a >0,b >0)中,公式仍然成立 .

(完整版)圆锥曲线焦点三角形推导

椭圆焦点三角形 1.椭圆焦点三角形定义及面积公式推导 (1)定义:如图1,椭圆上一点与椭圆的两个焦点12,F F 构成的三角形12 PF F 称之为椭圆焦点三角形. (2)面积公式推导 解:在12PF F ?中,设12F PF α∠=,11PF r =,22PF r =,由余弦定理得 2 2 2 1212 12 cos 2PF PF F F PF PF α+-= ?222 1212 (2)2r r c r r +-= ? 22121212()242r r r r c r r +--=22 1212(2)242a r r c r r --= 2212124()22a c r r r r --=212 122b rr r r -= ∴21212cos 2r r b r r α=- 即2 1221cos b r r α =+, ∴12 212112sin sin 221cos PF F b S r r ααα?==??+2sin 1cos b αα=+=2tan 2 b α. 例1.焦点为12,F F 的椭圆22 14924x y +=上有一点M ,若120MF MF ?=u u u u r u u u u r ,求12 MF F ?的面积. 解:∵120MF MF ?=u u u u r u u u u r , ∴12MF MF ⊥, ∴ 12MF F S ?=290tan 24tan 242 2 b α ? ==. 例2.在椭圆的22 221(0)x y a b a b +=>>中,12,F F 是它的两个焦点,B 是短轴的 一个端点,M 是椭圆上异于顶点的点,求证:1212F BF F MF ∠>∠. 证明:如图2,设M 的纵坐标为0y , 图1 F 1 x y O P F 2

三角形的面积计算公式的推导

“三角形的面积计算公式的推导”教学活动设计 一、活动主题的提出 数学实践活动是教师结合学生相关数学方面的生活经验和知识背景,引导学生以自主探索或合作交流的方式,展开形式多样、丰富多彩的学习活动。“三角形面积计算公式的推导”教材是通过拼的方法探究计算方法的,从表面上看,学生动手操作了,也探究了公式的形成过程,但实际上学生仅仅机械地拼了一拼,做了一次“操作工”,他们并没有自己的猜想和创造,没有真正参与知识的产生和形成,教材所提供的学习材料缺乏思维含量,缺少挑战性,学生体会不到思考的乐趣,思维得不到充分发展,为了培养学生的探究意识和探究水平,促动学生探究的有效性,特安排主题活动“三角形面积计算公式的推导”。 二、活动目标 1.探索并掌握三角形的面积计算公式,培养学生应用已有知识解决新问题的水平。 2.使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观点和初步的推理水平。 3.在探索活动中使学生获得积极地情感体验,感受数学的乐趣,体会成功的喜悦,进一步培养学生学习数学的兴趣。 三、课前准备 1.分组:每4人为一小组。 2.每人准备3张正方形纸片。 3.每位同学准备尺子、剪刀、铅笔。 四、时间:一课时(不包括活动前的准备) 五、活动过程 1.检查学生课前的准备情况。 2.揭示课题 师:三角形的面积能够怎样计算呢?这就是我们这节课要研究的问题。 板书课题:三角形面积的计算公式 3.探究操作 师:(先每4人一小组分好小组)每人拿出一张正方形纸片,在上面剪一刀,要求剪下一个三角形。当然你用笔和尺子把想剪的三角形在正方形上画出来,不剪也能够。(学生剪、画) 汇报展示。(选择如下三种图) ①②③ 师:这三种剪法中哪种剪法剪下的三角形面积你能计算?你是怎么知道的? 学生观察、思考、分析、推理、小组讨论、汇报。 第三种(图③)剪法剪下的三角形面积能计算,三角形面积正好是这个正方形面积的一半,只要把剪下的两个三角形重叠在一起,就能够发现他们完全一样(形状

椭圆标准方程焦点三角形面积公式高三复习

椭圆标准方程焦点三角形面积公式高三复习 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

椭圆焦点三角形面积公式的应 用 性质1(选填题课直接用,大题需论证): 在椭圆122 22=+b y a x (a >b >0)中,焦点分别为1F 、2F ,点P 是椭圆上任 意一点,θ=∠21PF F ,则2 tan 22 1 θ b S PF F =?. 证明:记2211||,||r PF r PF == .4)(,2222121a r r a r r =+∴=+ 在△21PF F 中,由余弦定理得:cos 2212221r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =--+θ 即.4)cos 1(242212c r r a =+-θ .cos 12cos 1)(22 2221θ θ+=+-=∴b c a r r 由任意三角形的面积公式得: 2tan 2 cos 22cos 2 sin 2cos 1sin sin 2122 222121θθθ θ θ θθ?=?=+?== ?b b b r r S PF F . .2 tan 221θ b S PF F =∴? 同理可证,在椭圆122 22=+b x a y (a >b >0)中,公式仍然成立. 典型例题 例1 若P 是椭圆 164 1002 2=+y x 上的一点,1F 、2F 是其焦点,且?=∠6021PF F ,求 △21PF F 的面积.

例2 已知P 是椭圆19 252 2=+ y x 上的点,1F 、2F 分别是椭圆的左、右焦点,若 2 1 | |||2121= ?PF PF ,则△21PF F 的面积为( ) A. 33 B. 32 C. 3 D. 3 3 例3(04湖北)已知椭圆19 162 2=+ y x 的左、右焦点分别是1F 、2F ,点P 在椭圆上. 若P 、1F 、2F 是一个直角三角形的三个顶点,则点P 到x 轴的距离为( ) A. 59 B. 779 C. 4 9 D. 4 9 或 7 7 9 答案: 例1 若P 是椭圆 164 1002 2=+y x 上的一点,1F 、2F 是其焦点,且?=∠6021PF F ,求 △21PF F 的面积. 解法一:在椭圆 164 1002 2=+y x 中,,6,8,10===c b a 而.60?=θ记.||,||2211r PF r PF == 点P 在椭圆上, ∴由椭圆的第一定义得:.20221==+a r r

由三角形内切圆导出的一个三角形的面积公式应用

由“三角形内切圆”引出的2个中考命题 我们知道:和三角形各边都相切的圆叫三角形的内切圆,内切圆的圆心叫三角形的内心,它是三角形3条内角平分线的交点,它到三角形三边的距离相等,这个距离就是三角形的内切圆的半径(如图甲).观察图形3个角平分线将三角形分成3个三角形,而每个三角形的高均为内切圆的半径,底为三角形的三边长.所以 S △ABC =S △OAB +S △OBC +S △OCA = r AB ?21+r BC ?21+r CA ?2 1 = r BC AC AB ?++)(2 1 (r 为内切圆的半径) 从上述三角形面积的探究过程中隐含了一种重要的数学思维方法,有些图形的面积可以 通过适当的分割,分割为若干个可求图形的面积,利用整体等于各个部分面积之和从而获得上面的结论. 我们知道三角形是多边形中最简单的多边形,而且任意的三角形都存在唯一的内切圆,但四边形不一定存在内切圆,假若四边形存在一个内切圆上述结论成立吗对于任意的n 边形呢请欣赏如下的江苏省淮安市06年的一道中考题: 例1、阅读材料:如图(一),△ABC 的周长为l ,内切圆O 的半径为r,连结OA 、OB 、OC ,△ABC 被划分为三个小三角形,用S △ABC 表示△ABC 的面积 ∵ S △ABC =S △OAB +S △OBC +S △OCA 又∵S △OAB = r AB ?21,S △OBC =r BC ?21,S △OCA =r CA ?21 ∴S △ABC =r AB ?21+r BC ?21+r CA ?21=r l ?2 1 (可作为三角形内切圆半径公式) (1)理解与应用:利用公式计算边长分为5、12、13的三角形内切圆半径; (2)类比与推理:若四边形ABCD 存在内切圆(与各边都相切的圆,如图(二))且面积为S ,各边长分别为a 、b 、c 、d ,试推导四边形的内切圆半径公式; (3)拓展与延伸:若一个n 边形(n 为不小于3的整数)存在内切圆,且面积为S ,各边长分别为a 1、a 2、a 3、…、a n ,合理猜想其内切圆半径公式(不需说明理由). 分析:本题创设了一个以“阅读材料—三角形的面积与内切圆半径及周长之间关系”的 ┓ O C B A

高中数学破题致胜方法双曲线焦点三角形的面积

今天我们研究双曲线焦点三角形的面积。12PF F ?由两焦点和双曲线上一点形成,我们把这种三角形叫焦点三角形. 求焦点三角形的面积时,通常会利用双曲线的定义、正弦定理、余弦定理等,焦点三角形的面积主要有两种求法:1212121211 sin =2c |y |22PF F PF F P S r r F PF S =∠V V g g g 和。 例:已知双曲线2 2 1916x y -=的左、右焦点分别为12F F 、,若双曲线上一点P 使 1290F PF ∠?=,则1F PF V 的面积是( ) A.12 B.16 C.24 D.32 解:根据双曲线的定义有:126PF PF =- 两边平方得:22 1212236PF PF PF PF +-= 由勾股定理有: 22 2 121212||10032 PF PF F F PF PF ∴Q +==, = 121 2S PF PF ∴==16 所以本题选B 。 整理: 焦点三角形的面积求法: 2211||,||r PF r PF ==,12F PF θ∠=; 12121sin 2PF F S r r θ=V g ;121 =2||2PF F P S c y V g g ;

注意:讨论焦点三角形的相关性质时,要结合双曲线的定义,简化运算。 再看一个例题,加深印象: 例:已知12F F ,为双曲线22 1C x y -=:的左、右焦点,P 点在C 上,1260F PF ∠?=,则P 到x 轴的距离为( ) 解:不妨设 设12(,),,,P x y PF m PF n == 由双曲线的定义有:12 2.PF PF m n -=-= 在△21PF F 中,由余弦定理得: 2222(22)-2cos 608(-). 4 m n mn m n mn mn =+? =+= 从而由三角形面积公式有:

三角形面积公式的五种推导方法

三角形面积公式的五种 推导方法 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

三角形面积公式的五种推导方法 摘自:《小学数学网》六年制小学数学第九册《三角形面积的计算》一节,教材上是这样安排的:一、明确目标;二、用数格的方式不能确定三角形的面积;三、能否转化成以前学过的图形进行计算四、拿两个全等的直角三角形可以拼成以前学习过的学习过的长方形和平行四边形,直角三角形的面积是长方形和平行四边形面积的一半;五、验证锐角三角形和钝角三角形是否也能拼成平行四边形;六、三次试验确定所有类型的三角形能转化成平行四边形,两者的关系是“等底等高,面积一半”;七、总结三角形的面积公式。 我们在多次的课堂教学实践和课下辅导过程中,发现上面的几个“环节”有些地方不太符合学生的认知特点。具体分析一下: 第一步没什么问题,每个教师都有自己的导入新课的方式。 第二步也没有什么:学生在学习长方形和正方形的面积时用的是“数格”的方式。学习平行四边形时用的是切割再组合的方式,就是所谓的“转化”。在大部分学生对面积这个概念的理解还不十分透彻的情况下,面对三角形,学生们的首选方法就是“数格”。因为这是学生学习有关面积计算的第一经验,第一印象,第一个技巧。也是最简单,最直接(当然也是最麻烦)的方法。关于第三步:教材上只有一句话:能不能把三角形转化成已经学过的图形再计算面积。这是化未知为已知的思维方式,我们常给初中学生提起这些认知策略,但它的基础却在小学阶段和学生的日常生活经验中。教材把这个重要的数学思想一笔带过,把挖掘其内涵,为学生建立辩证观念的重任留给了老师。但很多老师并不特别重视这句话,只是把它当作一个过渡句,当成进入下面环节的引言。

焦点三角形面积公式

椭圆焦点三角形面积公式的应用 2 2 2 2(a -C ) 2b 1 COST 1 COST 由任意三角形的面积公式得: 2 e S ,F 1PF 2 = b tan 2 典题妙解 △ F i PF 2的面积. y 1 中,a =10,b =8,c =6,而 J - 60 .记 | PR 几,| PF 2 |二 r 2. 64 点P 在椭圆上, -由椭圆的第一定义得:r 1 r 2 =2a=20. 例1 若P 是椭圆 100 F 2是其焦点,且—FfF ? =60,求 2 S..R PF 2 - 2 r 1r 2 Sin 71 - b 1 COST e e 2sin COS — 2 2 二 b 2 2COS 2 - 2 e tan —. 2 同理可证,在椭圆 2 2 y- —1( b a > b >0) 中,公式仍然成立. 解法一:在椭圆 100 即 4a 2 -2r 1r 2(1 COST ) = 4c 2. 2 2 定理 在椭圆 写?爲二1 ( a > b > 0)中,焦点分别为F 1、F 2,点P 是椭圆上任

,, 2 2 2 在厶F |PF 2中,由余弦定理得:r i r 2 -2r i r 2cos v - (2c ). 配方,得:(n 亠 r 2 )2 —3「订2 =144. 256 .400 一3叩2 =144.从而 吋2二已 3 .Sr 1PF^b 2tan 64tanBO 、6^ 2 3 | PF i | | PF 2 | A. 3 3 7 ,贝y cos 二二 PF1 PF2. | PF 1 | ■〔 PF 2 | 2 9 S.^PF ? - b tan 2 故选 答案A. = 9tan30' -3.3. 点 P 到 x 轴的距离为 h ,则 S.F I PF 2 二 b 2tan 寸=9tan45 =9 ,又 S FPF2 解法一复杂繁冗,运算量大,解法二简捷明了, 两个解法的优劣立现! 例2 已知P 2 2 是椭圆—1上 25 9 的点, F 1、 F 2分别是椭圆的左、右焦点,若 PF 1 PF 2 则厶F 1PF 2的面积为( 2 2 例3( 04湖北)已知椭圆 —?厶=1的左、右焦点分别是 16 9 F i 、 F 2 ,点P 在椭圆上.若P 、F 1、 F 2是一个直角三角形的三个顶点,则点 P 到x 轴的距离为( 9 A.— 5 9? 7 B. 7 C. 解:若已或F 2是直角顶点,则点P 到x 轴的距离为半通径的长 b 2 若P 是直角顶点,设 1 S.F |PF 2 二 2「1r 2 Sin 71 64.3 x 2 解法二:在椭圆 一 100 2 計中,b 2=64,而—a B. 2 3 解:设-F 1PF 2 (2c) h = 7h, 2

初中数学三角形面积变形公式的应用学法指导

初中数学三角形面积变形公式的应用 本文结合实例,介绍一个面积公式的变形S ab C = 1 2 sin (a ,b 为三角形两边长,∠C 为a ,b 边的夹角)。 已知:如图1,在△ABC 中,a ,b 是边长,∠C 是a ,b 边的夹角。 求证:S ABC △= 1 2 ab C sin 。 图1 证明:如图1,作底边BC 上的高AH ,设其长为h 。 在Rt △AHC 中,sinC = =AH AC h b ,可得h=b ·sinC 。 S ABC △(·)===12121 2 ah a b C ab C sin sin 。 说明:这个公式对于任意三角形均适用,但初中阶段尚未学习钝角的三角函数,我们只讨论夹角为锐角的情况。 例 已知△ABC ,分别以AB ,BC ,CA 为边向形外作等边三角形ABD 、等边三角形BCE 、等边三角形ACF 。 (1)如图2,当△ABC 是等边三角形时,请你写出满足图中条件的四个成立的结论。 图2 (2)如图3,△ABC 中只有∠ACB=60°时,请你证明S △BCE 与S △ACF 的和等于S △ABC 与S △ABD 的和。 图3 解:(1)在图2中,四个等边三角形组成一个大的等边三角形,图形很特殊,条件也很多。如图2中菱形就有ABEC ,DACB ,ABCF 等。这些特殊图形中,写出四个成立的结论应

该不是难事。 ①图形DAFCEB 构成一个△DEF ;②△DFE 是等边三角形;③△ABC 的面积是△DEF 的面积的 1 4;④AB ∥EF ;⑤BC =12 DF 。 (2)方法1:如图4,过A 作AM ⊥BC 于M ,设BC=a ,AC=b ,AM=h 。 图4 S △BCE + S △ACF =126012 6022a b ··sin sin ?+? = 1 2 6022()a b +?sin S △ACB =1 2 60absin ?。 在Rt △ACM 中,由∠ACB=60°可得CM=12b ,AM=32 b ,则BM BC CM a b =-=-? ? ???12。 在Rt △AMB 中, AB AM BM b a b b a ab b a ab b 222 2 2 2222232122121 4 =+=?? ?? ?+-?? ??? +-?+=-+ = 34。 所以S ABD △···()。 =?=? =-+?12601 2 6012 60222 AB AD AB a ab b sin sin sin S + S =12 =1 2 S + S ABC ABD BCE ACF △△△△()()。 ab a ab b a b sin sin sin 601 2 60602222?+-+? +?= 方法2:如图5,过A 作AM ∥FC 交BC 于M ,连接DM ,EM ,显然∠ACB=∠CAF ,得AF ∥MC ,四边形AMCF 为平行四边形。又因为FA=FC ,所以平行四边形AMCF 为菱形,故AC=CM=AM ,∠MAC=60°。在△BAC 与△EMC 中,CA=CM ,∠ACB=∠MCE ,CB=CE ,所以△BAC ≌△EMC ,得BA=EM 。△ADM ≌△ABC ,得DM=BC 。

解析几何专题二(焦点弦及焦点三角形)

专题二:圆锥曲线焦点弦、焦点△知识专题 【焦半径——椭圆】θ取弦与焦点轴的锐角为 121212::=2:=2a ex;a ex; |AB |a e(x x );|AB |a e(x x ) ρρ=+=-++-+左焦半径右焦半径左焦弦右焦弦 【焦半径——双曲线】θ取弦与焦点轴的锐角为 (1) 单支焦点半径 112::=-2(a ex );|AB |a e(x x );ρ=-+-+左焦半径左焦弦 1122::=ex a;|AB |e(x x )a;ρ=-+-右焦半径右焦弦 (2) 双支焦点半径 1122::=a ex;|AB |a e(x x );ρ=+++异支左焦半径异支左焦弦 1122::=a ex;|AB |a e(x x );ρ=--+异支右焦半径异支右焦弦 【焦半径——抛物线】θ取弦与焦点轴的锐角为 1212==y x |AB |x x p;y |AB |y p ++++焦点在轴上焦点在轴上:: 【焦点弦有关推论——椭圆】θ取弦与焦点轴的锐角为 1、过椭圆、双曲线的一焦点F 交椭圆或双曲线(单支)于A ,B两点,则

2、过双曲线的焦点F的直线分别与两支交于A,B ,与焦点轴夹角为 )2 (πθ< 2 1122cos a cos |AF ||BF |p b θθ?+== 3、过抛物线的焦点F 直线交抛物线于A,B两点,与焦点轴夹角为)2 (π θ< 112 |AF ||BF |p += 4、已知点是离心率为的椭圆或双曲线的焦点,过点的弦与 的焦点所在的轴的夹角为θ,且。 (1) 当焦点内分弦时,有 (2) 当焦点外分弦 时(此时曲线为双曲线),有 【椭圆焦三角形 面积】q 为动点到原点的距离,,m,n 为弦长,α为弦夹角 【椭圆】22 212 2 ()S (a c )tan b tan α α =-= 22()S b mn b =- 3()S (a c )(a c )(a q )(a q )=+-+- 【双曲线焦△ 面积】q 为动点到原点的距离,,m,n 为弦长,α为弦夹角 212 b ()S tan α = 22()S b mn b =- 3()S (a c )(a c )(a q )(a q )=+-+-

三角形面积的计算

三角形面积的计算 教学目标 1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算. 2.培养学生观察能力、动手操作能力和类推迁移的能力. 3.培养学生勤于思考,积极探索的学习精神. 教学重点 理解三角形面积计算公式,正确计算三角形的面积. 教学难点 理解三角形面积公式的推导过程. 教学过程 一、复习引入 (一)教师提问:我们学过了哪些平面图形的面积?计算这些图形面积的公式是什么? 教师:今天我们一起研究“三角形的面积”(板书课题) (二)共同回忆平行四边形面积的计算公式的推导过程. 二、探究新知 (一)数方格面积. 1.用数方格的方法求出第69页三个三角形的面积.(小组内分工合作) 2.演示课件:拼摆图形 3.评价一下以上用“数方格”方法求出三角形面积. (二)推导三角形面积计算公式. 1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小. 2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢? 3.用两个完全一样的直角三角形拼. (1)教师参与学生拼摆,个别加以指导 (2)演示课件:拼摆图形 (3)讨论 ①两个完全一样的直角三角形拼成一个大三角形(第三种拼法)能帮助我们推导出三角形面积公式吗?为什么? ②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系? 4.用两个完全一样的锐角三角形拼. (1)组织学生利用手里的学具试拼.(指名演示) (2)演示课件:拼摆图形(突出旋转、平移) 教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系? 5.用两个完全一样的钝角三角形来拼. (1)由学生独立完成. (2)演示课件:拼摆图形

双曲线焦点三角形面积公式在高考中的妙用

双曲线焦点三角形面积公式的应用 广西南宁外国语学校 隆光诚(邮政编码530007) 定理 在双曲线122 22=-b y a x (a >0,b >0)中,焦点分别为1F 、2F ,点P 是双曲线上任意 一点,θ=∠21PF F ,则2 cot 2 21θ ?=?b S PF F . 证明:记2211||,||r PF r PF ==,由双曲线的第一定义得 .4)(,2||222121a r r a r r =-∴=- 在△21PF F 中,由余弦定理得:.)2(cos 22 212 22 1c r r r r =-+θ、 配方得:.4cos 22)(2 21212 21c r r r r r r =-+-θ 即.4)cos 1(242 212 c r r a =-+θ .cos 12cos 1)(22 2221θ θ-=--=∴b a c r r 由任意三角形的面积公式得: 2cot 2 sin 22cos 2 sin 2cos 1sin sin 2122 222121θθθ θ θ θθ?=?=-?== ?b b b r r S PF F . .2 cot 221θ ?=∴?b S PF F 同理可证,在双曲线122 22=-b x a y (a >0,b >0)中,公式仍然成立. 典题妙解 例1 设1F 和2F 为双曲线14 22 =-y x 的两个焦点,P 在双曲线上,且满足?=∠9021PF F ,则△21PF F 的面积是( ) A. 1 B. 2 5 C. 2 D. 5 /

解:,145cot 2 cot 221=?=?=?θ b S PF F ∴选A. 例2 (03天津)已知1F 、2F 为双曲线14 22 =-y x 的两个焦点,P 在双曲线上,若△21PF F 的面积是1,则21PF PF ?的值是___________. 解: ,12 cot 2 cot 221==?=?θ θ b S PF F ?=∴ 452 θ ,即.90?=θ ∴21PF PF ⊥,从而.021=?PF 例3 已知1F 、2F 为双曲线的两个焦点,点P 在双曲线上,且?=∠6021PF F ,△21PF F 的面积是312,离心率为2,求双曲线的标准方程. 解:由31230cot 2 cot 2221=?=?=?b b S PF F θ 得:.122=b 又,2122 =+=a b e .41212 =+ ∴a 从而.42 =a ∴所求的双曲线的标准方程为 112422=-y x ,或112 42 2=-x y . 金指点睛 ` 1. 已知双曲线14 22 =-y x 的两个焦点为1F 、2F ,点P 在双曲线上,且△21PF F 的面积为3,则 21PF PF ?的值为( ) A. 2 B. 3 C. 2- D. 3- 2.(05北京6)已知双曲线的两个焦点为)0,5(),0,5(21F F -,P 是此双曲线上的一点,且 2||||,2121=?⊥PF PF PF PF ,则该双曲线的方程是( ) A. 13222=-y x B. 12322=-y x C. 1422=-y x D. 1422 =-y x 3.(05全国Ⅲ)已知双曲线12 2 2 =-y x 的焦点为1F 、2F ,点M 在双曲线上,且021=?MF ,

小学数学《三角形的面积计算公式》

小学数学《三角形面积计算公式》教学设计 刘河小学李志强 教学内容:人教版九年义务教育六年制小学数学第九册P84 -P85. 教材分析: 人教版五年级上册84、85页三角形的面积是本单元教学内容的第二课时,是在学生掌握了三角形的特征以及长方形、正方形、平行四边形面积计算的基础上学习的,是进一步学习梯形面积和组合图形面积的基础,教材首先由怎样计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,接着根据平行四边形面积公式推导的方法提出解决问题的思路,把三角形也转化成学过的图形,通过学生动手操作和探索,推导出三角形面积计算公式,最后用字母表示出面积计算公式,这样一方面使学生初步体会到几何图形的位置变换和转化是有规律的,另一方面有助于发展学生的空间观念。 学情分析: 学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形、平行四边形的面积计算,学生学习时并不陌生,在前面的图形教学中,学生学会了运用折、剪、拼、量、算等方法探究有关图形的知识,在学习方法上也有一定的基础,教学时从学生的现实生活与日常经验出发,设置贴近生活现实的情境,通过多姿多彩的图形,把学习过程变成有趣的、充满想象和富有推理的活动。 教学目标: 1、让学生经历三角形面积计算公式的探索过程,理解三角形面积公式的来源;并能灵活运用公式解决简单的实际问题。 2、在学习活动中,培养学生的实践动手能力,合作探索意识和能力,培养创新意识和能力。 3、通过实践操作,自主探究,使学生进一步学习用转化的思想方法解决新问题培养团结互助的合作思想品质。 教学重点:三角形面积计算公式的推导。 教学难点:运用拼、剪、平移、旋转等方法,发现正方形、长方形、平形四边形及三角形面 积的相互联系推导出三角形面积计算公式。 教具准备:多媒体课件一套。 学具准备:工具(尺、剪刀),三组学具(①完全相同的锐角三角形、直角三角形、钝角三

三角形的面积计算公式

三角形的面积计算公式 三角形的面积计算公式1.已知三角形底a,高h,则 S=ah/22.已知三角形三边a,b,c,则(海伦公式)(p=(a+b+c)/2)S=√[p(p-a)(p-b)(p-c)]=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]3.已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC4.设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/25.设三角形三边分别为a、b、c,外接圆半径为R则三角形面积=a bc/4R6.S△=1/2 *| a b 1 || c d 1 || e f 1 || a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!7.海伦--秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.8.根据三角函数求面积S= &frac12;ab sinC=2R&sup2; sinAsinBsinC= a&sup2;sinBsinC/2sinA注:其中R为外切圆半径。9.根据向量求面积SΔ)= &frac12;√(|AB|*|AC|)&sup2;-(AB*AC)

椭圆与双曲线的焦点三角形面积公式及推导过程

椭圆与双曲线的焦点三角形面积公式及推导过程 一、椭圆中的焦点三角形面积公式 1、公式:)2 tan(221αb S F PF =?. 2、推导过程: 设椭圆的标准方程为:)(0122 22>>=+b a b y a x ,21,F F 分别是椭圆的左、右焦点,P 是椭圆上异于长轴两端点的任意一点,21PF PF 与的夹角为α,则 在21F PF ?中,依椭圆的定义及余弦定理,有 ???????-+=+==+=α cos 222212 22 12 212222121PF PF PF PF F F c b a a PF PF c F F ? )cos 1(2)(212 21221α+-+=PF PF PF PF F F 即)cos 1(2)2(22122α+-=PF PF a c )(? α α cos 12cos 1(222 221+=+-=b c a PF PF ) ) 2tan() 2(cos 22 cos 2sin 2cos 1sin sin cos 1221 sin 2122222 2121α α α ααα α αα b b b b PF PF S F PF =?=+?=?+?==? 即)2tan(221α b S F PF =?.

二、双曲线中的焦点三角形面积公式 1、公式:1-2)2 tan(21αb S F PF =?. 2、推导过程: 设双曲线的标准方程为:),(001-22 22>>=b a b y a x ,21,F F 分别是双曲线的左、右焦点,P 是双曲线上异于实轴两端点的任意一点,21PF PF 与的夹角为α,则 在21F PF ?中,依双曲线的定义及余弦定理,有 ???????-+=+===α cos 22-2212 2212 212 222121PF PF PF PF F F b a c a PF PF c F F ? )cos 1(2)(212 21221α-+-=PF PF PF PF F F 即)cos 1(2)2(22122α-+=PF PF a c )(? α α cos 12cos 1(222 221-=--=b a c PF PF ) 1 22222 21)2 (tan ) 2(sin 22 cos 2sin 2cos 1sin sin cos 1221sin 2121-?=?=-?=?-?==ααα ααα α αα b b b b PF PF S F PF 即1 -2)2tan(21αb S F PF =?.

相关文档
最新文档