量子力学的发现物理学史论文定稿版

量子力学的发现物理学史论文定稿版
量子力学的发现物理学史论文定稿版

量子力学的发现物理学史论文精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

物理学史教程论文

题目:量子力学的发现

学院:物理工程学院

专业:物理学

姓名:薛建朝

学号:2010220****

量子力学的发现

薛建朝

(郑州大学物理学 2010220****,河南郑州)

摘要:量子力学的建立是物理学发展史上一个举足轻重的阶段,或许是最重要的阶段。在20世纪人类所取得的科学成就中,量子力学成就最大 。量子力学在推动社会和发展和物理理论本身上意义都是十分巨大的。

关键词:量子、不确定性、社会发展、标准模型、宇宙起源

一、量子力学简介

我之所以以“量子力学”为主题,是因为我太不了解它。量子是可以接受的,但不确定性让我从心底感到厌恶,有点像敬仰的爱因斯坦,怀念着经典物理世界的因果律。然而相比

之下,追求真理的信仰是强大的,世界因不确定性的存在变得丰富多彩;而单调是可怕的,让我们的头脑也死气沉沉。

量子力学的出现,从一开始就极富想象力和创造性的,以致于连其创始者——马克斯·普朗克(Max Plank),也很后悔当时提出“量子说”①。普朗克为解释黑体辐射能量密度分布公式,在1900年12月14日的德国物理学会提出:电磁辐射的能量交换是量子化的①,严重冲击了物理学界长期信奉的一切自然过程都是连续的原则,与经典理论格格不入,因而当时物理学界对普朗克的工作反应极为冷淡②。

之后的五年中,没有人对普朗克的能量子加以理会。直到1905年,爱因斯坦(Albert Einstein)对此作了发展,提出光的量子说,成功解释了光电效应。他假定光的能量也是量子化的,光在空间的传播正想粒子那样运动。这种粒子后来被称为光量子或光子①。但这一理论同样受到广大物理学家的强烈反对,普朗克也认为爱因斯坦的光量子理论“走的太远”②。

1913年,丹麦物理学家尼尔斯·玻尔(Niels Henrik David Bohr)把当时人们持极大怀疑的普朗克、爱因斯坦的量子化,当时无人承认的卢瑟福模型,与表面上毫不相干的、当时属于化学范畴的光谱实验巧妙地结合了起来,解释了近30年之谜——巴尔末氢光谱公式,建立了玻尔模型。玻尔认为,电子在定态轨道上,其角动量是量子化的。

至此,旧量子论基本形成。旧量子论虽然解释了一些现象,但不论在逻辑上还是在对实际问题的处理上,都有严重的缺陷与不足。从普朗克提出量子论的二十余年中,人们始终没有领回它的基本原理。

随后一群为数不多但聪明绝顶的青年物理学家仅用了大约三年时间就在前人基础上创立了描述原子和量子过程的新理论——量子力学。这其中尤其要提到海森伯(Werner Heisenberg)、泡利(Wolfgang Pauli)和薛定谔(Erwin Schrodinger)这三位青年才俊,他们在1928年分别只有27岁、28岁和36岁③。

爱因斯坦在1905年和1917年提出了光子的波粒二象性,并为康普顿实验进一步证明。法国青年路易·德布罗意(Louis Victor de Broglie)视爱因斯坦为偶像,认为:“爱因斯坦的光的波粒二象性乃是遍及整个物理世界的一种绝对普遍现象。”他把光的波粒二象性推广到了所有的物质粒子,从而朝创造量子力学迈开了革命性的一步①。

在1925年至1928年之间,海森伯创建矩阵力学,提出不确定原理;泡利提出泡利不相容原理;薛定谔提出薛定谔方程,并与玻恩建立波动力学。薛定谔还证明矩阵力学和波动力学可以通过数学变换从一种理论转换到另一种理论,。后来人们把矩阵力学和波动力学合在一起,统称为量子力学。

1928年,狄拉克(Paul Adrien Maurice Dirac)提出了电子运动的满足相对论不变性的波动方程,将相对论、量子理论和自选这些在之前看来似乎风马牛不相及的概念和谐地综合起来,完成了相对论量子力学的建立②。

二、量子力学发现的意义

量子力学的建立是物理学发展史上一个举足轻重的阶段,或许是最重要的阶段。在20世纪人类所取得的科学成就中,量子力学成就最大③。量子力学在推动社会发展和物理理论本身上意义都是十分巨大的。

1、量子力学在推动社会发展上作用重大

正是利用量子力学这门学科,人们才得以制造出激光器、晶体管、隧道显微镜和移动电话。在当今世界,超过三分之一的国民生产总值源于量子物理学。下面我将简单举例,以说明量子力学在社会生活中的广泛影响。

提到现代生活,我们就不得不提多种多样的电子设备。无论是电脑、手机还是彩电、空调,它们都离不开半导体和晶体管,更广泛的说,它们源于现代固体物理,是以量子力学为基础的。我们的生活正步入智能化,不仅是工作、娱乐,以慢慢延伸至洗衣、做饭、洗澡等生活的方方面面。

激光的应用也已深入到生产、通讯、军事、生活的许多方面。早在1917年,爱因斯坦就提出受激发射的概念;至1960年,激光器才被研制出来,并因此产生多项诺贝尔奖。现在也有激光切割、激光通讯、激光武器、激光打印机等多种激光产品。

在能源方面,可以借助光电效应研制太阳能电池。太阳能电池的发电方式有两种:一种是光-热-电,另一种是光-电。后一种可利用半导体光电二极管将光能直接转变成电能,当多个电池串联起来就可以成为有比较大的输出功率的太阳能方阵。太阳能是新型清洁能源,现已从军事、航天领域进入工业、农业、家用、公共设施等方面 。

另外,扫描隧道显微镜、量子计算机在科学研究要求日益苛刻的情况下起到重要作用;量子通信、量子密码等技术也在迅速推广。

由于文章篇幅所限,只能罗列量子力学在生活、生产、能源、科研等方面的应用。相信在21世纪,量子力学的成果将深入到社会生活的更多方面。

2、量子力学对物理理论的影响

量子物理学是一门以分子、原子和原子核为研究对象的学科③。但量子力学对物理理论的贡献并不局限于其研究领域,对天文学、基本粒子物理学都有重要作用。而且量子力学和相对论的出现引起了统一理论的思考,推动着我们对世界真相的认识。

(1)量子力学在其研究领域的成果

量子力学首先打破了经典物理学的束缚,向我们揭示了一个量子化的、不确定的、有激发态的世界。物理学中的许多现象,例如原子、分子和原子核的大小以及原子和原子核的化学键或稳定性,都无法在经典力学的框架内得到理解,但量子力学让我们搞明白了这些现象③。

不仅如此,海森伯和泡利还将领子力学和相对论结合在一起,提出了相对论性量子场论。量子电动力学详细描述了垫子和光子的相互作用,后来用量子色动力学成功描述了夸克和胶子是如何相互作用的③。在此基础之上,物理学家提出“标准模型”,几乎为所有已知的基本例子现象提供了一个显然正确的、完备的而且前后一致的描述⑤。

(2)量子力学对其他学科的贡献

记得中学课本中有条蟒蛇自己咬住了自己的尾巴,说的是物理学想着微观和宏观两个方向发展,却发现物理学的微观世界和大尺度空间有着巨大的相似性和关联性,微观与宏观的研究也就联系到了一起。量子力学就是一门研究微观世界的学科,但是从事宇宙学和天体物理学研究的物理学家运用量子物理学来探究宇宙的起源和恒星的动力学。大爆炸理论告诉我们,宇宙的产生源于一个无限小的点,对这个小点,到底采用量子力学还是相对论进

行研究,一直在争论、前进着。恒星动力学是研究恒星集团在引力作用下的空间分布、运动状态和系统的动力学演化的学科⑥,知识有限,不敢妄加评论。

另外,量子物理学作为一门研究微观粒子运动规律的学科,为基本粒子物理学奠定了基础。同样,没有量子力学,就不可能有现代固体物理学。量子力学对于化学和分子物理学也十分重要,只有借助于量子力学,人们才可能理解原子是如何束缚在一起组成分子的。(3)量子力学推动着我们对世界的认识

首先,我们不得不承认,我们对量子力学缺乏足够认识。他的基本原理是什么,如何去思考它,它到底“意味”着什么,至今没有普遍一致的看法。任何一个有能力的物理学家可以“谈论”量子力学,但是我们告诉我们自己关于我们正在做什么的故事就像舍赫拉查德传说一样千变万化,几乎是难以置信的。波尔曾说过,“如果你没有被量子力学搞迷惑,则你根本就没有理解量子力学”;费恩曼曾评述过,“我想我可以有把握地说,没有人明白量子力学。”⑦

另外,我们还有很多具体问题没有解决:怎样处理被标准模型忽落掉的引力是什么导致了弱点对称性的破缺,从而使得弱相互作用力很弱,并给出了大多数粒子的质量什么是暗能量什么是暗物质标准模型比它初看起来的样子要更为错综复杂⑤。

我们还没有忘记爱因斯坦与玻尔的争论,大统一理论仍在进行。与标准模型所走道路不通,一些当代顶尖的物理学家致力于弦理论的研究。后者认为,“上帝粒子”是弦而不是粒子,我们的世界有11维空间。多么神奇的理论,可惜至今无法用实验证实。

我们生活在一个怎么的世界?21世纪我们是否能解答摆在面前的物理问题但确定的是,我们的认识还未成熟,对问题的解答很可能是革命性的,要像创立量子学说时一样,需要想象,需要勇气。愿我们这一代,能像物理前辈一样,善于思考,敢于想象,甘心奉献,给人类一个清晰的世界。

参考文献:

杨福家,原子物理学(第四版),高等教育出版社,2008.4

仲扣庄,物理学史教程,南京师范大学出版社,2009.4

哈拉尔德·费里奇,你错了,爱因斯坦先生,邢志忠、邢紫烟译,上海科技教育出版社,2012.3

方秀荣,量子力学的几个应用,道客巴巴,2013.6

谢尔登·李·格拉肖,你错了,爱因斯坦先生-序言,邢志忠、邢紫烟译,上海科技教育出版社,2012.3

百科ROBOT,恒星动力学,百度百科,2010.6

大卫·J·格里菲斯,量子力学概论,贾瑜等译,机械工业出版社,2011.7

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925 年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理 量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分 支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。 它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。

量子力学期末考试题解答题

1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子。爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。这就是量子力学中的态叠加原理。态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。它反映了微观粒子的波粒二象性矛盾的统一。量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值。这种状态称为定态。定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号。量子力学中采用算符来表示微观粒子的力学量。如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

量子力学论文

量子理论及技术的发展 【摘要】本文简述了在量子力学的发展过程中所带动的激光、半导体、扫描 隧道显微镜、量子信息等技术的形成及影响,并借此强调了基础理论对于技术发明的重要性。 【关键词】量子力学激光半导体扫描隧道显微镜量子信息 回顾科技史,以量子论、相对论为代表的近代物理学掀起了以能源、材料、信息为代表的现代技术革命,其中量子理论在形成中便带动了相关技术群的出现并促进了自身研究的深入和拓展。 一、从“光量子假说”到激光技术 1900年,德国物理学家普朗克为了解决有关热辐射现象的“黑体辐射”难题,提出了“普朗克假设”,其“能量子”概念的提出标志着量子力学的诞生。随后,爱因斯坦于1905年提出了“光量子假说”以解释“光电效应”,使人们对能量量子化的认识更深入了一步的认识。1916年,爱因斯坦指出辐射有两种形式:自发辐射和受激辐射,从而为激光器的发明奠定了理论基础。 激光器在技术上的最终实现得益于二战后对与雷达相关的微波的深人研究。其中标志性的工作有:1933年拉登伯格观测到了负色散现象;1939年法布里坎特指出辐射放大的必要条件是实现粒子数反转;1946年布洛赫观察到了粒子数反转的信号;1951年珀塞尔第一次在实验中实现了粒子数反转并观察到了受激辐射;1951年汤斯首次提出实现微波放大的可能性;1954年汤斯等人成功地制成了世界上第一台“辐射的受激发射微波放大”的装置(简称脉塞Maser);1958年汤斯和肖洛论证了把微波激射技术扩展到 论的又一重大课题。在量子力学建立前,特鲁特于1900提出了经典的金属自由电子气体模型,定性的解释了金属的电导和热导行为,但得到的定量比热关系在低温时与实验 偏离较大。1907年爱因斯坦应用了量子假说,所得结果得到了能斯特的实验验证和大力宣传,使量子论开始被人们认识,从而打开了迅速发展的局面。从1913年玻尔提出半 经典的量子论原子模型到1928年狄拉克发表电子的相对红外区和可见光区的可能性。最终,美国休斯研究所的梅曼于1960年成功制造并运转了第一台激光器——红宝石脉冲激光器,同年12月贾万研制出第一台气体激光器——氦氖激光器。 这两种激光器的相继问世引起了全世界科技界研究激光的热潮,各种激光器陆续出现。其中有可获得大功率脉冲的钕激光器,连续输出大功率的二氧化碳激光器,可在室温下工作的小型半导体激光器,从化学反应获得能量的化学激光器,光谱线很宽的可以连续改变激光输出波长的染料激光器。后来,还出现了自由电子激光器、准分子激光器、离子激光器等等。激光的波长范围已扩展到从红外到紫外以至x射线的所有波段,激光的应用更涉及到从日常生活到高新科技各个领域.如工业上的激光切割、焊接、打孔、表面改性、测距、大气污染分析;生物上的激光育种、水产养殖、品种改良、生命活细胞的全息照相;医疗上的激光外科手术、诊断;军事上的激光制导炸弹、强激光武器;此外,激光还应用于通信、光盘、分离同位素、激光核聚变等许多方面。

量子力学期末考试试卷及答案集复习过程

量子力学期末考试试卷及答案集

量子力学试题集 量子力学期末试题及答案(A) 选择题(每题3分共36分) 1.黑体辐射中的紫外灾难表明:C A. 黑体在紫外线部分辐射无限大的能量; B. 黑体在紫外线部分不辐射能量; C.经典电磁场理论不适用于黑体辐射公式; D.黑体辐射在紫外线部分才适用于经典电磁场理论。 2.关于波函数Ψ的含义,正确的是:B A. Ψ代表微观粒子的几率密度; B. Ψ归一化后,ψ ψ* 代表微观粒子出现的几率密度; C. Ψ一定是实数; D. Ψ一定不连续。 3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片; B.偏振光子先改变偏振方向,再通过偏振片; C.偏振光子通过偏振片的几率是不可知的; D.每个光子以一定的几率通过偏振片。 4.对于一维的薛定谔方程,如果Ψ是该方程的一个解,则:A A. * ψ 一定也是该方程的一个解; B. * ψ 一定不是该方程的解; C. Ψ与* ψ 一定等价; D.无任何结论。 5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D粒子不能穿过势垒。 6.如果以∧ l表示角动量算符,则对易运算] , [ y x l l 为:B A. ih ∧ z l 收集于网络,如有侵权请联系管理员删除

收集于网络,如有侵权请联系管理员删除 B. ih ∧ z l C.i ∧ x l D.h ∧ x l 7.如果算符 ∧A 、∧B 对易,且∧ A ψ =A ψ,则:B A. ψ 一定不是∧ B 的本征态; B. ψ一定是 ∧ B 的本征态; C.*ψ一定是∧ B 的本征态; D. ∣Ψ∣一定是∧ B 的本征态。 8.如果一个力学量 ∧ A 与H ∧ 对易,则意味着 ∧ A :C A. 一定处于其本征态; B.一定不处于本征态; C.一定守恒; D.其本征值出现的几率会变化。 9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒。 10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev 11.三维各向同性谐振子,其波函数可以写为nlm ψ ,且 l=N-2n ,则在一确定的能量 (N+23 )h ω下, 简并度为:B A. )1(21 +N N ;

浅谈量子力学的前沿进展

量子力学论文 题目:浅谈量子力学的前沿进展 学院: 专业: 学号: 姓名: 时间:2014年7月1日 指导教师:

浅谈量子力学的前沿进展 摘要:量子力学是在19世纪末发展起来的一门新科学,而且它还一直处于不断地发展中,在自然科学中具有重要作用。量子力学的规律已成功地运用于各个领域,物理、材料、化学、生命、信息和制药等,量子力学与我们的生活密切相关。量子力学是研究微观粒子的运动规律,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论。量子力学诞生至今一百年。经过一百年的发展,它由原子层次的动力学理论,已经向物理学和其他学科以及高新技术延伸。而事实上,它已超出物理学范围;它不仅是现代物质科学的主心骨,又是现代科技文明建设的主要理论基础之一。本文将对量子力学目前的发展、应用以及前沿进展做出阐述。

关键词:量子力学;发展;前沿 Abstract Quantum Mechanics was a new subject that was formulated at the end of the 19th century and is still under development. It plays a key role in natural sciences. The theory of Quantum Mechanics is applied to a variety of areas, such as physics, materials, chemistry, life science, informatics and pharmacy and is closely related to our daily life. Quantum Mechanics is a basic theory that studies the motion law of microscopic particles and studies mainly atoms, molecules, condensed matter, and the structure and nature of atomic nucleus and fundamental particles. It has been one hundred years up to now when Quantum Mechanics was founded. It extended from kinetic theory at atomic level to Physics and other subjects and high-tech within one hundred years of development. As a matter of fact, it has beyond the scope of Physics; it is not only the backbone of modern matter science, but also one of the main theoretical basis of modern science and civilization construction. This paper will make a simple exposition for the modern development, application and leading edge of Quantum Mechanics.

有量子力学发展史谈一谈物理学研究方法汇总

量子力学理论体系的发展,从二十世纪初开始,经历了半个多世纪,积累了十二项诺贝尔物理学奖的成果才形成的。 德国物理学家普朗克因发现能量子而对物理学的发展做出杰出贡献,荣获1918 年度诺贝尔物理学奖。他 1895 年开始研究热辐射问题,1900 年普朗克在德国物理学会年会上宣读了《关于正常光谱的能量分布定律》的论文。他指出能量在辐射过程中不是连续的,而是如一股股的涓流似的被释放。这股涓流就是量子,而量子的能量只决定于频率 v,即 E=hv,h = 6.63×10 ?34 J ? S,h 为作用量子,后人称之为普朗克常数,作用量子在物理学中是一种崭新的、前所未闻的事物,它要求从根本上修改我们自从牛顿和莱布尼兹在一切因果关系的连续性基础上创立了微积分以来的全部物理概念。真正认识量子论的价值并大大开拓其应用疆界的是爱因斯坦,1905 年提出光量子的概念,成功地解释了光电效应,1913 年玻尔在此基础上又提出了原子结构的量子理论,揭示了原子光谱之谜。于是普朗克的量子理论,标志着一个新的、广阔的物理学科——量子力学的诞生。 德国物理学家爱因斯坦,因发现了光电效应而获 1921 年度诺贝尔73物理学奖,1905 年爱因斯坦发表了论文《关于光的产生和转化的一个启发性观点》,他推广普朗克把能量子的不连续性局限在辐射和吸收过程中,认为光在传播过程中能量也是不连续的,每个光子都有一定的能量,对于频率为 v 的光,其光子能量为 E=hv。光电效应是由于金属中的自由电子吸收了光子能量而从金属中逸出而发生的。这样,爱因斯坦用光量子理论成功地解释了光电效应,并确定了其规律。爱因斯坦光量子理论的重要意义,是使对光的本性认识推进了一大步,历时三个多世纪的波动说和微粒说的争论,被爱因斯坦的光的波粒二象性论点所代替,并为以后其他的微观粒子的波粒二象性的观点打下了坚实的基础。必须指出爱因斯坦对物理学的贡献不仅仅只是正确解释光电效应一方面,他所创立的狭义相对论、广义相对论等是他对人类科学最大的划时代贡献。只是当时决定授予爱因斯坦诺贝尔物理学奖的时候,他的相对论还未被所有科学家承认,物理学界还存在着激烈的争论和巨大的分歧,因此评委会有意回避了相对论的贡献,只是他对理论物理方面的贡献,特别是阐明光电效应的规律而授予他这项荣誉奖励。 丹麦物理学家玻尔因研究原子结构及原子辐射获 1922 年度诺贝尔物理学奖。

“化学”简介、含义、起源、历史与发展

化学 化学是研究物质的性质、组成、结构、变化和应用的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久又富有活力的学科。它的成就是社会文明的重要标志。从开始用火的原始社会,到使用各种人造物质的现代社会,人类都在享用化学成果。人类的生活能够不断提高和改善,有赖于科学技术的进步,而化学的贡献在其中起了重要的作用。 化学是重要的基础科学之一,在与物理学、生物学、天文学等学科的相互渗透中,不仅本身得到了迅速的发展,同时也推动了其他学科和技术的发展。例如,核酸化学的研究结果使今天的生物学从细胞水平提高到分子水平,建立了分子生物学;对地球、月球和其他天体的化学成分的分析,得出了元素分布的规律,发现了星际空间简单化合物的存在,为天体演化和现代宇宙学提供了实验数据,创建了地球化学和宇宙化学。化学的重大成就,还丰富了自然辩证法的内容,推动了唯物主义哲学思想的发展。 化学的历史发展 原始人类从用火之时开始,由野蛮进入文明,同时也就开始了用化学方法认识和改造天然物质。火──燃烧──就是一种化学现象。掌握了火以后,人类开始熟食;逐步学会了制陶、冶铜、炼铁;以后,又懂得了酿造、染色等等。这些由天然物质加工改造而成的制品,成为古代文明的标志。在这些生产实践的基础上,萌发了古代化学知识。 古人曾根据物质的某些性质对物质进行分类,并企图追溯其本源及其变化规律。公元前4世纪或更早,中国提出了阴阳五行学说,认为万物是由金、木、水、火、土五种基本物质组合而成,而五行则是由阴阳二气相互作用而成的。此说为朴素的唯物主义自然观,用“阴阳“这个概念来解释自然界两种对立和互相消长的物质势力,认为二者的相互作用是一切自然现象变化的根源。此说为中国炼丹术的理论基础之一。公元前4世纪,希腊也提出与五行学说类似的火、风、土、水四元素说和古代原子论。这些朴素的元素思想,即为物质结构及变化理论的萌芽。后来在中国出现了炼丹术,到了公元前2世纪的秦汉时代,炼丹术已颇为盛行,大致在公元7世纪传到阿拉伯国家,与古希腊哲学相融合而形成阿拉伯炼金术,阿拉伯炼金术于中世纪传入欧洲,形成欧洲炼金术,后逐步演进为近代的化学。英文中化学一字(chemistry)的字根chem,即来源于中世纪的拉丁文炼金术(alchemia)。 炼丹术的指导思想是深信物质能转化,试图在炼丹炉中夺造化之功,人工合成金银或修炼长生不老之药,有目的地将各类物质搭配烧炼,进行实验。为此设计了研究物质变化用的各种器皿,如升华器、蒸馏器、研钵等,也创造了各种实验方法,如研磨、混合、溶解、结晶、灼烧、熔融、升华、密封等。与此同时,进一步分类研究了各种物质的性质,特别是相互反应的性能。这些都为近代化学的产生奠定了基础,许多器具和方法经过改造后仍然在今天的化学实验室中沿用。炼丹家在实验过程中发明了火药,发现了若干元素(如汞、锌、砷、锑、磷等),制成了某些合金(如黄铜、白铜),还制出和提纯了许多化合物,如明矾等。这些成果我们至今仍在利用。 16世纪开始,欧洲工业生产蓬勃兴起,推动了医药化学和冶金化学的创立和发展,使炼金术转向生活和实际,更进而注意对物质化学变化本身的研究。在元素的科学概念建立之

量子力学论文

从波函数到薛定谔方程 摘要:本文从波函数出发,阐述薛定谔的推导过程,并且根据哈特里福克方程,克莱因戈尔登方程完善薛定谔方程的泡利不相容原理,洛伦兹不变性。 关键词:波函数薛定谔方程哈特里福克方程克莱因戈尔登方程 一.波函数: 微观粒子的运动状态称为量子态,是用波函数来描述的,这个波函数所反映的微观粒子波动性,这个波函数所反映的微观粒子波动性,就是德布罗意波。(量子力学的基本假设之一)并且,玻恩指出:德布罗意波或波函数不代表实际物理量的波动,而是描述粒子在空间的概率分布的概率波。 (1)推导过程: 在波动学中,描述波动过程的数学函数都是空间、时间二元函数一列沿X轴正向传播的平面单色简谐波的波动方程,即: 应用欧拉公式,可以推广到复数域: 再通过德布罗意公式,可以得到自由粒子的波函数: (2)波函数性质 1.自由粒子的能量和动量为常量,其波函数所描述的德布罗意波是平面波。 2.对于处在外场作用下运动的非自由粒子,其能量和动量不是常量,其波函数所描述的 德布罗意波就不是平面波。 3.外场不同,粒子的运动状态及描述运动状态的波函数也不相同。 (3)波函数的统计假设 设描述粒子运动状态的波函数为,则 1.空间某处波的强度与在该处发现粒子的概率成正比; 2.在该处单位体积内发现粒子的概率(概率密度)与 的模的平方成正比。 (4)波函数统计意义的具备条件 1.连续- 因概率不会在某处发生突变,故波函数必须处处连续; 2.单值- 因任一体积元内出现的概率只有一种,故波函数一定是单值的; 3.有限- 因概率不可能为无限大,故波函数必须是有限的;

二.薛定谔方程: 1.1925年德国物理学家薛定谔提出的非相对论性的量子力学基本方程,质量为m的粒 子,在势能函数为的势场中运动,当其运动速度远小于光速时,它的波函数 所满足的方程为: 这就是薛定谔方程,它反映微观粒子运动状态随时间变化的力学规律,又称含时薛定谔方程。 其中,为哈密顿算符。 2.若粒子所在的势场只是空间函数,那么对应于一个可能态有一个能量值E,即可得到定态薛定谔方程: 3.定态是指波函数具有的形式。它的特点是其概率密度与时间无关。 4.定态波函数中振幅函数满足统计的条件: (1)连续,单值,有限的标准条件 (2)归一化条件 (3)对坐标的一阶导数存在并且连续 5.可以看出定态波函数和定态薛定谔方程可以通过势能函数互相导出。 三.哈特里-福克方程: 1.为了解决多电子体系薛定谔方程近似求解的问题量子化学家道格拉斯·哈特里在1928年提出了哈特里假设,他将每个电子看做是在其他所有电子构成的平均势场中运动的粒子,并且首先提出了迭代法的思路。哈特里根据他的假设,将体系电子哈密顿算子分解为若干个单电子哈密顿算子的简单代数和,每个单电子哈密顿算子中只包含一个电子的坐标,因而体系多电子波函数可以表示为单电子波函数的简单乘积,这就是哈特里方程。 2.由于哈特里没有考虑电子波函数的反对称要求,事实上他的方程还是有问题的。1930年,哈特里的学生弗拉基米尔·福克,提出了考虑泡利原理的自洽场迭代方程和单行列式型多电子体系波函数,这就是今天的哈特里—福克方程。 3.所以,在薛定谔没有解决的情况下,哈特里福克方程使得量子力学是满足泡利原理的。

浅析量子力学

Despite the name, the Underground Railroad was not really a railroad, but was a network of people who assisted fugitive slaves. Many fugitives who escaped to the North and Canada received assistance along the way from individuals who were involved in this network. By the early 19th century, the organization became so successful that it is estimatal that between 1810 and 1850,100,000 slaves escaped from the South through the Underground Railroad. It was not a coincidence that it was called the Underground Railroad. Steam railroads had just emerged and the terms used to describe the people who helped and the fugitives were related to the railroad line. Fugitive slaves were called “parcels”and “passengers”, the helpers were the “conductors”, the people who provided their homes as refuge were called “stationmasters”, and the homes were referred to as “depots” or “station”. The route used was an important part of a successful escape. There were numerous secret routes that a conductor could use. The one used depended on where the search parties and slave catchers were stationed . Some trips required the use of many different routes. If it appeared that they might be in danger, a guide would change paths. Some guided and

量子力学发展史

鬼话连篇:荒诞量子力学 原创2017-01-15小学僧老和山下的小学僧 先来个绕口令渲染一下诡异的氛围,量子力学奠基人波尔曾曰:如果你第 一次学量子力学认为自己懂了,那说明你还没懂。” 为了理解这个叹为观止的理论的伟大,只能把起点设得低一些,就从认识论'说起吧!中学僧请跳过,直接看后半篇。 人类为了生存,一直试图认识和解释这个世界。最早的认识论”充满了想象,后来逐渐演化成了宗教”,比如上帝创造了万物。过了一阵子,有些人发现这种认识论"不靠谱,跪了半天祈雨,还不如萧敬腾管用!脑袋瓜好使的人就在思考世界的本源是什么”、东西为什么往下掉”,如此云云。早期的聪明人只是坐在办公室研究世界,于是这种单纯的思辨就慢慢变成了哲学” 大家围坐论道,逼格是挺高,但只能争个面红耳赤,张三说世界在乌龟背上,李四说世界在大象背上。我说哥们儿,你们就不能验证一下吗?当然不能!土鳖才动手,君子只动口,这种风气夸张到什么程度呢?亚里士多德认为女性的牙齿比男性少”,就这么一个理论,愣是被奉为经典几百年。 很长一段时间,大家就是这么靠拍脑袋研究世界。拍着拍着,突然有个家伙灵光一闪,拍出了逻辑思维,做起了实验,这就是伽利略”。伽利略是第一个系统地用严密的逻辑和实验来研究事物的人,这便是科学”的雏形,所以伽利略很伟大,属于一流伟大”这个范畴。 是不是觉得早生几百年,你我都是科学家?别天真了,其实经常以负面形象出现的亚里士多德,绝对属于当时最聪明的人,时代局限性造成的无知”不是无知。 打个补丁,本文说的科学”是单纯的一门学科,而不是形容词。啥意思呢?因为某党的某些需求,科学这个词在国内的意义急剧扩大化,以至于现在科学' 就是真理”的代名词,很多地方可以把科学”和合理”两个词互换。你的做法很科学”,你的做法很合理”,这两句话有区别吗?再看英文版:你的做法很Scienee :这可就是语病了。本文说的科学”就是“Scienee, 是—门学科,而不是理:。

量子力学的发展史及其哲学思想

十九世纪末期,物理学理论在当时看来已发展到相当完善的阶段.那时,一般的物理现象都可以从相应的理论中得到说明:物体的机械运动比光速小的多时,准确地遵循牛顿力学的规律;电磁现象的规律被总结为麦克斯韦方程;光的现象有光的波动理论,最后也归结为麦克斯韦方程;热的现象理论有完整的热力学以及玻耳兹曼,吉不斯等人建立的统计物理学.在这种情况下,当时有许多人认为物理现象的基本规律已完全被揭露,剩下的工作只是把这些基本规律应用到各种具体问题上,进行一些计算而已。 这种把当时物理学的理论认作”最终理论”的看法显然是错误的,因为:在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在”绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识具有相对的真理性.”生产力的巨大发展,对科学试验不断提出新的要求,促使科学试验从一个发展阶段进入到另一个新的发展阶段。就在物理学的经典理论取得上述重大成就的同时,人们发现了一些新的物理现象,例如黑体辐射,光电效应,原子的光谱线系以及固体在低温下的比热等,都是经典物理理论所无法解释的。这些现象揭露了经典物理学的局限性,突出了经典物理学与微观世界规律性的矛盾,从而为发现微观世界的规律打下基础。黑体辐射和光电效应等现象使人们发现了光的波粒二象性;玻尔为解释原子的光谱线系而提出了原子结构的量子论,由于这个理论只是在经典理论的基础上加进一些新的假设,因而未能反映微观世界的本质。因此更突出了认识微观粒子运动规律的迫切性。直到本世纪二十年代,人们在光的波粒二象性的启示下,开始认识到微观粒子的波粒二象性,才开辟了建立量子力学的途径。 量子力学诞生和发展的过程,是充满着矛盾和斗争的过程。一方面,新现象的发现暴露了微观过程内部的矛盾,推动人们突破经典物理理论的限制,提出新的思想,新的理论;另一方面,不少的人(其中也包括一些对突破经典物理学的限制有过贡献的人),他们的思想不能(或不完全能)随变化了的客观情况而前进,不愿承认经典物理理论的局限性,总是千方百计地企图把新发现的现象以及为说明这些现象而提出的新思想,新理论纳入经典物理理论的框架之内。虽然本书中不能详细叙述这个过程。尽管这些新现象在十九世纪末就陆续被发现,而量

量子力学课程论文由薛定谔方程引发的深思

量子力学课程论文题目:《由薛定谔方程引发的深思》 学院:数理信息工程学院 专业:物理112班 学生姓名:徐盈盈王黎明 学号:11260124 11180216 完成时间: 2013年12月20日

由薛定谔方程引发的深思 【摘要】 薛定谔方程的提出揭示了微观物理世界物质运动的基本规律,它是原子物理学中处理一切非相对论问题的有力工具[1]。作为量子力学之魂,薛定谔方程完整的向我们诠释了微观世界的魅力。为更加深入地学习薛定谔方程和量子力学,我们将分析薛定谔方程的推导过程、介绍其在求解粒子问题中的应用以及其在原子物理、核物理、固体物理等学科的应用,最后谈谈自己的想法。 【引言】 随着“任何粒子都具有波粒二象性”的德布罗意假说成功被戴维森-革末实验所证实,薛定谔思考着会有一个波动方程可以反应粒子的这种量子行为。于是,基于众多前人研究成果,薛定谔于1926年提出薛定谔方程,完美的解释了波函数的行为。正是因为薛定谔方程在量子力学进程中起着举足轻重的作用,所以我们必须深入学习其推导过程和应用。并且由薛定谔方程出发,深刻思考我们在物理学习过程中所必须具备的思维方式和学习态度。 【关键词】 薛定谔方程玻尔理论波函数深思 【正文】 一、薛定谔方程的提出与推导 1、薛定谔方程的历史背景 爱因斯坦认为普朗克的量子为光子,并且提出了奇妙的“波粒二象性”。1924年,路易·德布罗意提出“物质波”的概念,认为任何粒子都具有波粒二象性,并且这个假说于1927年成功被戴维森-革末实验所证实。薛定谔由此认为一定会有一个波动方程能够恰当的描述粒子的这种性质。最后他借助于经典力学的哈密顿原理以及光学的费马原理,将牛顿力学与光学类比,并且以哈密顿-雅克比方程为工具,成功建立了薛定谔方程,并且准确的计算了氢原子的谱线。 2、薛定谔方程的推导思路 ①首先自由粒子可用平面波来表示,可当粒子收到随时间或位置变化的力场的作用时,应该用波函数来表示。波函数描写体系的量子状态。波函数是指在空间中某一点的强度和在该点找到粒子的概率成比例[2]。 ②当讨论粒子状态随时间变化所遵从的规律时,必须建立波函数随时间变化的方程。 ③用平面波描写自由粒子的波函数ψ(r,t)=Ae i(p.r-Et)/h,并且对时间求偏微商,对位置求二次偏微商,再利用能量和动量的关系式E=p2/2m+V(r),最终可得到薛定谔方程: ④从一维薛定谔方程出发,可以得出三维薛定谔方程和定态薛定谔方程:

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集 量子力学期末试题及答案(A) 选择题(每题3分共36分) 1.黑体辐射中的紫外灾难表明:C A. 黑体在紫外线部分辐射无限大的能量; B. 黑体在紫外线部分不辐射能量; C.经典电磁场理论不适用于黑体辐射公式; D.黑体辐射在紫外线部分才适用于经典电磁场理论. 2.关于波函数Ψ 的含义,正确的是:B A. Ψ 代表微观粒子的几率密度; B. Ψ归一化后, ψψ* 代表微观粒子出现的几率密度; C. Ψ一定是实数; D. Ψ一定不连续. 3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片; B.偏振光子先改变偏振方向,再通过偏振片; C.偏振光子通过偏振片的几率是不可知的; D.每个光子以一定的几率通过偏振片. 4.对于一维的薛定谔方程,如果 Ψ是该方程的一个解,则:A A. *ψ 一定也是该方程的一个解; B. *ψ一定不是该方程的解; C. Ψ 与* ψ 一定等价; D.无任何结论. 5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒. 6.如果以∧ l 表示角动量算符,则对易运算] ,[y x l l 为:B A. ih ∧ z l B. ih ∧ z l C.i ∧ x l D.h ∧ x l 7.如果算符 ∧A 、∧B 对易,且∧ A ψ =A ψ,则:B A. ψ 一定不是∧B 的本征态; B. ψ一定是 ∧ B 的本征态; C.*ψ一定是∧ B 的本征态; D. ∣Ψ∣一定是∧ B 的本征态.

浅谈量子力学与量子思维

量子力学:不平凡的诞生预示了不平凡的神奇 ——浅谈量子力学与量子思维 理学院物理系林功伟 量子力学自诞生以来,极大地推动了现代科学和技术的发展,已经深刻地改变了我们的生活方式。从电脑、电视、手机到核能、航天、生物技术,处处它都在大显身手,它已经把人类社会带入量子时代。但量子理论究竟带给了我们什么?这个问题,至今带给我们的仍只是无尽的想象。近年来,校长钱旭红院士,从改变思维的角度出发,在多种场合呼吁全社会要重视量子思维方式并加以运用,不久前又在“文汇科技沙龙”上,提议让“量子思维”尽早走入中小学课堂。那么,量子力学究竟是什么? 量子力学的诞生是一段波澜壮阔的传奇。它的发展史是物理学乃至整个科学史上最为动人心魄的篇章之一。不平凡的诞生预示了不平凡的神奇。在量子世界中,处事原则处处与我们熟悉的牛顿力学主宰的世界截然不同。在我们熟悉的世界,要么是波,要么是粒子。在量子世界,既是波也是粒子,既不是波也不是粒子,兼具波和粒子的特质,即波粒二象性。从而引申出量子叠加、测量塌缩、量子纠缠等种种神奇的现象。 量子叠加:鱼和熊掌亦可得兼 在经典的牛顿力学体系中,把粒子的运动都归结为确定轨道的机械运动。知道粒子某个时刻的运动状态与力的作用,就可以推断粒子的过去,也可以预知粒子的未来。就像一个算命先生,你告诉他生辰八字,他掐指一算就知道你的前世来生。在这种机械观下,仿佛一切都是注定的、唯一确定的。然而,在量子世界,一切都变得不一样。比如,有一天要从上海去北京,异想天开的你既想乘坐京沪高铁体验沿途的风光,又想搭乘飞机享受鸟瞰大地的感觉。我们习惯的方式是同

一时间我们只能选择其一,必须割爱其一。但在量子世界中你可以在火车上和飞机里共存量子叠加态上,鱼和熊掌亦可得兼。 这种量子叠加状态非常奇特。同一时刻,你既体验着高铁沿途的风光,也享受着飞机上鸟瞰大地的感觉,如果说同一时刻有两件事,但分别要求在火车上和在飞机里完成,量子叠加态的你完全可以神奇地一一照做。就像《西游记》中的孙悟空有分身术,同时一个上天一个入地。现在科学家们正利用这一原理来研制未来的量子计算机。量子计算机中的量子比特可以在无数的空间中量子叠加。它们并行地操作完成复杂的计算。已有研究表明这种量子并行计算确实可以在某些特定的复杂计算问题上大大提高效率。例如:一个400位的阿拉伯数字进行质数因子分解,目前即使最快的超级计算机也要耗时上百亿年,这几乎等于宇宙的整个寿命;而具有相同时钟脉冲速度的量子计算机可能只需要几分钟。还有利用量子快速搜索算法,可能很快从一个大森林里找到一片叶子,或者在一个沙滩上找到一颗沙子。在量子世界,“大海捞针”已不再是没有可能的事,简直“易如反掌”。 量子叠加不仅可以是同一个物质在它不同状态的叠加,还允许不同物质的叠加,哪怕这两个物质是迥然不同类的。比如光和原子,前者是宇宙中最快的,一眨眼可以绕地球好几周;后者可以慢悠悠地停留在某处。如果让它们量子叠加一起会怎么样呢?有种叫电磁诱导透明的技术就可以让光和原子相干叠加。叠加后我们称之为暗态极子,它是半光半原子的混合体,就像希腊神话中半人半神的帕尔修斯,既具备人的情感,也具备神的能力。人们发现这种半光半原子混合体的速度是介于之间的,它既不像光速那么快,也不像原子慢悠悠停留在某处,它的速度取决于光在其中叠加的比重。人们通过调节这个比重就可以让光乖乖地慢下来,需要的时候还可以让光再飞奔起来。在运用上,光子相互作用很小,而原子之间容易产生大的相互作用。有趣的是:最近,我们研究小组通过合理设计可以利用原子的优点来弥补光子的缺点,设计出强的单光子相互作用。如果把这个过程提升到量子思维的话,不就是我们生活中的“取长补短”“协同合作”吗?而这个思维能力正是当代社会所迫切需要的。

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

量子力学的发展进程

量子力学的发展进程 黑体2014 摘要:简述了量子力学的发展进程。量子力学是近代物理学的重要组成部分,是研究微观粒子(分子、原子、原子核、基本粒子等)运动规律的一种基础理论。它是本世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它的发展曾经引起物理思想上的巨大变革,它产生的影响,绝不局限于物理学和化学这两门学科,而且还涉及人类认识本身的种种基本问题。因此对它的发展进程进行研究有着特别的重要意义。笔者想在这篇文章中对量子力学的发展进程作一简要的回顾,并就自己在学习周世勋《量子力学教程》这门课程中一些疑惑和感想做一说明。 关键词:量子力学;进程;学习心得

The development process of quantum mechanics Abstract:Briefly describes the development process of quantum mechanics. It is an important part of modern physics, quantum mechanics is the study of microscopic particles (molecules, atoms, nuclei, elementary particles, etc.) a basic theory of the motion law. It is in the 20 s of this century in summing up a lot of experimental facts and the old quantum theory established on the basis of it. Its development has caused physical and ideological change, the impact of it, not limited to the physics and chemistry, the two subjects, but also the basic problem of human cognition itself. So the study of its development process has a special significance. In this article the development process of quantum mechanics makes a brief review of, and in their learning Zhou Shixun in the course of the quantum mechanics course some doubts and thoughts. Key words:Quantum mechanics; Process; The learning

相关文档
最新文档