工程地震动随机功率谱模型的分析与改进_李英民

工程地震动随机功率谱模型的分析与改进_李英民
工程地震动随机功率谱模型的分析与改进_李英民

基于Burg算法的AR模型功率谱估计简介

基于Burg 算法的AR 模型功率谱估计简介 摘要:在对随机信号的分析中,功率谱估计是一类重要的参数研究,功率谱估计的方法分为经典谱法和参数模型方法。参数模型方法是利用型号的先验知识,确定信号的模型,然后估计出模型的参数,以实现对信号的功率谱估计。根据wold 定理,AR 模型是比较常用的模型,根据Burg 算法等多种方法可以确定其参数。 关键词:功率谱估计;AR 模型;Burg 算法 随机信号的功率谱反映它的频率成分以及各成分的相对强弱, 能从频域上揭示信号的节律, 是随机信号的重要特征。因此, 用数字信号处理手段来估计随机信号的功率谱也是统计信号处理的基本手段之一。在信号处理的许多应用中, 常常需要进行谱估计的测量。例如, 在雷达系统中, 为了得到目标速度的信息需要进行谱测量; 在声纳系统中, 为了寻找水面舰艇或潜艇也要对混有噪声的信号进行分析。总之, 在许多应用领域中, 例如, 雷达、声纳、通讯声学、语言等领域, 都需要对信号的基本参数进行分析和估计, 以得到有用的信息, 其中, 谱分析就是一类最重要的参数研究。 1 功率谱估计简介 一个宽平稳随机过程的功率谱是其自相关序列的傅里叶变换,因此功率谱估计就等效于自相关估计。对于自相关各态遍历的过程,应有: )()()(121lim *k r n x k n x N N x N N n =? ?????++∞→∑-= 如果所有的)(n x 都是已知的,理论上功率谱估计就很简单了,只需要对其自相关序列取傅里叶变换就可以了。但是,这种方法有两个个很大的问题:一是不是所有的信号都是平稳信号,而且有用的数据量可能只有很少的一部分;二是数据中通常都会有噪声或群其它干扰信号。因此,谱估计就是用有限个含有噪声的观测值来估计)(jw x e P 。 谱估计的方法一般分为两类。第一类称为经典方法或参数方法,它首先由给定的数据估 计自相关序列)(k r x ,然后对估计出的)(?k r x 进行傅里叶变换获得功率谱估计。第二类称为非经典法,或参数模型法,是基于信号的一个随机模型来估计功率谱。非参数谱估计的缺陷是其频率分辨率低,估计的方差特性不好, 而且估计值沿频率轴的起伏甚烈,数据越长, 这一现象越严重。 为了改善谱分辨率,研究学者对基于模型的参数方法进行了大量研究。参数方法的第一步是对信号选择一个合适的模型,这种选择可能是基于有关信号如何产生的先验知识,也可能是多次试验后获得的结果。通常采用的模型包括AR 、MA 、ARMA 模型和谐波模型(噪声中含有复指数)。一旦模型选择好后,下一步就是计算模型的参数。最后将计算得到的参数带

有关功率谱分析的相关总结

有关功率谱分析的相关总结 谱是个很不严格的东西,常常指信号的Fourier变换,是一个时间平均(time average)概念功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析,能量有限的信号通常为能量信号,他们的傅里叶变换是收敛的),所表现的是单位频带内信号功率随频率的变换情况。保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。有两个重要区别:1。功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机过程有频谱吗?)(随机的频域序列)2。功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶矩是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。 频谱和功率谱的区别在于: (1)信号通常分为两类:能量信号和功率信号; (2)一般来讲,能量信号其傅氏变换收敛(即存在),而功率信号傅氏变换通常不收敛,当然,若信号存在周期性,可引入特殊数学函数(Delta)表征傅氏变换的这种非收敛性;(3)信号是信息的搭载工具,而信息与随机性紧密相关,所以实际信号多为随机信号,这类信号的特点是状态随机性随时间无限延伸,能量无限。换句话说,随机信号大多属于功率信号而非能量信号,它并不存在傅氏变换,亦即不存在频谱; (4)若撇开搭载信息的有用与否,随机信号又称随机过程,很多噪声属于特殊的随机过程,它们的某些统计特性具有平稳性,其均值和自相关函数具有平稳性。对于这样的随机过程,自相关函数蜕化为一维确定函数,前人证明该确定相关函数存在傅氏变换; (5)能量信号频谱通常既含有幅度也含有相位信息;幅度谱的平方(二次量纲)又叫能量谱,它描述了信号能量的频域分布;功率信号的功率谱描述了信号功率随频率的分布特点,也已证明,信号功率谱恰好是其自相关函数的傅氏变换; (6)实际中我们获得的往往仅仅是信号的一段支撑,此时即使信号为功率信号,截断之后其傅氏变换收敛,但此变换结果严格来讲不属于任何“谱”; (7)对于(6)中所述变换若取其幅度平方,可作为信号功率谱的近似,是为经典的“周期图法”; (8)FFT是DFT的快速实现,DFT是DTFT的频域采样,DTFT是FT的频域延拓。人们不得已才利用DFT近似完成本属于FT的任务。若仅提FFT,是非常不专业的。 功率谱是个什么概念?它有单位吗? 随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。功率谱与自相关函数是一个傅氏变换对。功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于w轴,在w轴上方的一条直线。功率谱密度,从名字分解来看就是说,观察对象是功率,观察域是谱域,通常指频域,密度,就是指观察对象在观察域上的分布情况。一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。 一是用相关函数的傅立叶变换来定义谱密度;二是用随机过程的有限时间傅立叶变换来定义

功率谱估计

功率谱估计及其MATLAB仿真 詹红艳 (201121070630控制理论与控制工程) 摘要:从介绍功率谱的估计原理入手分析了经典谱估计和现代谱估计两类估计方法的原理、各自特点及在Matlab中的实现方法。 关键词:功率谱估计;周期图法;AR参数法;Matlab Power Spectrum Density Estimation and the simulation in Matlab Zhan Hongyan (201121070630Control theory and control engineering) Abstract:Mainly introduces the principles of classical PSD estimation and modern PSD estimation,discusses the characteristics of the methods of realization in Matlab.Moreover,It gives an example of each part in realization using Matlab functions. Keywords:PSDPstimation,Periodogram method,AR Parameter method,Matlab 1引言 现代信号分析中,对于常见的具有各态历经的平稳随机信号,不可能用清楚的数学关系式来描述,但可以利用给定的N个样本数据估计一个平稳随机信号的功率谱密度叫做功率谱估计(PSD)。它是数字信号处理的重要研究内容之一。功率谱估计可以分为经典功率谱估计(非参数估计)和现代功率谱估计(参数估计)。 功率谱估计在实际工程中有重要应用价值,如在语音信号识别、雷达杂波分析、波达方向估计、地震勘探信号处理、水声信号处理、系统辨识中非线性系统识别、物理光学中透镜干涉、流体力学的内波分析、太阳黑子活动周期研究等许多领域,发挥了重要作用。 Matlab是MathWorks公司于1982年推出的一套高性能的数值计算和可视化软件,人称矩 阵实验室,它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境,成为目前极为流行的工程数学分析软件。也为数字信号处理进行理论学习、工程设计分析提供了相当便捷的途径。本文的仿真实验中,全部在Matlab6.5环境下调试通过;随机序列由频率不同的正弦信号加高斯白噪声组成。 2经典功率谱估计 经典功率谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗。经典功率谱估计方法分为:相关函数法(BT法)、周期图法以及两种改进的周期图估计法即平均周期图法和平滑平均周期图法,其中周期图法应用较多,具有代表性。 1.1相关函数法(BT法) 该方法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。当延迟与数据长度相比很小时,可以有良好的估计精度。 Matlab代码示例1: Fs=500;%采样频率 n=0:1/Fs:1;

脑电信号功率谱

数字信号处理作业 1.两个导联C3,C4位置的脑电信号(已预处理),实验采样频率为 250Hz,每次实验采集8秒数据,总共做了36次实验。依次求出C3,C4位置第1秒~第8秒数据的功率谱。 clc clear load('C:\Users\刘冰\Desktop\数字信号处理\matlab\C3C4.mat') a(1:8,1:512)=zeros(); for j=1:8 for k=0:35; z=fft(Left_C3(((j-1)*250+1+2000*k):(2000*k+j*250)),512); %截取特定的一段数据进行傅里叶变换 a(j,:)=p(j,:)+z.*conj(z)/512; %求其功率谱end a(j,:)=p(j,:)./36;%求平均值 end p(1:8,1:512)=zeros(); for j=1:8 for k=0:35; z=fft(Left_C4((j-1)*250+1+2000*k:2000*k+j*250),512); 、%截取特定的一段数据进行傅里叶变换 p(j,:)=q(j,:)+z.*conj(z)/512; end p(j,:)=q(j,:)./36; end for i=1:8 w=0:2*pi/255:2*pi; figure plot(w/pi,p(i,1:256),'b',w/pi,q(i,1:256),'r')%在一幅图里面显示C3C4功率谱,因为其结果是对称的,所以只取前一半结果 legend('C3','C4');%线段标题

title(['第',num2str(i), '秒 C3、C4脑电功率谱对照']) end 0.20.40.60.81 1.2 1.4 1.6 1.82 0100 200 300 400 500 600 700 第1秒 C3、C4脑电功率谱对照

随机振动(振动频谱)计算(Random Vibration)

Random Vibration 1. 定义 1.1 功率谱密度 当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)。 功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。 1.2 均方根 均方根(RMS)是指将N项的平方和除于N后,开平方的结果。均方根值也是有效值,如对于220交流电,示波器显示的有效值或均方根值为220V。 2. 加速度功率谱密度 2.1 单位 加速度单位:m/s^2或g 加速度功率谱密度单位:(m/s^2)^2/Hz或g^2/Hz Hz单位为:1/s, 所以加速度功率谱密度单位也可写为:m^2/s^3 2.2功率谱密度函数 功率谱密度函数曲线的纵坐标是(g2/Hz)。功率谱曲线下的面积就是随机加速度的总方差(g2): σ2= ∫Φ(f)df 其中:Φ(f)........功率谱密度函数 σ ............. 均方根加速度 3. 计算示例 随机振动100-2000HZ,功率谱密度为0.01g^2/Hz,则其加速度峰值计算如下: σ2=0.01*(2000-100)=19 σ=4.36g 峰值加速度不大于3倍均方根加速度:13.08g

4、SAE J 1455 随机振动要求 4.1功率谱图 4.1.1 Vertical axis 4.1.2 Transverse axis 4.1.3 Longitudinal axis

4.2 Vertical axis加速度计算 功率谱曲线下的面积:σ2=(40-5)0.016+0.5*(500-40)*0.016=4.24σ=2.06g 峰值加速度不大于3倍均方根加速度:6.18g 5. FGE随机振动要求 5.1功率谱图

功率谱和功率谱密度的区别

谱让人联想到的Fourier变换,是一个时间平均(time average)概念,对能量就是能量谱,对功率就是功率谱。 功率谱的概念是针对功率有限信号的,所表现的是单位频带内信号功率随频率的变化情况。保留了频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。 有两点需要注意: 1. 功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列) 2. 功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶矩是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。 频谱分析: 对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω)。频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。 功率谱密度: 功率谱密度(PSD),它定义了信号或者时间序列的功率如何随频率分布。这里功率可能是实际物理上的功率,或者更经常便于表示抽象的信号被定义为信号数值的平方,也就是当信号的负载为1欧姆(ohm)时的实际功率。

由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。 随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。 功率谱与自相关函数是一个傅氏变换对。 功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。从名字分解来看就是说,观察对象是功率,观察域是谱域。 通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于一条直线。 一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。 1. 用相关函数的傅立叶变换来定义谱密度; 2. 用随机过程的有限时间傅立叶变换来定义谱密度; 3. 用平稳随机过程的谱分解来定义谱密度。 三种定义方式对应于不同的用处,首先第一种方式前提是平稳随机过程不包含周

参数法功率谱估计

参数法功率谱估计 一、信号的产生 (一)信号组成 在本实验中,需要事先产生待估计的信号,为了使实验结果较为明显,我产生了由两个不同频率的正弦信号(频率差相对较大)和加性高斯白噪声组成的信号。 (二)程序 N=1024;n=0:N-1; xn=2*cos(2*pi*0.2*n)+ cos(2*pi*0.213*n)+randn(1,1024); 这样就产生了加有白噪声的两个正弦信号 其波形如下

0100200300400500600 -8-6 -4 -2 2 4 6 8 10 (a) 两个正弦信号与白噪声叠加的时域波形 二、参数模型法功率谱估计 (一)算法原理简介 1.参数模型法是现代谱估计的主要内容,思路如下: ① 假定所研究的过程)(n x 是由一个白噪声序列)(n 激励一个因果稳定的可逆线性系统)(z H 的输出; ② 由已知的)(n x ,或其自相关函数)(m r x 估计)(z H 的参数; ③ 由)(z H 的参数来估计)(n x 的功率谱。 2.自回归模型,简称AR 模型,它是一个全极点的模型。“自回归”的含义是:该模型现在的输出是现在的输入和过去p 个输出的加权和。此模型可以表现

为以下三式:

① ∑=+--=p k k n u k n x a n x 1 )()()(; ② ∑=-+==p k k k z a z A z H 111)(1)(; ③ 212 1)(∑=-+=p k jwk k jw x e a e P σ。 3.AR 模型的正则方程建立了参数k a 和)(n x 的自相关函数的关系,公式如下: =)(m r x ∑=--p k x k k m r a 1)( 1≥m 时,=)(m r x 21)(σ+-∑=k r a p k x k 0=m 时。 (二)两种AR 模型阶次的算法 1.Yule-Walker 算法(自相关法) (1)算法主要思想 Yule-Walker 算法通过解Yule-Walker 方程获得AR 模型参数。从低阶开始递推,直到阶次p ,给出了在每一个阶次时的所有参数。公式如下: ① 11 11/])()()([--=-∑+--=m m k x x m m m r k m r k a k ρ; ② )()()(11k m a k k a k a m m m m -+=--;

功率谱密度

功率谱密度 不同形式的数字基带信号具有不同的频谱结构,分析数字基带信号的频谱特性,以便合理地设计数字基带信号,使得消息代码变换为适合于给定信道传输特性的结构,是数字基带传输必须考虑的问题。 在通信中,除特殊情况(如测试信号)外,数字基带信号通常都是随机脉冲序列。因为,如果在数字通信系统中所传输的数字序列是确知的,则消息就不携带任何信息,通信也就失去了意义。故我们面临的是一个随机序列的谱分析问题。 考察一个二进制随机脉冲序列。设脉冲、分别表示二进制码“0”和“1”, 为 码元的间隔,在任一码元时间内,和出现的概率分别为p和1-p。 则随机脉冲序列x(t)可表示成: 其中 研究由上面二式所确定的随机脉冲序列的功率谱密度,要用到概率论与随机过程的有关知识。可以证明,随机脉冲序列x(t)的双边功率谱公式(1): 其中、分别为、的傅氏变换,。 可以得出如下结论: (1)随机脉冲序列功率谱包括两部分:连续谱(第一项)和离散谱(第二项)。对于连续谱而言,由于代表数字信息的及不能完全相同,故,因此,连 续谱总是存在;而对于离散谱而言,则在一些情况下不存在,如及是双极性的脉冲,且出现概率相同时。 (2)当、、p及给定后,随机脉冲序列功率谱就确定了。 上式的结果是非常有意义的,它一方面能使我们了解随机脉冲序列频谱的特点,以及如何去具体地计算它的功率谱密度;另一方面根据它的离散谱是否存在这一特点,将使我们明确能否从脉冲序列中直接提取离散分量,以及采取怎样的方法可以从基带脉冲序列中获得所需的离散分量。这一点,在研究位同步、载波同步等问题时,将是十分重要的;再一方面,根据它的连续谱可以确定序列的带宽(通常以谱的第一个零点作为序列的带宽)。 下面,以矩形脉冲构成的基带信号为例,通过几个有代表性的特例对功率谱密度公式的应用及意义做进一步的说明,其结果对后续问题的研究具有实用意义。

参数法功率谱估计

参数法功率谱估计 一、 信号的产生 (一)信号组成 在本实验中,需要事先产生待估计的信号,为了使实验结果较为明显,我产生了由两个不同频率的正弦信号(频率差相对较大)和加性高斯白噪声组成的信号。 (二)程序 N=1024;n=0:N-1; xn=2*cos(2*pi*0.2*n)+ cos(2*pi*0.213*n)+randn(1,1024); 这样就产生了加有白噪声的两个正弦信号 其波形如下 0100200300400500600 -8 -6-4-202468 10(a) 两个正弦信号与白噪声叠加的时域波形

二、参数模型法功率谱估计 (一)算法原理简介 1.参数模型法是现代谱估计的主要内容,思路如下: ① 假定所研究的过程)(n x 是由一个白噪声序列)(n ω激励一个因果稳定的可逆线性系统)(z H 的输出; ② 由已知的)(n x ,或其自相关函数)(m r x 估计)(z H 的参数; ③ 由)(z H 的参数来估计)(n x 的功率谱。 2.自回归模型,简称AR 模型,它是一个全极点的模型。“自回归”的含义是:该模型现在的输出是现在的输入和过去p 个输出的加权和。此模型可以表现为以下三式: ① ∑=+--=p k k n u k n x a n x 1)()()(; ② ∑=-+== p k k k z a z A z H 111) (1 )(; ③ 2 12 1)(∑=-+= p k jwk k jw x e a e P σ。 3.AR 模型的正则方程建立了参数k a 和)(n x 的自相关函数的关系,公式如下: =)(m r x ∑=--p k x k k m r a 1 )( 1≥m 时,=)(m r x 21 )(σ+-∑=k r a p k x k 0=m 时。

基于matlab的脑电信号处理

航空航天大学基于Matlab的脑电信号处理 陆想想 专业领域生物医学工程 课程名称数字信号处理

二О一三年四月

摘要:脑电信号属于非平稳随机信号,且易受到各种噪声干扰。本文基于Matlab仿真系统,主要研究了小波变换在脑电信号处理方面的应用,包括小波变换自动阈值去噪处理、强制去噪处理,以α波为例,提取小波分解得到的各层频率段的信号,并做了一定的分析和评价。关键词:脑电信号;小波变换;去噪重构;频谱分析 0 引言 脑电信号EEG(Electroencephalograph)是人体一种基本生理信号,蕴涵着丰富的生理、心理及病理信息,脑电信号的分析及处理无论是在临床上对一些脑疾病的诊断和治疗,还是在脑认知科学研究领域都是十分重要的。由于脑电信号的非平稳性且极易受到各种噪声干扰,特别是工频干扰。因此消除原始脑电数据中的噪声,更好地获取反映大脑活动和状态的有用信息是进行脑电分析的一个重要前提。本文的研究目的是利用脑电采集仪器获得的脑电信号,利用Fourier变换、小波变换等方法对脑电信号进行分析处理,以提取脑电信号α波的“梭形”节律,并对脑电信号进行功率谱分析和去噪重构。 1 实验原理和方法 1.1实验原理 1.1.1脑电信号 根据频率和振幅的不同,可以将脑电波分为4种基本类型[1],即δ波、θ波、α波、β波。4种波形的起源和功能也不相同,如图1所示。 图1 脑电图的四种基本波形 α波的频率为8~13Hz,振幅为为20~100μV,它是节律性脑电波中最明显的波,整个皮层均可产生α波。正常成人在清醒、安静、闭目时,波幅呈现有小变大,再由大变小,如此反复进行,形成所谓α节律的“梭形”。每一“梭形”持续时间约为1~2s。当被试者睁眼、警觉、思考问题或接受其他刺激时,α波立即消失而代之以快波,这种现象称之为

随机振动功率谱密度

701z 0102030 4050607080 0.002 0.0040.0060.0080.01 0.0120.014 0.016频率(Hz) 功率谱密度 功率谱密度函数图(汉宁窗) 10 20 30 4050 60 70 80 -65-60-55-50-45-40-35-30 -25-20 -15频率(Hz) 功率谱密度(d B ) 功率谱密度函数图(汉宁窗)

经过matlab 频率加权法,利用功率谱密度函数计算得到加权加速度均方根值0.1378m/s2(70km/h,z 方向,第一次试验,前排) 0.1378 0102030 4050607080 0.5 1 1.5 2 2.5 -3 频率(Hz) 功率谱密度 频率加权后功率谱密度函数图(汉宁窗)

701y 0102030 4050607080 1 2 3 4 5 6 7 -3 频率(Hz) 功率谱密度 功率谱密度函数图(汉宁窗) 10 20 30 4050 60 70 80 -70-65-60-55-50-45-40-35 -30 -25-20频率(Hz) 功率谱密度(d B ) 功率谱密度函数图(汉宁窗)

经过matlab 频率加权法,利用功率谱密度函数计算得到加权加速度均方根值0.0164m/s2(70km/h,y 方向,第一次试验,前排) 0102030 4050607080 0.5 1 1.5 2 2.5 3 -5 频率(Hz) 功率谱密度 频率加权后功率谱密度函数图(汉宁窗)

701x 0102030 4050607080 0.20.40.60.811.2 1.41.61.8 -3 频率(Hz) 功率谱密度 功率谱密度函数图(汉宁窗) 0102030 4050607080 -70 -65-60-55-50-45-40 -35-30 -25频率(Hz) 功率谱密度(d B ) 功率谱密度函数图(汉宁窗)

高层建筑地震作用计算的时域显式随机模拟法

文章编号 5777=4>4?!6758"75=7753=57!"##57<5@774A B587 华南理工大学亚热带建筑科学国家重点实验室项目 6753e I75 作者简介 苏成 5?4> ! 男 广东潮阳人 工学博士 教授 X=O'+( 0K0J2$^20$/:1,$:0& 收稿日期 675@年3月 35

脑电图(EEG)和事件相关电位(ERP)的区别

脑电图(EEG)和事件相关电位(ERP)的区别

脑电图(EEG)和事件相关电位(ERP)有什么区别? (一)脑电图(EEG)检查:是在头部按一定部位放置8-16个电极,经脑电图机将脑细胞固有的生物电活动放大并连续描记在纸上的图形。正常情况下,脑电图有一定的规律性,当脑部尤其是皮层有病变时,规律性受到破坏,波形即发生变化,对其波形进行分析,可辅助临床对及脑部疾病进行诊断。 脑波按其频率分为:δ波(1-3c/s)θ波(4-7c/s)、α波(8-13c/s)、β波(14-25c/s)γ波(25c/s以上),δ和θ波称为慢波,β和γ波称为快波。依年龄不同其基本波的频率也不同,如3岁以下小儿以δ波为主,3-6岁以θ波为主,随年龄增长,α波逐渐增多,到成年人时以α波为主,但年龄之间无明确的严格界限,如有的儿童4、5岁枕部α波已很明显。正常成年人在清醒、安静、闭眼时,脑波的基本节律是枕部α波为主,其他部位则是以α波间有少量慢波为主。判断脑波是否正常,主要是根据其年龄,对脑波的频率、波幅、两侧的对称性以及慢波的数量、部位、出现方式及有无病理波等进行分析。许多

脑部病变可引起脑波的异常。如颅内占位性病变(尤其是皮层部位者)可有限局性慢波;散发性脑炎,绝大部分脑电图呈现弥漫性高波幅慢波;此外如脑血管病、炎症、外伤、代谢性脑病等都有各种不同程度的异常,但脑深部和线部位的病变阳性率很低。须加指出的是,脑电图表现没有特异性,必须结合临床进行综合判断,然而对于癫痫则有决定性的诊断价值,在阗痫发作间歇期,脑电图可有阵发性高幅慢波、棘波、尖波、棘一慢波综合等所谓“痛性放电”表现。为了提高脑电图的阳性率,可依据不同的病变部位采用不同的电极放置方法。如鼻咽电极、鼓膜电极和蝶骨电极,在开颅时也可将电极置于皮层(皮层电极)或埋入脑深部结构(深部电极);此外,还可使用各种诱发试验,如睁闭眼、过度换气、闪光刺激、睡眠诱发、剥夺睡眠诱发以及静脉注射美解眠等。但蝶骨电极和美解眠诱发试验等方法,可给病人带来痛苦和损害,须在有经验者指导下进行。随着科技的日益发展,近年来又有了遥控脑电图和24小时监测脑电图。 (二)脑电地形图(BEAM) 是在EEG的基础上,将脑电信号输入电脑内

(完整word版)随机振动分析报告

Alex-dreamer制作PSD:(可以相互传阅学习,但是鄙视那些拿着别人成果随意买卖!)PSD随机振动应用领域很广,比如雷达天线,飞机,桥梁,天平,地面,等等行业。虽然现在对这方面公开资料很少,但是我相信以后会越来越多,发展的越来越成熟。学术的浪潮总体是向前的,不会因为几个大牛保密自己的成果就会阻止我们对PSD研究,因此结合我的经验和爱好,我研究了一下两种PSD加载分析。我标价的原则是含金量大小和花费我的时间以及我的经验值,如果你觉得值,就买;不值就不要下了。因为我始终认为:士为知己者死,女为悦己者容。算是互相尊重。如果你得到这份资料,那就祝你好运! Good luck!-Alex-dreamer(南理工) 一:目的:根据abaqus爱好者提出的PSD随机振动分析,提出功率谱如何定义及如何加载?如果功率谱是加速度的平方,如何加载?如果在输入点施加载荷功率谱如何定义?本文将给出详细的分析过程。 二:随机振动基本概念 1. 随机振动的输入量和输出量都是概率统计值,因此存在不确定性。输入量为PSD (功率谱密度)曲线,分为加速度、速度、位移或者力的PSD曲线;最常见的是加速度PSD,常用语BASE MOTION基础约束加载。 2. 随机振动的响应符合正态分布,PSD实际上是随机变量的能量分布,也就是在不同频率上的方差值,反映不同频率处的振动能量,PSD曲线所围成的面积是随机变量总响应的方差值; 3. RMS为随机变量的标准方差,将PSD曲线包络面积开平方即为RMS。 4. 随机振动输出的位移、应力、应变等值都是对应不同频率的方差值(即PSD值),量纲为x^2,当然也可以输出这些变量的均方根值(即RMS值);abaqus6.10以上版本可以直接在场变量里面输出设置。见下文。 5. 如果是单个激励源,定义为非相关性分析,如是多个激励源,则需要定义相关性参数。因此出现type=uncorrelated。 三:模型简介: 1)该模型很简单,是hypermesh中一个双孔模型。 2)网格划分在hypermesh中完成,保证了雅克比>0.7以及网格其它质量的要求。网格与几何具有较高的吻合度。 3)方案1(对应connect模型):在上方两个孔采用全约束方式,且加载的功率谱PSD密度是加速度功率谱,也就是说基于BASE基础约束,进行随机振动 PSD分析。结果分析底部孔处某节点的结果响应。 4)方案2(对应connect模型):在底部圆孔施加载荷force类型的功率谱PSD,与前者不同的是,这个不是基础施加PSD,而上某输入位置施加PSD。

5.3 信号功率谱与带宽

第5章随机信号与线性系统5.1 线性时不变系统 5.2 平稳白噪声通过LTI系统 5.3 信号功率谱与带宽 5.4 噪声中的信号处理 5.5 平稳序列通过离散LTI系统

5. 3 信号功率谱与带宽

例 正交性的影响。

解: 1212(,)[()()] UV R t t E U t V t =12 ()()()*() UV XY R R h h ττττ∴=??* 12 ()()()()UV XY S S H j H j ωωωω=2221211211(()())()h Y t h X t d E d ξξξξξξ∞∞∞∞????=?????∫∫112211221211222112 ()()[()()]()()[)]XY h h E X t Y t d d h h R d d ξξξξξξξξτξξξξ∞∞?∞?∞ ∞∞?∞?∞=??=+?∫∫∫∫

讨论: 1.如果X(t )与Y(t )正交,有则,即U(t )与V(t ) 正交 2.如果X(t )与Y(t )无关,有则所以即U(t )与V(t )也是无关0)(=τXY R 0)(=τUV R ()XY X Y R m m τ=()()0 UV UV U V C R m m ττ=?=12(0)((0))Y X UV V U m H j R m j m H m τ==()2() XY X Y S m m ωπδω=*122(0)(0) X Y m m H j H j π=*12 ()()()() UV XY S S H j H j ωωωω∴=

3.如果与的非零频带互不重叠, 则,,即U(t)与V(t)正交 又若与至少有一个为零;使或则即U(t)与V(t)正交且无关。 4.即使X(t)=Y(t),若与分别是不 同频带的BPF ; 则同样有即U(t)与V(t)正交且无关。 1()H j ω2()H j ω0)(=ωUV S 1(0)H j 2(0)H j 0 )()(==ττUV UV C R )(1ωH )(2ωH 0 )()(==ττUV UV C R 0U m =0 V m =

功率谱估计方法的比较

功率谱估计方法的比较 摘要: 本文归纳了信号处理中关键的一种分析方法, 即谱估计方法。概述了频谱估计中的周期图法、修正的协方差法和伯格递推法的原理,并且对此三种方法通过仿真做出了对比。 关键词:功率谱估计;AR 模型;参数 引言: 谱估计是指用已观测到的一定数量的样本数据估计一个平稳随机信号的谱。由于谱中包含了信号的很多频率信息,所以分析谱、对谱进行估计是信号处理的重要内容。谱估计技术发展 渊源很长,它的应用领域十分广泛,遍及雷达、声纳、通信、地质勘探、天文、生物医学工程等众多领域,其内容、方法都在不断更新,是一个具有强大生命力的研究领域。谱估计的理论和方法是伴随着随机信号统计量及其谱的发展而发展起来的,最早的谱估计方法是建 立在基于二阶统计量, 即自相关函数的功率谱估计的方法上。功率谱估计的方法经历了经典谱估计法和现代谱估计法两个研究历程,在过去及现在相当长一段时间里,功率谱估计一直占据着谱估计理论里的核心位置。经典谱估计也成为线性谱估计,包括BT 法、周期图法。现代谱估计法也称为非线性普估计,包括自相关法、修正的协方差法、伯格(Burg )递推法、特征分解法等等。 原理: 经典谱估计方法计算简单,其主要特点是谱估计与任何模型参数无关,是一类非参数化的方法。它的主要问题是:由于假定信号的自相关函数在数据的观测区间以外等于零,因此估计出来的功率谱很难与信号的真实功率谱相匹配。在一般情况下,经典法的渐进性能无法给出实际功率谱的一个满意的近似,因而是一种低分辨率的谱估计方法。现代谱估计方法使用参数化的模型,他们统称为参数化功率谱估计,由于这类方法能够给出比经典法高得多的频率分辨率,故又称为高分辨率方法。下面分别介绍周期图法、修正的协方差法和伯格递推法。修正的协方差法和伯格递推法采用的模型均为AR 模型。 (1)周期图法 周期图法是先估计自相关函数, 然后进行傅里叶变换得到功率谱。假设随机信号x(n)只观测到一段样本数据,n=0, 1, 2, …, N -1。根据这一段样本数据估计自相关函数,如公式(1) 对(1)式进行傅里叶变换得到(2)式。 ??? ? ????+=∑-=∞ →2 j j e )(121lim )e (N N n n N xx n x N E P ωω ∑--=+= 1||0 *) ()(1 )(?m N n xx m n x n x N m r

噪声和音乐对脑电功率谱的影响

噪声和音乐对脑电功率谱的影响 袁全刘兴华李大琛刘玉盛王海荔 航天医学工程研究所(北京100094) 在航天环境中由于失重、噪声以及长期隔离会使航天员产生焦虑、烦躁、忿怒等一系列精神症状从而导致工作效率的降低。因而在航天中航天员自始自终都处于心理生理应激状态,这种应激状态主要表现为以情绪紧张、运动失调和植物性神经机能紊乱为特征的症候群。解决这一问题的关键是要求航天员的心理训练和支持小组采用各种有效的方法对其进行训练,以预防和缓解航天员在航天中的不良情绪及紧张状态。国内外有关心理放松训练的方法较多,但涉及到航天员的心理放松训练的研究报道较少,因而应根据每个航天的个性特点探索一套行之有效的方法,其中音乐放松训练就是一种有效的方法。本文通过分析12名飞行员在音乐声和噪声状态下的脑电功率谱的变化规律探讨了航天员心理放松训练方法。 方法 被试者为12名男性,右利手,年龄为30±0.58岁,经临床检查无中枢神经系统疾病,临床脑电图检查均为正常。实验按以下3种状态连续进行,每种状态持续6min,每种状态之间间隔3min:(1)背景噪声为30~32dB的安静状态;(2)声压级为70dB的噪声状态;(3)声压级为70dB的中国名乐。声源爱华录放机及带有功率放大器的有源音箱组成,噪声声级由经过精密声级(BK2231)校准的声级计(BK2236)监测,声级波动范围不大于2dB。脑电记录系统采用英国OXFORD Medilog MR95型16导数字式动态脑电记录系统记录,单极导联按国际法10-20系统取前额、中额、中央、顶、枕、前颞、中颞、后颞区(FP1、FP2、F3、F4、C3、C4、P3、P4、O1、O2、F7、F8、T3、T4、T5、T6)16个部位放置头皮电极,以耳电极(A1-A2)为无关电极,控制头皮阻抗小于5kΩ,脑电波的采样率为208Hz,记录和采集3种状态下的16导的脑电信号。 采用北京富立叶研究所研制的动态脑电后处理系统对记录数据进行分析。分析内容包括脑电信号的数字滤波;应用参数化模型(AR模型)方法计算16导脑电6个频段的功率谱密度,6个频段定义如下:δ (0.25~3.00)、θ (3.25~7.00)、α1 (7.25~10.00)、α2 (10.25~13.00)、β1 (13.25~20.00)、β2 (20.25~30.00)。组间数据比较由t 检验测定差别是否具有显著意义。 结果 与安静状态比较,在δ频段听音乐和听噪声时的脑电能量都有呈增高趋势;在θ频段听音乐时脑电能量增高,听噪声时脑电能量降低;在α1频段听音乐时脑电能量降低,听噪声时的能量变化与平静状态相比没有明显变化。在α2、β1、β2、3个频段则3种状态下的脑电能量没有明显变化。在安静状态下,α主峰在α1频段,在音乐状态下,α主峰没有移动仍在α1频段,但主峰能量降低,噪声状态下变化不明显。 三种状态的统计学检验结果(表1、2) 噪声状态和安静状态以及安静状态和音乐状态脑电能量变化的比较在统计学上显著性差异。噪声状态和音乐状态的脑电能量的变化比较在统计学上有显著性差异。从频域的变化来看,乐声状态脑电能量在α1频段呈明显减少趋势,在θ频段呈增加趋势,在其他频段则无明显改变。 从空间域的变化来看,θ频段:听完乐声后脑电的能量较听完噪声后的脑电能量在右额区、中 额区及左右前颞区明显增加。α1频段:听完乐声后脑电能量较听完噪声后的脑电能量在额区、中央区、前颞区明显减少。因此,变化主要集中在前额颞各中央区,而顶枕区的变化不明显。 讨论 精神因素对脑电活动有很大影响,早在30年代,Berger就已观察到在注意力集中或精神紧张时,